Class: NumRu::GPhys
- Inherits:
-
Object
- Object
- NumRu::GPhys
- Includes:
- Misc::MD_Iterators
- Defined in:
- lib/numru/ganalysis/fitting.rb,
lib/numru/gphys/grib.rb,
lib/numru/gphys/gphys.rb,
lib/numru/ganalysis/eof.rb,
lib/numru/ganalysis/met.rb,
lib/numru/gphys/ep_flux.rb,
lib/numru/gphys/version.rb,
lib/numru/gphys/gphys_io.rb,
lib/numru/ganalysis/log_p.rb,
lib/numru/gphys/gphys_fft.rb,
lib/numru/gphys/derivative.rb,
lib/numru/gphys/interpolate.rb,
lib/numru/gphys/gphys_dim_op.rb,
lib/numru/ganalysis/histogram.rb,
lib/numru/gphys/gphys_grib_io.rb,
lib/numru/ganalysis/covariance.rb,
lib/numru/gphys/coordtransform.rb,
lib/numru/gphys/gphys_grads_io.rb,
lib/numru/gphys/gphys_gtool3_io.rb,
lib/numru/gphys/gphys_io_common.rb,
lib/numru/gphys/gphys_netcdf_io.rb,
lib/numru/gphys/gphys_nusdas_io.rb,
lib/numru/gphys/gphys_hdfeos5_io.rb,
ext/numru/gphys/dim_op.c,
ext/numru/gphys/interpo.c
Overview
GPhys extension with GAnalysis::Fitting
Defined Under Namespace
Modules: Derivative, EP_Flux, GrADS_IO, GribUtils, Grib_IO, Gtool3_IO, HE5_IO, IO, IO_Common, NetCDF_IO, NuSDaS_IO Classes: Grib, GribDim, GribVar
Constant Summary collapse
- VERSION =
Add alpha while under development; remove it to release
"1.5.0"
- COS_TAPER_SP_FACTOR =
1.0 / 0.875
- BC_SIMPLE =
enum in convol_filter.c
10
- BC_CYCLIC =
enum in convol_filter.c
11
- BC_TRIM =
enum in convol_filter.c
12
- @@fft_forward =
-1
- @@fft_backward =
1
- @@fft_ignore_missing =
false
- @@fft_missing_replace_val =
nil
- @@interpo_previous_cutter =
nil
- @@interpo_previous_modifier =
nil
- @@interpo_missval =
NC_FILL_DOUBLE/FLOAT ~15*2^119
9.9692099683868690e+36
- @@interpo_extrapolation =
false
- @@default_missval =
NC_FILL_DOUBLE/FLOAT ~15*2^119
9.9692099683868690e+36
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
Returns the value of attribute data.
-
#grid ⇒ Object
readonly
Returns the value of attribute grid.
Class Method Summary collapse
-
.c_cap_by_boundary ⇒ Object
cap_by_boundary : Cap (insert) a NArray with boundary values.
-
.c_cell_integ_irreg ⇒ Object
cell_integ_irreg: trapezoidal numerical integration over coordinate cells, supporting irregular grid.
-
.c_cum_integ_irreg ⇒ Object
cum_integ_irreg : similar to cell_integ_irreg but it sums up along the axis.
- .concat(gpary, axis_or_ary, name = nil, attr = nil) ⇒ Object
- .each_along_dims(gphyses, loopdims) ⇒ Object
-
.extrapolation=(extrapo) ⇒ Object
Change the behavior of the interpolation methods to extrapolate outside the grid coverage.
- .fft_ignore_missing(ignore = true, replace_val = nil) ⇒ Object
-
.interpo_find_loc_1D ⇒ Object
to make “find loc” methods available outside GPhys as class methods.
-
.interpo_find_loc_1D_MD ⇒ Object
To apply interpo_find_loc_1D multi-dimensionally.
-
.join(gpary, ignore_overlap = false) ⇒ Object
Join multiple GPhys objects (not need for any pre-ordering).
- .join_md(gpnary) ⇒ Object
-
.join_md_nocheck(gpnary) ⇒ Object
join multiple GPhys objects #######.
Instance Method Summary collapse
- #[](*slicer) ⇒ Object
- #[]=(*args) ⇒ Object
- #add_lost_axes(lost) ⇒ Object
- #assoc_coord_gphys(name) ⇒ Object
- #assoc_coords ⇒ Object
- #assoc_coords=(assoc_coords) ⇒ Object
- #assoccoordnames ⇒ Object
- #att_names ⇒ Object
- #axis(i) ⇒ Object
- #axnames ⇒ Object
-
#bin_mean(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (mean).
-
#bin_sum(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (summation).
- #cderiv(*args) ⇒ Object
-
#coerce(other) ⇒ Object
<– For graphics.
- #convert_units(to) ⇒ Object
- #coord(i) ⇒ Object (also: #coordinate)
-
#coord_data_reverse(axname, pos) ⇒ Object
Reverse the main data (i.e., the dependent variable) and one of the coordinates (an independent variable) through interpolation.
- #coordnames ⇒ Object
- #coordtransform(coordmapping, axes_to, *dims) ⇒ Object
- #copy ⇒ Object
- #corelation(other, *dims) ⇒ Object (also: #correlation)
-
#cos_taper(*dims) ⇒ Object
Spectral factor for the cosine taper.
- #covariance(other, *dims) ⇒ Object
- #cut(*args) ⇒ Object
- #cut_rank_conserving(*args) ⇒ Object
- #cyclic_ext(dim_or_dimname) ⇒ Object
-
#cyclic_ext_with_modulo(dim_or_dimname, modulo) ⇒ Object
Old version of cyclic_ext.
-
#dcl_fig_cut(dimx, dimy, ux, uy) ⇒ Object
Interpolation on the DCL window (automatic iso-interval interpolation along a poly line that can be drawn in the current viewport of the DCL window).
- #del_att(name) ⇒ Object
- #deriv2nd(*args) ⇒ Object
- #detrend(*dims) ⇒ Object
- #dim_index(dimname) ⇒ Object
-
#eddy(*dim) ⇒ Object
Basic numerical operations that are not defined on the VArray level.
- #eof(*args) ⇒ Object
- #fft(backward = false, *dims) ⇒ Object
- #fft_deriv(dim) ⇒ Object
- #first1D ⇒ Object
- #first2D ⇒ Object
-
#first3D ⇒ Object
For graphics –>.
- #get_att(name) ⇒ Object
-
#grid_copy ⇒ Object
protected :grid # protection is lifted.
- #has_assoccoord?(*arg) ⇒ Boolean
- #has_axis?(name) ⇒ Boolean
- #has_coord?(name) ⇒ Boolean
- #histogram(opts = Hash.new) ⇒ Object (also: #histogram1D)
-
#initialize(grid, data) ⇒ GPhys
constructor
A new instance of GPhys.
- #inspect ⇒ Object
-
#interpolate(*coords) ⇒ Object
Wide-purpose multi-dimensional linear interpolation.
- #least_square_fit(functions, ensemble_dims = nil, indep_dims = nil) ⇒ Object
-
#logp_coord_p2z(pdim = nil) ⇒ Object
Convert the pressure coordinate in self to log-pressure height (after duplicating self).
