Class: Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo
- Inherits:
-
Object
- Object
- Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/visionai/v1/platform.rb
Overview
Describes the source info for a custom processor.
Defined Under Namespace
Modules: SourceType Classes: AdditionalInfoEntry, ModelSchema, ProductRecognizerArtifact
Instance Attribute Summary collapse
-
#additional_info ⇒ ::Google::Protobuf::Map{::String => ::String}
readonly
Output only.
-
#model_schema ⇒ ::Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo::ModelSchema
Model schema files which specifies the signature of the model.
-
#product_recognizer_artifact ⇒ ::Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo::ProductRecognizerArtifact
Artifact for product recognizer.
-
#source_type ⇒ ::Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo::SourceType
The original product which holds the custom processor's functionality.
-
#vertex_model ⇒ ::String
The resource name original model hosted in the vertex AI platform.
Instance Attribute Details
#additional_info ⇒ ::Google::Protobuf::Map{::String => ::String} (readonly)
Returns Output only. Additional info related to the imported custom processor. Data is filled in by app platform during the processor creation.
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 |
# File 'proto_docs/google/cloud/visionai/v1/platform.rb', line 1489 class CustomProcessorSourceInfo include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Message describes product recognizer artifact. # @!attribute [rw] retail_product_recognition_index # @return [::String] # Required. Resource name of RetailProductRecognitionIndex. # Format is # 'projects/*/locations/*/retailCatalogs/*/retailProductRecognitionIndexes/*' # @!attribute [rw] vertex_model # @return [::String] # Optional. The resource name of embedding model hosted in Vertex AI # Platform. class ProductRecognizerArtifact include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The schema is defined as an OpenAPI 3.0.2 [Schema # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). # @!attribute [rw] instances_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # instance used in prediction and explanation requests. # @!attribute [rw] parameters_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the prediction and # explanation parameters. # @!attribute [rw] predictions_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # prediction or explanation. class ModelSchema include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class AdditionalInfoEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Source type of the imported custom processor. module SourceType # Source type unspecified. SOURCE_TYPE_UNSPECIFIED = 0 # Custom processors coming from Vertex AutoML product. VERTEX_AUTOML = 1 # Custom processors coming from general custom models from Vertex. VERTEX_CUSTOM = 2 # Source for Product Recognizer. PRODUCT_RECOGNIZER = 3 end end |
#model_schema ⇒ ::Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo::ModelSchema
Returns Model schema files which specifies the signature of the model. For VERTEX_CUSTOM models, instances schema is required. If instances schema is not specified during the processor creation, VisionAI Platform will try to get it from Vertex, if it doesn't exist, the creation will fail.
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 |
# File 'proto_docs/google/cloud/visionai/v1/platform.rb', line 1489 class CustomProcessorSourceInfo include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Message describes product recognizer artifact. # @!attribute [rw] retail_product_recognition_index # @return [::String] # Required. Resource name of RetailProductRecognitionIndex. # Format is # 'projects/*/locations/*/retailCatalogs/*/retailProductRecognitionIndexes/*' # @!attribute [rw] vertex_model # @return [::String] # Optional. The resource name of embedding model hosted in Vertex AI # Platform. class ProductRecognizerArtifact include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The schema is defined as an OpenAPI 3.0.2 [Schema # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). # @!attribute [rw] instances_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # instance used in prediction and explanation requests. # @!attribute [rw] parameters_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the prediction and # explanation parameters. # @!attribute [rw] predictions_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # prediction or explanation. class ModelSchema include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class AdditionalInfoEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Source type of the imported custom processor. module SourceType # Source type unspecified. SOURCE_TYPE_UNSPECIFIED = 0 # Custom processors coming from Vertex AutoML product. VERTEX_AUTOML = 1 # Custom processors coming from general custom models from Vertex. VERTEX_CUSTOM = 2 # Source for Product Recognizer. PRODUCT_RECOGNIZER = 3 end end |
#product_recognizer_artifact ⇒ ::Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo::ProductRecognizerArtifact
Returns Artifact for product recognizer.
