Class: Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails

Inherits:
Object
  • Object
show all
Extended by:
Protobuf::MessageExts::ClassMethods
Includes:
Protobuf::MessageExts
Defined in:
proto_docs/google/privacy/dlp/v2/dlp.rb

Overview

Result of a risk analysis operation request.

Defined Under Namespace

Classes: CategoricalStatsResult, DeltaPresenceEstimationResult, KAnonymityResult, KMapEstimationResult, LDiversityResult, NumericalStatsResult, RequestedRiskAnalysisOptions

Instance Attribute Summary collapse

Instance Attribute Details

#categorical_stats_result::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult

Returns Categorical stats result.



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#delta_presence_estimation_result::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult

Returns Delta-presence result.



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#k_anonymity_result::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult

Returns K-anonymity result.



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#k_map_estimation_result::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult

Returns K-map result.



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#l_diversity_result::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult

Returns L-divesity result.



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#numerical_stats_result::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::NumericalStatsResult

Returns Numerical stats result.



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#requested_options::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::RequestedRiskAnalysisOptions

Returns The configuration used for this job.



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#requested_privacy_metric::Google::Cloud::Dlp::V2::PrivacyMetric

Returns Privacy metric to compute.

Returns:



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#requested_source_table::Google::Cloud::Dlp::V2::BigQueryTable

Returns Input dataset to compute metrics over.

Returns:



1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'proto_docs/google/privacy/dlp/v2/dlp.rb', line 1771

class AnalyzeDataSourceRiskDetails
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [::Google::Cloud::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Histogram of value frequencies in the column.
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of k-anonymity equivalence classes.
    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [::Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [::Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [::Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [::Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Histogram of l-diversity equivalence class sensitive value frequencies.
    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [::Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [::Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       \\{min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       \\{min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       \\{min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [::Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [::Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [::Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       \\{min_probability: 0, max_probability: 0.1, frequency: 17}
  #       \\{min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       \\{min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [::Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically
    #     called δ, is the ratio between the number of records in the dataset
    #     with these quasi-identifier values, and the total number of individuals
    #     (inside *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [::Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [::Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [::Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [::Array<::Google::Cloud::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [::Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # Risk analysis options.
  # @!attribute [rw] job_config
  #   @return [::Google::Cloud::Dlp::V2::RiskAnalysisJobConfig]
  #     The job config for the risk job.
  class RequestedRiskAnalysisOptions
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end