- #long_name ⇒ Object
- #long_name=(long_name) ⇒ Object
- #lost_axes ⇒ Object
- #marshal_dump ⇒ Object
- #marshal_load(ary) ⇒ Object
-
#mouse_cut(dimx, dimy, num = 2, line_type = 1, line_index = 1) ⇒ Object
Makes a subset interactively by specifying a (poly-)line on the DCL viewport.
-
#mouse_cut_repeat ⇒ Object
Interpolation onto grid points specified by the previous call of GPhys#mouse_cut.
- #name ⇒ Object
- #name=(nm) ⇒ Object
- #ntype ⇒ Object
- #phase_velocity(kdim, fdim, kconv, fconv, kf0_is_c0 = true, no_kfreorder = false) ⇒ Object
- #phase_velocity_binning(kdim, fdim, cbins, kconv = nil, fconv = nil) ⇒ Object
- #phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv = nil, fconv = nil) ⇒ Object
- #phase_velocity_filter(xdim, tdim, cmin = nil, cmax = nil, xconv = nil, tconv = nil, remove_xtmean = false) ⇒ Object
- #rank ⇒ Object
- #rawspect2powerspect(*dims) ⇒ Object
-
#regrid(to) ⇒ Object
Interpolate to conform the grid to a target GPhys object.
- #rename(nm) ⇒ Object
- #replace_val(v) ⇒ Object
-
#running_mean(dim, len_or_wgt = nil, bc = BC_SIMPLE, nminvalid = 1) ⇒ Object
Running mean along a dimension (with optional weight specification).
- #set_assoc_coords(assoc_crds) ⇒ Object
- #set_att(name, val) ⇒ Object (also: #put_att)
- #set_lost_axes(lost) ⇒ Object
- #shape_coerce(other) ⇒ Object
- #shape_coerce_full(other) ⇒ Object
- #shape_current ⇒ Object (also: #shape)
- #spect_one_sided(dim) ⇒ Object
- #spect_zero_centering(dim) ⇒ Object
- #threepoint_O2nd_deriv(*args) ⇒ Object
- #transpose(*dims) ⇒ Object
- #units ⇒ Object
- #units=(units) ⇒ Object
- #val ⇒ Object
- #val=(v) ⇒ Object
Constructor Details
#initialize(grid, data) ⇒ GPhys
Returns a new instance of GPhys.
564 565 566 567 568 569 570 571 572 573 |
# File 'lib/numru/gphys/gphys.rb', line 564 def initialize(grid, data) #raise ArgumentError,"1st arg not a Grid" if ! grid.is_a?(Grid) #raise ArgumentError,"2nd arg not a VArray" if ! data.is_a?(VArray) if ( grid.shape_current != data.shape_current ) raise ArgumentError, "Shapes of grid and data do not agree. " + "#{grid.shape_current.inspect} vs #{data.shape_current.inspect}" end @grid = grid @data = data end |
Instance Attribute Details
#data ⇒ Object (readonly)
Returns the value of attribute data.
575 576 577 |
# File 'lib/numru/gphys/gphys.rb', line 575 def data @data end |
#grid ⇒ Object (readonly)
Returns the value of attribute grid.
575 576 577 |
# File 'lib/numru/gphys/gphys.rb', line 575 def grid @grid end |
Class Method Details
.c_cap_by_boundary ⇒ Object
cap_by_boundary : Cap (insert) a NArray with boundary values
Restriction; data alignment is restricted so that the beginning of the out data is always valid (within the domain). To ensure it, it should be either zcrd is increasing and upper==true or zcrd is decreasing and upper==false.
RETURN VALUES
fe: f capped by the boundary values. The dimension zdim is
extended by 1; i.e., f[:,nz,:] --> fe[:,nz+1,:], where ":" respresent
arbitrary number of dimensions. The elements of fe are equal to
those of f where inside the domain (simple copies), and they are equal
to the elements of fs at the bondary (simple copies if fs is given;
if not, guessed by interpolation or naive extension).
ze: grid points of fe along zdim. It is a mixture of zcrd and zs;
it is zcrd inside the domain (where f is copied), and it is zs
at the boundary (where fs is copied).
Same shape as fe.
nze: The number of valid data along zdim of fe. Shaped as ze,
according to the notation above. For example, when fe is 4D and
zdim==2, fe[i,j,k,l] is valid for k = 0,1,...,nze[i,j,l]-1,
where the boundary is at nze[i,j,l]-1. Thus, nze is always
smaller than or equal to the length of zdim of fe (which is nz+1)
1023 1024 1025 |
# File 'ext/numru/gphys/dim_op.c', line 1023 static VALUE cap_by_boundary(obj, f, zdim, zcrd, upper, zb, fb) VALUE obj; |
.c_cell_integ_irreg ⇒ Object
cell_integ_irreg: trapezoidal numerical integration over coordinate cells, supporting irregular grid
Description
Suppose a multi-dimensional NArray f, where colon represents any number of dimensions, and k is the “z” dimension along which integration is made. We write its real space representation as f(z; x), where x symbolically represents all of the independent variables other than z, and for simplicity, we further write it as f(z).
z is sampled at z_k, k=0,1,…,nzbound-1. This method allows z_k to be defined for each z column, so it requires a multi-D NArray argument z (having the same shape as f). Optionally, nzbound can also vary as nzbound. If, instead, nil is given to nzbound, the entire z grid is used; nzbound is set to f.shape(zdim).
We define the integration of f as
{ \int_za^zb f(z) dz, when za<=zb,
I(za,zb) = {
{ -\int_za^zb f(z) dz, otherwise.
In other words, our integration is always made from the smaller end to the greater end.
In the normal use case (when w is given nil), we define the cell integration as,
I(-\infty, zc_0), I(zc_0, zc_1), I(zc_1, zc_2),...,
The cell boundaries zc_m (m=0,1,..) are specified by the 1D NArray argument “ccell”; ccell must be aligned in the increasing order.
This method allows coordinate transformation by specifying another coordinate variable w (having the same shape as f). In this case, the ccell argument specifies a coordinate with respect to w: wc_m (m=0,1,…; wc_m must be in the increasing order). The integration is still taken with respect to z, so the cell integration is expressed as
I(-\infty, z(wc_0)), I(z(wc_0), z(wc_1)), I(z(wc_1), z(wc_2)),...,
The grid values z and w do not have to be monotonic; the numerical integration properly treats the contribution from multiple ranges along k. Mathematically, the coordinate-transferred integration over the w bin (-infty, wc] is expressed as
\int_-\infty^+\infty H(wc-w(z)) f(z) dz,
where H is the Heaviside function. The normal use case (without w) is simply when w is z itself, which is exploited in implementation.
790 791 792 |
# File 'ext/numru/gphys/dim_op.c', line 790 static VALUE cell_integ_irreg(obj, f, z, zdim, nzbound, ccell, w) VALUE obj; |
.c_cum_integ_irreg ⇒ Object
cum_integ_irreg : similar to cell_integ_irreg but it sums up along the axis. – This method acutually uses cell_integ_irreg and make sumation.