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 |
# File 'proto_docs/google/cloud/visionai/v1/platform.rb', line 1489 class CustomProcessorSourceInfo include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Message describes product recognizer artifact. # @!attribute [rw] retail_product_recognition_index # @return [::String] # Required. Resource name of RetailProductRecognitionIndex. # Format is # 'projects/*/locations/*/retailCatalogs/*/retailProductRecognitionIndexes/*' # @!attribute [rw] vertex_model # @return [::String] # Optional. The resource name of embedding model hosted in Vertex AI # Platform. class ProductRecognizerArtifact include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The schema is defined as an OpenAPI 3.0.2 [Schema # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). # @!attribute [rw] instances_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # instance used in prediction and explanation requests. # @!attribute [rw] parameters_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the prediction and # explanation parameters. # @!attribute [rw] predictions_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # prediction or explanation. class ModelSchema include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class AdditionalInfoEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Source type of the imported custom processor. module SourceType # Source type unspecified. SOURCE_TYPE_UNSPECIFIED = 0 # Custom processors coming from Vertex AutoML product. VERTEX_AUTOML = 1 # Custom processors coming from general custom models from Vertex. VERTEX_CUSTOM = 2 # Source for Product Recognizer. PRODUCT_RECOGNIZER = 3 end end |
#source_type ⇒ ::Google::Cloud::VisionAI::V1::CustomProcessorSourceInfo::SourceType
Returns The original product which holds the custom processor's functionality.
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 |
# File 'proto_docs/google/cloud/visionai/v1/platform.rb', line 1489 class CustomProcessorSourceInfo include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Message describes product recognizer artifact. # @!attribute [rw] retail_product_recognition_index # @return [::String] # Required. Resource name of RetailProductRecognitionIndex. # Format is # 'projects/*/locations/*/retailCatalogs/*/retailProductRecognitionIndexes/*' # @!attribute [rw] vertex_model # @return [::String] # Optional. The resource name of embedding model hosted in Vertex AI # Platform. class ProductRecognizerArtifact include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The schema is defined as an OpenAPI 3.0.2 [Schema # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). # @!attribute [rw] instances_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # instance used in prediction and explanation requests. # @!attribute [rw] parameters_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the prediction and # explanation parameters. # @!attribute [rw] predictions_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # prediction or explanation. class ModelSchema include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class AdditionalInfoEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Source type of the imported custom processor. module SourceType # Source type unspecified. SOURCE_TYPE_UNSPECIFIED = 0 # Custom processors coming from Vertex AutoML product. VERTEX_AUTOML = 1 # Custom processors coming from general custom models from Vertex. VERTEX_CUSTOM = 2 # Source for Product Recognizer. PRODUCT_RECOGNIZER = 3 end end |
#vertex_model ⇒ ::String
Returns The resource name original model hosted in the vertex AI platform.
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 |
# File 'proto_docs/google/cloud/visionai/v1/platform.rb', line 1489 class CustomProcessorSourceInfo include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Message describes product recognizer artifact. # @!attribute [rw] retail_product_recognition_index # @return [::String] # Required. Resource name of RetailProductRecognitionIndex. # Format is # 'projects/*/locations/*/retailCatalogs/*/retailProductRecognitionIndexes/*' # @!attribute [rw] vertex_model # @return [::String] # Optional. The resource name of embedding model hosted in Vertex AI # Platform. class ProductRecognizerArtifact include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The schema is defined as an OpenAPI 3.0.2 [Schema # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). # @!attribute [rw] instances_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # instance used in prediction and explanation requests. # @!attribute [rw] parameters_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the prediction and # explanation parameters. # @!attribute [rw] predictions_schema # @return [::Google::Cloud::VisionAI::V1::GcsSource] # Cloud Storage location to a YAML file that defines the format of a single # prediction or explanation. class ModelSchema include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class AdditionalInfoEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Source type of the imported custom processor. module SourceType # Source type unspecified. SOURCE_TYPE_UNSPECIFIED = 0 # Custom processors coming from Vertex AutoML product. VERTEX_AUTOML = 1 # Custom processors coming from general custom models from Vertex. VERTEX_CUSTOM = 2 # Source for Product Recognizer. PRODUCT_RECOGNIZER = 3 end end |