979 980 981 |
# File 'ext/numru/gphys/dim_op.c', line 979 static VALUE cum_integ_irreg(obj, f, z, zdim, nzbound, ccell, w) VALUE obj; |
.concat(gpary, axis_or_ary, name = nil, attr = nil) ⇒ Object
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 |
# File 'lib/numru/gphys/gphys.rb', line 1270 def GPhys.concat(gpary, axis_or_ary, name=nil, attr=nil) #< interpret gpary (1st arg) > gpary = NArray.to_na(gpary) if gpary.is_a?(Array) if !gpary.is_a?(NArray) || gpary.rank != 1 raise(ArgumentError,"1st arg must be a 1D NArray or Array of GPhys") end len = gpary.length #< interpret axis_or_ary (2nd arg) and make an Axis if not > case axis_or_ary when Axis ax = axis_or_ary if ax.length != len raise(ArgumentError,"length mismatch #{len} vs #{ax.length}") end else ary = axis_or_ary # must be an NArray or Array ary = NArray.to_na(ary).to_f if ary.is_a?(Array) if !ary.is_a?(NArray) || ary.rank != 1 raise(ArgumentError, "If not an Axis, 2nd arg must be 1D NArray or Array of float") end if ary.length != len raise(ArgumentError,"length mismatch #{len} vs #{ary.length}") end if name.nil? raise(ArgumentError, "3rd arg (name) is needed if the 2nd arg is not an Axis") end va = VArray.new(ary, attr, name) ax = Axis.new().set_pos(va) end #< new grid > grid = gpary[0].grid.insert_axis(-1,ax) # insert_axis: non-destructive #< join VArrays > ds = gpary.collect{|gp| gp.data} gpary[0].rank.times{ds.newdim!(0)} # for VArrayComposite.new data = VArrayComposite.new(ds) #< result > GPhys.new(grid, data) end |
.each_along_dims(gphyses, loopdims) ⇒ Object
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 |
# File 'lib/numru/gphys/gphys.rb', line 997 def self.each_along_dims(gphyses, loopdims) if !gphyses.is_a?(Array) gphyses = [gphyses] # put in an Array (if a single GPhys) end gp = gphyses[0] if !loopdims.is_a?(Array) loopdims = [loopdims] # put in an Array (if a single Integer/String) end if loopdims.length == 0 #raise ArgumentError, "No loop dimension is specified "+ # " -- In that case, you don't need this iterator." return yield(*gphyses) # trivial case supported just for generality end #if loopdims.min<0 || loopdims.max>=gp.rank # raise ArguemntError,"Invalid dims #{loopdims.inspect} for #{gp.rank}D array" #end loopdimids = Array.new loopdimnames = Array.new loopdims.each{|d| case d when Integer if d < 0 d += gp.rank end loopdimids.push( d ) loopdimnames.push( gp.axis(d).name ) when String loopdimids.push( gp.dim_index(d) ) loopdimnames.push( d ) else raise ArgumentError,"loopdims must consist of Integer and/or String" end } sh = Array.new len = 1 loopdimids.each{|i| sh.push(gp.shape[i]) len *= gp.shape[i] } gphyses.each do |g| for i in 1...gphyses.length loopdimnames.each_with_index do |nm,i| if !g.axnames.include?( nm ) raise ArgumentError,"#{i+1}-th GPhys do not have dim '#{nm}'" end if g.coord(nm).length != sh[i] raise ArgumentError,"loop dimensions must have the same lengths(#{nm}; #{sh[i]} vs #{g.coord(nm).length})" end end end end to_return = nil cs = [1] (1...sh.length).each{|i| cs[i] = sh[i-1]*cs[i-1]} idx_hash = Hash.new for i in 0...len do loopdimnames.each_with_index{|d,j| idx_hash[d] = ((i/cs[j])%sh[j])..((i/cs[j])%sh[j]) # rank preserved } subs = gphyses.collect{|g| g[idx_hash] } results = yield(*subs) if results.is_a?(Array) # then it must consist of GPhys objects if i == 0 to_return = results_whole = Array.new for j in 0...results.length rs = results[j] grid = rs.grid_copy loopdimnames.each{|nm| # replaces with original axes (full length) if !grid.axnames.include?( nm ) raise "Dimension '#{nm}' has been eliminated. "+ "You must keep all loop dimensions." end grid.set_axis(nm,gphyses[0].axis(nm)) } if ( (vtst=rs.data[0..0,false].val).respond_to?(:set_mask) ) # DEVELOPPER'S NOTE (2006/08/15 horinout). # Here, [0..0,false] is to take the minimum subset, # and respond_to?(:set_mask) is used to check whether # the data array is compatible to NArrayMiss vary = VArray.new(NArrayMiss.new(vtst.typecode, *grid.shape), rs.data) else vary = VArray.new(NArray.new(vtst.typecode, *grid.shape), rs.data) end results_whole.push( self.new( grid, vary ) ) end end for j in 0...results.length rs = results[j] results_whole[j][idx_hash] = rs.data end else to_return = nil end end return to_return end |
.extrapolation=(extrapo) ⇒ Object
Change the behavior of the interpolation methods to extrapolate outside the grid coverage.
ARGUMENTS
-
extrapo : true or false — the default behaviour is false (not to extrapolate), so use this method if you want to set it to true.
28 29 30 |
# File 'lib/numru/gphys/interpolate.rb', line 28 def self.extrapolation=(extrapo) @@interpo_extrapolation = extrapo end |
.fft_ignore_missing(ignore = true, replace_val = nil) ⇒ Object
331 332 333 334 |
# File 'lib/numru/gphys/gphys_fft.rb', line 331 def self.fft_ignore_missing( ignore=true, replace_val=nil ) @@fft_ignore_missing = ignore @@fft_missing_replace_val = replace_val end |
.interpo_find_loc_1D ⇒ Object
to make “find loc” methods available outside GPhys as class methods
311 312 313 |
# File 'ext/numru/gphys/interpo.c', line 311 static VALUE interpo_find_loc_1D(obj, X, x, missval, extrapo) VALUE obj; |
.interpo_find_loc_1D_MD ⇒ Object
To apply interpo_find_loc_1D multi-dimensionally
372 373 374 |
# File 'ext/numru/gphys/interpo.c', line 372 static VALUE interpo_find_loc_1D_MD(obj, X, x, dimc, missval, extrapo) VALUE obj; |
.join(gpary, ignore_overlap = false) ⇒ Object
Join multiple GPhys objects (not need for any pre-ordering).
ARGUMENT
-
gpnarray [Array (or 1D NArray) of GPhys]
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 |
# File 'lib/numru/gphys/gphys.rb', line 1226 def GPhys.join(gpary, ignore_overlap=false) #< initialization with the first GPhys object > gp = gpary[0] rank = gp.rank gpstore = MDStorage.new(rank) gpstore[ *Array.new(rank, 0) ] = gp # first element x0s = (0...rank).collect{|d| pos = gp.axis(d).pos x0 = UNumeric[ pos.val[0], pos.units ] [ x0 ] # first values of each coordinate } #< scan the coordiantes of the remaining GPhys objects > for k in 1...gpary.length gp = gpary[k] idx = Array.new for d in 0...rank pos = gp.axis(d).pos x0 = UNumeric[ pos.val[0], pos.units ] i = x0s[d].index(x0) if i.nil? x0s[d].push(x0) i = x0s[d].length-1 end idx.push(i) end gpstore[*idx] = gp end if !ignore_overlap && gpstore.count_non_nil != gpary.length raise(ArgumentError,"Cannot uniquely locate one or more objects; some overlap in the grids?") end gpnary = gpstore.to_na #< Sort along dimensions to join > gpnary = __sort_gpnary(gpnary) #< Join! > self.join_md_nocheck(gpnary) end |
.join_md(gpnary) ⇒ Object
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 |
# File 'lib/numru/gphys/gphys.rb', line 1154 def GPhys.join_md(gpnary) #< Check > if !gpnary.is_a?(NArray) raise(ArgumentError,"Input must be an NArray of GPhys") end arank = gpnary.rank # rank of the input NArray ashape = gpnary.shape rank = gpnary[0].rank #< Reshape and transpose gpnary if needed > # / find dimmensions to join / dimmap = Array.new for i in 0...arank if ashape[i] > 1 # join needed sel = Array.new(arank, 0) # [0,0,...,0] gp0 = gpnary[ *sel ] sel[i] = 1 gp1 = gpnary[ *sel ] # [0,..,0,1,0,...,0] for d in 0...rank c0 = gp0.coord(d)[0] c1 = gp1.coord(d)[0] if c0.val != c1.convert_units(c0.units).val dimmap[i] = d # dimension to join (found) break end raise("Corresponding dim is not found for #{i}") if d==rank-1 end else dimmap[i] = nil # no need to join this dimension end end if (x=dimmap-[nil]).length != x.uniq.length raise "Dimensions to join cannot be determined uniquely" end # / "solo" dimensions (dimensions no need to join) / sdims = (0...rank).collect{|d| d} - dimmap for i in 0...arank if dimmap[i].nil? dimmap[i] = sdims.shift # assign dimensions orderly to # minimize the need to transpose end end sdims.each do |d| dimmap.insert(d,d) # assign dimensions orderly to gpnary = gpnary.newdim(d) # minimize the need to transpose end # now, gpnary.rank == rank # / transpose gpnary if needed / if dimmap != (0...rank).collect{|d| d} imap = Array.new dimmap.each_with_index do |d,j| imap[j] = d end gpnary = gpnary.transpose(*imap) end #< Sort along dimensions to join > gpnary = __sort_gpnary(gpnary) #< Join! > self.join_md_nocheck(gpnary) end |
.join_md_nocheck(gpnary) ⇒ Object
join multiple GPhys objects #######
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 |
# File 'lib/numru/gphys/gphys.rb', line 1116 def GPhys.join_md_nocheck(gpnary) #< check > if !gpnary.is_a?(NArray) raise(ArgumentError,"Input must be an NArray of GPhys") end rank = gpnary.rank #< axes > gp0 = gpnary[0] axes = Array.new for d in 0...rank if gpnary.shape[d] > 1 # --> join axes sel = [0]*d + [true] + [0]*(rank-d-1) # [0,..0,true,0,...0] axs = gpnary[*sel].collect{|gp| gp.axis(d)} # axes along d-th dim ax = Axis.join(axs) else ax = gp0.axis(d) end axes.push(ax) end #< grid > grid = Grid.new(*axes) if gp0.assoc_coords assoc_coords = gp0.assoccoordnames.collect do |aname| GPhys.join( gpnary.collect{|gp| gp.assoc_coord_gphys(aname)}, true ) end grid.set_assoc_coords(assoc_coords) end #< data > data = VArrayComposite.new( gpnary.collect{|gp| gp.data} ) #< new gphys > GPhys.new(grid, data) end |
Instance Method Details
#[](*slicer) ⇒ Object
658 659 660 661 662 663 664 665 666 |
# File 'lib/numru/gphys/gphys.rb', line 658 def [](*slicer) if slicer.length==1 && slicer[0].is_a?(Hash) && slicer[0].keys[0].is_a?(String) slicer = __process_hash_slicer(slicer[0]) else slicer = __rubber_expansion( slicer ) end self.class.new( @grid[*slicer], @data[*slicer] ) end |
#[]=(*args) ⇒ Object
668 669 670 671 672 673 674 675 676 677 678 679 |
# File 'lib/numru/gphys/gphys.rb', line 668 def []=(*args) val = args.pop slicer = args if slicer.length==1 && slicer[0].is_a?(Hash) && slicer[0].keys[0].is_a?(String) slicer = __process_hash_slicer(slicer[0]) else slicer = __rubber_expansion( slicer ) end val = val.data if val.respond_to?(:grid) #.is_a?(GPhys) @data[*slicer] = val end |
#add_lost_axes(lost) ⇒ Object
747 748 749 750 |
# File 'lib/numru/gphys/gphys.rb', line 747 def add_lost_axes( lost ) @grid.add_lost_axes( lost ) self end |
#assoc_coord_gphys(name) ⇒ Object
736 737 738 |
# File 'lib/numru/gphys/gphys.rb', line 736 def assoc_coord_gphys(name) @grid.assoc_coord_gphys(name) end |
#assoc_coords ⇒ Object
775 776 777 |
# File 'lib/numru/gphys/gphys.rb', line 775 def assoc_coords @grid.assoc_coords end |
#assoc_coords=(assoc_coords) ⇒ Object
772 773 774 |
# File 'lib/numru/gphys/gphys.rb', line 772 def assoc_coords=(assoc_coords) @grid.assoc_coords=assoc_coords end |
#assoccoordnames ⇒ Object
766 767 768 |
# File 'lib/numru/gphys/gphys.rb', line 766 def assoccoordnames @grid.assoccoordnames end |
#att_names ⇒ Object
615 616 617 |
# File 'lib/numru/gphys/gphys.rb', line 615 def att_names @data.att_names end |
#axis(i) ⇒ Object
730 731 732 |
# File 'lib/numru/gphys/gphys.rb', line 730 def axis(i) @grid.axis(i) end |
#axnames ⇒ Object
724 725 726 |
# File 'lib/numru/gphys/gphys.rb', line 724 def axnames @grid.axnames end |
#bin_mean(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (mean)
The values are averaged every “len” grids; unlike running_mean the number of grids is reduced to 1/len. Currently, the only available boundary condition is BC_TRIM.
ARGUMENTS
-
dim (Integer or String) : the dimension
-
len (Integer): length of the bin
-
nminvalid (Integer; optional; defualt=1): Effective only for data with missing. Minimum number of grid points needed for averaging (1 to len).
RETURN VALUE
-
a GPhys
113 114 115 116 |
# File 'lib/numru/gphys/gphys_dim_op.rb', line 113 def bin_mean(dim, len, nminvalid=1) dim = dim_index(dim) # to handle String or negative specification GPhys.new( grid.binning(dim, len), data.bin_mean(dim, len, nminvalid) ) end |
#bin_sum(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (summation)
Similar to bin_mean, but the values are simply summed without averaging
ARGUMENTS
-
dim (Integer or String) : the dimension
-
len (Integer): length of the bin
-
nminvalid (Integer; optional; defualt=1): Effective only for data with missing. Minimum number of grid points needed for averaging (1 to len).
RETURN VALUE
-
a GPhys
131 132 133 134 |
# File 'lib/numru/gphys/gphys_dim_op.rb', line 131 def bin_sum(dim, len, nminvalid=1) dim = dim_index(dim) # to handle String or negative specification GPhys.new( grid.binning(dim, len), data.bin_sum(dim, len, nminvalid) ) end |
#cderiv(*args) ⇒ Object
91 92 93 |
# File 'lib/numru/gphys/derivative.rb', line 91 def cderiv(*args) Derivative::cderiv(self,*args) end |
#coerce(other) ⇒ Object
<– For graphics
800 801 802 803 804 805 806 807 808 |
# File 'lib/numru/gphys/gphys.rb', line 800 def coerce(other) case other when Numeric, Array, NArrayMiss c_other = UNumeric::Num2Coerce.new( other ) else raise "Cannot coerse #{other.class}" end [c_other, self] end |
#convert_units(to) ⇒ Object
642 643 644 645 646 647 648 649 |
# File 'lib/numru/gphys/gphys.rb', line 642 def convert_units(to) # ==NOTE: # * VArray#convert_units does not copy data if to == @data.units # * @grid is shared with self (no duplication) # Thus, use GPhys#copy to separate all sub-objects (deep clone). data = @data.convert_units(to) self.class.new(@grid, data) end |
#coord(i) ⇒ Object Also known as: coordinate
733 734 735 |
# File 'lib/numru/gphys/gphys.rb', line 733 def coord(i) @grid.coord(i) end |
#coord_data_reverse(axname, pos) ⇒ Object
Reverse the main data (i.e., the dependent variable) and one of the coordinates (an independent variable) through interpolation.
Returns a GPhys in which the main data is the specfied coordinate (argument: axname) sampled at specified locations (argument: pos) in terms of the main data of self. The main data of self is expected to be quai-monotonic with respect to the specfied coordinate.
ARGUMENTS
-
axname [String] : one of the names of the axes (i.e. main coordinates. Auxiliary coordinates are not supported as the target.)
-
pos [NArray] : grid locations. For example, if the current data is potential temperature theta, pos consists of the theta levels to make sampling.
RETURN VALUE
-
a GPhys
231 232 233 234 235 236 237 238 239 240 |
# File 'lib/numru/gphys/interpolate.rb', line 231 def coord_data_reverse(axname,pos) gp = self.axis(axname).to_gphys gp = self.shape_coerce_full(gp)[0] # conform the shape to that of self gp = GPhys.new( gp.grid.copy, gp.data ) # copy grid to avoid side effect # on the grid of self gp.set_assoc_coords([self]) pos = NArray[*pos].to_type(NArray::FLOAT) if pos.is_a?(Array) newcrd = VArray.new(pos,self.data,self.name) # succeeds the attributes gp.interpolate(axname=>newcrd) end |
#coordnames ⇒ Object
754 755 756 |
# File 'lib/numru/gphys/gphys.rb', line 754 def coordnames @grid.coordnames end |
#coordtransform(coordmapping, axes_to, *dims) ⇒ Object
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# File 'lib/numru/gphys/coordtransform.rb', line 41 def coordtransform( coordmapping, axes_to, *dims ) rankmp = coordmapping.rank #< check arguments > if axes_to.length != rankmp raise ArgumentError, "length of axes_to must be equal to the rank of coordmapping" end if self.rank == rankmp dims = (0...rankmp).collect{|i| i} elsif self.rank < rankmp raise ArgumentError,"rank of coordmapping is greater than self.rank" elsif dims.length != rankmp raise ArguemntError, "# of dimensions speficied is not equal to the rank of coordmapping" elsif dims != dims.sort raise ArguementErroor,"dims must be in the increasing order" end #< get grid points > vt = coordmapping.map_grid( *dims.collect{|d| axes_to[d].pos.val} ) x = dims.collect{|d| self.grid.axis(d).pos.val} #< prepare the output object > axes = (0...self.rank).collect{|i| grid.axis(i)} dims.each_with_index{|d,j| axes[d]=axes_to[j]} grid_to = Grid.new( *axes ) vnew = VArray.new( NArray.new( self.data.ntype, *grid_to.shape ), self.data, self.name ) #< do interpolation (so far only 2D is supported) > case dims.length when 2 if !HAVE_NUMRU_SSL2 p "interpolation without SSL2" # raise "Sorry, so far I need SSL2 (ruby-ssl2)" self.( *dims ){ |fxy,idx| wgts = Array.new idxs = Array.new for d in 0..dims.length-1 wgt = vt[d].dup.fill!(-1.0) idx0 = vt[d].dup.to_i.fill!(-1) idx1 = idx0.dup.fill!(x[d].length) xsort = x[d].sort xsortindex = x[d].sort_index for i in 0..x[d].length-1 idx0[ xsort[i] <= vt[d] ] = xsortindex[i] idx1[ xsort[-1-i] >= vt[d] ] = xsortindex[-1-i] end # where idx0=idx1 wgt[ idx0.eq(idx1) ] = 1.0 # where vt[d] < x[d].min wgt[ idx0 <= -1 ] = 1.0 idx0[ idx0 <= -1 ] = 0 # where vt[d] > x[d].max wgt[ idx1 >= x[d].length ] = 0.0 idx1[ idx1 >= x[d].length ] = x[d].length-1 # normal points mask = wgt.eq(-1.0) wgt[mask] = (vt[d][mask]-x[d][idx0[mask]])/(x[d][idx1[mask]]-x[d][idx0[mask]]) wgts.push(wgt) idxs[d*2] = idx0 idxs[d*2+1] = idx1 end case dims.length # when 1 # f = fxy.data.val[idxs[0]]*(1-wgts[0]) + # fxy.data.val[idxs[1]]*wgts[0] # f = f.to_na if( f.class.to_s == "NArrayMiss" ) when 2 lx = fxy.shape[0] f = ( fxy.data.val[idxs[0]+idxs[2]*lx]*(1-wgts[0]) + fxy.data.val[idxs[1]+idxs[2]*lx]*wgts[0] ) * (1-wgts[1]) + ( fxy.data.val[idxs[0]+idxs[3]*lx]*(1-wgts[0]) + fxy.data.val[idxs[1]+idxs[3]*lx]*wgts[0] ) * wgts[1] f = f.to_na if( f.class.to_s == "NArrayMiss" ) else raise "Sorry, #{v.length}D interpolation is yet to be supported" end if(idx==false) vnew[] = f else vnew[*idx] = f end } else ix=iy=0 m=3 self.( *dims ){ |fxy,idx| c,xt = SSL2.bicd3(x[0],x[1],fxy.val,m) begin ix,iy,f = SSL2.bifd3(x[0],x[1],m,c,xt,0,vt[0],ix,0,vt[1],iy) rescue $stderr.print "Interpolation into", vt[0].inspect, vt[1].inspect raise $! end vnew[*idx] = f } end else raise "Sorry, #{v.length}D interpolation is yet to be supported" end #< finish > GPhys.new( grid_to, vnew ) end |
#copy ⇒ Object
583 584 585 586 |
# File 'lib/numru/gphys/gphys.rb', line 583 def copy # deep clone onto memory self.class.new( @grid.copy, @data.copy ) end |
#corelation(other, *dims) ⇒ Object Also known as: correlation
93 94 95 |
# File 'lib/numru/ganalysis/covariance.rb', line 93 def corelation(other, *dims) GAnalysis.corelation(self, other, *dims) end |
#cos_taper(*dims) ⇒ Object
Spectral factor for the cosine taper. Specta should be multiplied by this.
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# File 'lib/numru/gphys/gphys_fft.rb', line 339 def cos_taper(*dims) if dims.length < 1 raise ArgumentError,'You have to specify one or more dimensions' end dims.sort!.uniq! val = self.data.val dims.each{|dim| dim = dim_index(dim) if dim.is_a?(String) dim += rank if dim < 0 raise ArgumentError,"dim #{dim} does not exist" if dim<0 || dim>rank nx = shape[dim] wgt = NArray.float(nx).fill!(1) x = 10.0 / nx * (NArray.float(nx).indgen!+0.5) wskl = x.lt(1).where wskr = x.gt(9).where wgt[wskl] = 0.5*( 1.0 - NMath::cos(Math::PI*x[wskl]) ) wgt[wskr] = 0.5*( 1.0 - NMath::cos(Math::PI*x[wskr]) ) wgt.reshape!( *([1]*dim + [nx] + [1]*(rank-dim-1)) ) val = val*wgt } to_ret = self.copy to_ret.data.val = val to_ret end |
#covariance(other, *dims) ⇒ Object
89 90 91 |
# File 'lib/numru/ganalysis/covariance.rb', line 89 def covariance(other, *dims) GAnalysis.covariance(self, other, *dims) end |
#cut(*args) ⇒ Object
692 693 694 695 696 697 698 699 700 701 702 703 704 |
# File 'lib/numru/gphys/gphys.rb', line 692 def cut( *args ) if has_assoccoord? && args.length==1 && ((spec=args[0]).is_a?(Hash)) && ( acnms = (spec.keys & assoccoordnames ) ).length > 0 acspec = Hash.new acnms.each{|nm| acspec[nm] = spec.delete(nm)} grid, sl = @grid.cut_assoccoord(acspec) gphys = self.class.new( grid, self.data[*sl] ) else gphys = self end newgrid, slicer = gphys.grid.cut( *args ) self.class.new( newgrid, gphys.data[ *slicer ] ) end |
#cut_rank_conserving(*args) ⇒ Object
706 707 708 709 |
# File 'lib/numru/gphys/gphys.rb', line 706 def cut_rank_conserving( *args ) newgrid, slicer = @grid.cut_rank_conserving( *args ) self.class.new( newgrid, @data[ *slicer ] ) end |
#cyclic_ext(dim_or_dimname) ⇒ Object
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
# File 'lib/numru/gphys/gphys.rb', line 976 def cyclic_ext(dim_or_dimname) # Cyclic extention to push the first element after the last element # if appropriate. (by using the cut method) ax = axis(dim_or_dimname) if ax.cyclic_extendible? modulo = ax.modulo v = ax.pos.val v0 = v[0] eps = 1e-2/ax.length if v0 < v[-1] # increasing v1 = v0 + modulo*(1+eps) else v1 = v0 - modulo*(1+eps) end return self.cut(ax.name=>v0..v1) else return self end end |
#cyclic_ext_with_modulo(dim_or_dimname, modulo) ⇒ Object
Old version of cyclic_ext
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
# File 'lib/numru/gphys/gphys.rb', line 950 def cyclic_ext_with_modulo(dim_or_dimname, modulo) # Cyclic extention to push the first element after the last element # if appropriate. vx = coord(dim_or_dimname) return self if vx.length <= 1 vvx = vx.val width = (vvx[-1] - vvx[0]).abs dx = width / (vx.length-1) eps = 1e-4 modulo = modulo.abs extendible = ( ((width+dx) - modulo).abs < eps*modulo ) if extendible dim = @grid.dim_index(dim_or_dimname) newgp = self.copy[false, [0...vx.length, 0], *([true]*(rank-1-dim))] vx = newgp.coord(dim).copy vx[-1] = vx[-1].val + modulo newgp.axis(dim).set_pos(vx) return newgp else return self end end |
#dcl_fig_cut(dimx, dimy, ux, uy) ⇒ Object
Interpolation on the DCL window (automatic iso-interval interpolation along a poly line that can be drawn in the current viewport of the DCL window). Used in mouse_cut.
ARGUMENTS
-
dimx [Integer or String] : specifies the dimension corresponding to the UX coordinate. (Here, the UX coordinate is the X coordinate of the DCL’s USER coordinate. For exapmle, longitude if map projection.)
-
dimy [Integer or String] : specifies the dimension corresponding to the UY coordinate. (Here, the UY coordinate is the Y coordinate of the DCL’s USER coordinate. For exapmle, latitude if map projection.)
-
ux [Array] : x values in terms of the UX coordinate
-
uy [Array] : y values in terms of the UY coordinate Lengths of ux and uy must be the same and greter or equal to 2.
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/numru/gphys/interpolate.rb', line 89 def dcl_fig_cut(dimx,dimy,ux,uy) len = ux.length raise("ux and uy must be arrays with the (same) length >= 2") if len<=1 raise("ux's len (#{len}) != uy's len (#{uy.length})") if uy.length != len vx=Array.new; vy=Array.new for i in 0...len vx[i],vy[i] = NumRu::DCL.stftrf(ux[i],uy[i]) end kx = Array.new ky = Array.new cut = [true]*rank for i in 0...len cut[dimx] = ux[i] cut[dimy] = uy[i] dummy, sl = grid.cut(*cut) kx[i] = sl[dimx] ky[i] = sl[dimy] end ndiv = Array.new ndsum = [0] for i in 0...len-1 ndiv[i] = Math.sqrt( (kx[i+1]-kx[i])**2 + (ky[i+1]-ky[i])**2).to_i ndiv[i] += 1 if i==len-2 ndsum.push ndsum[-1] + ndiv[i] # 0, ndiv[0], ndiv[0]+ndiv[1], ... end ndtot = ndsum[-1] vxdiv = NArray.float(ndtot) vydiv = NArray.float(ndtot) for i in 0...len-1 if i!=len-2 a = NArray.float(ndiv[i]).indgen / ndiv[i] else a = NArray.float(ndiv[i]).indgen / (ndiv[i]-1) end vxdiv[ndsum[i]...ndsum[i+1]] = (1.0-a)*vx[i] + a*vx[i+1] vydiv[ndsum[i]...ndsum[i+1]] = (1.0-a)*vy[i] + a*vy[i+1] end uxdiv = NArray.float(ndtot) uydiv = NArray.float(ndtot) for i in 0...ndtot uxdiv[i], uydiv[i] = DCL.stitrf(vxdiv[i], vydiv[i]) end cx = coord(dimx) xcrd = VArray.new(uxdiv, cx, cx.name) cy = coord(dimy) ycrd = VArray.new(uydiv, cy, cy.name) if (vxdiv[-1]-vxdiv[0]).abs > (vydiv[-1]-vydiv[0]).abs cutter = [xcrd,ycrd] # x will be the main coord var if not map proj crd = xcrd else cutter = [ycrd,xcrd] # x will be the main coord var if not map proj crd = ycrd end axnm = crd.name itr = DCL.sgqtrn if itr>=10 and itr<=40 newcrd = __sp_dist(xcrd,ycrd) modifier = Proc.new{|gp| newax = Axis.new.set_pos(newcrd) gp.grid.set_axis(axnm,newax) g = Grid.new( newax ) gxcrd = GPhys.new(g,xcrd) gycrd = GPhys.new(g,ycrd) gp.set_assoc_coords([gxcrd, gycrd]) gp } else modifier = nil end @@interpo_previous_cutter = cutter @@interpo_previous_modifier = modifier # < do the job > gpnew = interpolate(cutter) gpnew = modifier[gpnew] if modifier gpnew end |
#del_att(name) ⇒ Object
625 626 627 628 |
# File 'lib/numru/gphys/gphys.rb', line 625 def del_att(name) @data.del_att(name) self end |
#deriv2nd(*args) ⇒ Object
97 98 99 |
# File 'lib/numru/gphys/derivative.rb', line 97 def deriv2nd(*args) Derivative::deriv2nd(self,*args) end |
#detrend(*dims) ⇒ Object
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# File 'lib/numru/gphys/gphys_fft.rb', line 364 def detrend(*dims) if dims.length < 1 raise ArgumentError,'You have to specify one or more dimensions' end dims.sort!.uniq! val = self.data.val dims.each{|dim| dim = dim_index(dim) if dim.is_a?(String) dim += rank if dim < 0 raise ArgumentError,"dim #{dim} does not exist" if dim<0 || dim>rank if val.is_a?(NArray) x = self.coord(dim).val x.reshape!( *([1]*dim + [x.length] + [1]*(rank-dim-1)) ) vmean = val.mean(dim) vxmean = (val*x).mean(dim) xmean = x.mean(dim) x2mean = (x*x).mean(dim) denom = x2mean-xmean**2 if denom != 0 a = (vxmean - vmean*xmean)/denom b = (vmean*x2mean - vxmean*xmean)/denom else a = 0 b = vmean end elsif val.is_a?(NArrayMiss) x = self.coord(dim).val x.reshape!( *([1]*dim + [x.length] + [1]*(rank-dim-1)) ) x = NArrayMiss.to_nam( NArray.new(x.typecode, *val.shape) + x, val.get_mask ) vmean = val.mean(dim) vxmean = (val*x).mean(dim) xmean = x.mean(dim) x2mean = (x*x).mean(dim) denom = x2mean-xmean**2 meq0 = denom.eq(0).to_na(0) # ==0 and not masked mne0 = denom.ne(0).to_na(0) # !=0 and not masked denom.set_mask(mne0) # only nonzero part will be used to divide: a = (vxmean - vmean*xmean)/denom b = (vmean*x2mean - vxmean*xmean)/denom a[meq0] = 0 b[meq0] = vmean[meq0] end a.newdim!(dim) if !a.is_a?(Numeric) b.newdim!(dim) if !b.is_a?(Numeric) val = val - a*x-b } to_ret = self.copy to_ret.data.val = val to_ret end |
#dim_index(dimname) ⇒ Object
751 752 753 |
# File 'lib/numru/gphys/gphys.rb', line 751 def dim_index( dimname ) @grid.dim_index( dimname ) end |
#eddy(*dim) ⇒ Object
Basic numerical operations that are not defined on the VArray level
781 782 783 |
# File 'lib/numru/gphys/gphys.rb', line 781 def eddy(*dim) self - self.mean(*dim) end |
#eof(*args) ⇒ Object
229 230 231 |
# File 'lib/numru/ganalysis/eof.rb', line 229 def eof(*args) GAnalysis.eof(self, *args) end |
#fft(backward = false, *dims) ⇒ Object
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# File 'lib/numru/gphys/gphys_fft.rb', line 416 def fft(backward=false, *dims) fftw3 = false if defined?(FFTW3) fftw3 = true elsif !defined?(FFTW) raise "Both FFTW3 and FFTW are not installed." end if backward==true dir = @@fft_backward elsif !backward dir = @@fft_forward else raise ArgumentError,"1st arg must be true or false (or, equivalenty, nil)" end # <FFT> gfc = self.copy # make a deep clone if fftw3 val = gfc.data.val if @@fft_ignore_missing and val.is_a?(NArrayMiss) if @@fft_missing_replace_val val = val.to_na(@@fft_missing_replace_val) else val = val.to_na end elsif val.is_a?(NArrayMiss) && val.count_invalid == 0 val = val.to_na end fcoef = FFTW3.fft( val, dir, *dims ) else # --> always FFT for all dimensions if dims.length == 0 raise ArgumentError, "dimension specification is available only if FFTW3 is installed" end val = gfc.data.val if @@fft_ignore_missing and val.is_a?(NArrayMiss) if @@fft_missing_replace_val val = val.to_na(@@fft_missing_replace_val) else val = val.to_na end elsif val.is_a?(NArrayMiss) && val.count_invalid == 0 val = val.to_na end fcoef = FFTW.fftw( val, dir ) end if dir == @@fft_forward if dims.length == 0 fcoef = fcoef / fcoef.length.to_f # normalized if forward FT else sh = fcoef.shape len = 1 dims.each{|d| raise ArgumentError, "dimension out of range" if sh[d] == nil len *= sh[d] } fcoef = fcoef / len end end gfc.data.replace_val( fcoef ) # <coordinate variables> for i in 0...gfc.rank if dims.length == 0 || dims.include?(i) || dims.include?(i+rank) __predefined_coord_units_conversion(gfc.coord(i)) cv = gfc.coord(i).val n = cv.length clen = (cv.max - cv.min) * n / (n-1) wn = (2*Math::PI/clen) * NArray.new(cv.typecode,cv.length).indgen!.to_f if (!backward) gfc.coord(i).set_att('origin_in_real_space',cv[0..0]) else if ( org = gfc.coord(i).get_att('origin_in_real_space') ) wn += org[0] ###gfc.coord(i).del_att('origin_in_real_space') end end gfc.coord(i).replace_val(wn) gfc.coord(i).units = gfc.coord(i).units**(-1) __coord_name_conversion(gfc.coord(i), backward) end end # <fini> gfc end |
#fft_deriv(dim) ⇒ Object
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
# File 'lib/numru/gphys/gphys_fft.rb', line 505 def fft_deriv(dim) tp = self.data.typecode fc = self.fft(false,dim) wn = fc.coord(dim) k = wn.val.to_type(NArray::Complex) n = k.length n2a = (n-1)/2 n2b = [n/2 + 1, n-1].min # min to avoid error if n=2 (though meaningless) kmx = k[-1]+k[1] ik = NArray.complex(n) ik[0..n2a] = k[0..n2a]*Complex::I ik[n2b..-1] = (k[n2b..-1]-kmx) * Complex::I dim.times{ik.newdim!(0)} (self.rank-dim-1).times{ik.newdim!(-1)} fc.replace_val(fc.val*ik) deriv = fc.fft(true,dim) deriv.units = deriv.units * wn.units if tp >= NArray::SCOMPLEX deriv else deriv.real end end |
#first1D ⇒ Object
794 795 796 797 |
# File 'lib/numru/gphys/gphys.rb', line 794 def first1D raise "rank less than 1" if rank < 1 self[true,*([0]*(rank-1))] end |
#first2D ⇒ Object
790 791 792 793 |
# File 'lib/numru/gphys/gphys.rb', line 790 def first2D raise "rank less than 2" if rank < 2 self[true,true,*([0]*(rank-2))] end |
#first3D ⇒ Object
For graphics –>
786 787 788 789 |
# File 'lib/numru/gphys/gphys.rb', line 786 def first3D raise "rank less than 3" if rank < 3 self[true,true,*([0]*(rank-3))] end |
#get_att(name) ⇒ Object
618 619 620 |
# File 'lib/numru/gphys/gphys.rb', line 618 def get_att(name) @data.get_att(name) end |
#grid_copy ⇒ Object
protected :grid # protection is lifted
578 579 580 581 |
# File 'lib/numru/gphys/gphys.rb', line 578 def grid_copy # deep clone of the grid @grid.copy end |
#has_assoccoord?(*arg) ⇒ Boolean
760 761 762 |
# File 'lib/numru/gphys/gphys.rb', line 760 def has_assoccoord?(*arg) @grid.has_assoccoord?(*arg) end |
#has_axis?(name) ⇒ Boolean
757 758 759 |
# File 'lib/numru/gphys/gphys.rb', line 757 def has_axis?(name) @grid.has_axis?(name) end |
#has_coord?(name) ⇒ Boolean
763 764 765 |
# File 'lib/numru/gphys/gphys.rb', line 763 def has_coord?(name) @grid.has_coord?(name) end |
#histogram(opts = Hash.new) ⇒ Object Also known as: histogram1D
155 156 157 |
# File 'lib/numru/ganalysis/histogram.rb', line 155 def histogram(opts=Hash.new) GAnalysis.histogram(self, opts) end |
#inspect ⇒ Object
588 589 590 |
# File 'lib/numru/gphys/gphys.rb', line 588 def inspect "<#{self.class} grid=#{@grid.inspect}\n data=#{@data.inspect}>" end |
#interpolate(*coords) ⇒ Object
Wide-purpose multi-dimensional linear interpolation
This method supports interpolation regarding combinations of 1D and 2D coordinate variables. For instance, suppose self is 4D with coordinates named [“x”, “y”, “z”, “t”] and associated coordinates “sigma” (“sigma” is 1D and its axis is “z”), “p”, “q” (“p” and “q” are 2D having the coordinates “x” and “y”). You can make interpolation by specifying 1D VArrays whose names are among “x”, “y”, “z”, “t”, “sigma”, “p”, “q”. You can also use a Hash like => 1.0 to specify a single point along the “x” coordinate.
If the units of the target coordinate and the current coordinate are different, a converstion was made so that slicing is made correctly, as long as the two units are comvertible; if the units are not convertible, it is just warned.
If you specify only “x”, “y”, and “t” coordinates for interpolation, the remaining coordinates “z” is simply retained. So the result will be 4 dimensional with coordinates named [“x”, “y”, “z”, “t”], but the lengths of “x”, “y”, and “t” dimensions are changed according to the specification. Note that the result could be 3-or-smaller dimensional – see below.
Suppose you have two 1D VArrays, xnew and ynew, having names “x” and “y”, respectively, and the lengths of xnew and the ynew are the same. Then, you can give an array of the two, [xnew, ynew], for coord0 as
gp_int = gp_org.interpolate( [xnew, ynew] )
(Here, gp_org represents a GPhys object, and the return value pointed by gp_int is also a GPhys.) In this case, the 1st dimension of the result (gp_int) will be sampled at the points [xnew,ynew], [xnew,ynew], [xnew,ynew], …, while the 2nd and the third dimensions are “z” and “t” (no interpolation). This way, the rank of the result will be reduced from that of self.
If you instead give xnew to coord0 and ynew to coord1 as
gp_int = gp_org.interpolate( xnew, ynew )
The result will be 4-dimensional with the first coordinate sampled at xnew, xnew, xnew,… and the second coordinate sampled at ynew, ynew, ynew,…
You can also cut regarding 2D coordinate variable as
gp_int = gp_org.interpolate( pnew, qnew )
gp_int = gp_org.interpolate( xnew, qnew )
gp_int = gp_org.interpolate( [pnew, qnew] )
gp_int = gp_org.interpolate( [xnew, qnew] )
In any case, the desitination VArrays such as xnew ynew pnew qnew must be one-dimensional.
Note that
gp_int = gp_org.interpolate( qnew )
fails (exception raised), since it is ambiguous. If you tempted to do so, perhaps what you want is covered by the following special form:
As a special form, you can specify a particular dimension like this:
gp_int = gp_org.interpolate( "x"=>pnew )
Here, interpolation along “x” is made, while other axes are retained. This is useful if pnew corresponds to a multi-D coordinate variable where there are two or more corresponding axes (otherwise, this special form is not needed.)
See the test part at the end of this file for more examples.
LIMITATION
Currently associated coordinates expressed by 3D or greater dimensional arrays are not supported.
Computational efficiency of pure two-dimensional coordinate support should be improved by letting C extensions cover deeper and improving the search algorithm for grid (which is usually ordered quasi-regularly).
COVERAGE
Extrapolation is covered for 1D coordinates, but only interpolation is covered for 2D coordinates (which is limited by gt2dlib in DCL – exception will be raised if you specify a grid point outside the original 2D grid points.).
MATHEMATICAL SPECIFICATION
The multi-dimensional linear interpolation is done by supposing a (hyper-) “rectangular” grid, where each dimension is independently sampled one-dimensionally. In case of interpolation along two dimensional coordinates such as “p” and “q” in the example above, a mapping from a rectangular grid is assumed, and the corresponding points in the rectangular grid is solved inversely (currently by using gt2dlib in DCL).
For 1D and 2D cases, linear interpolations may be expressed as
1D: zi = (1-a)*z0 + a*z1
2D: zi = (1-a)*(1-b)*z00 + a*(1-b)*z10 + (1-a)*b*z01 + a*b*z11
This method is extended to arbitrary number of dimensions. Thus, if the number of dimensions to interpolate is S, then 2**S grid points are used for each interpolation (8 points for 3D, 16 points for 4D,…). Thus, the linearity of this interpolation is only along each dimension, not over the whole dimensionality.
USAGE
interpolate(coord0, coord1, ...)
ARGUMENTS
-
coord0, coord1,… [ 1D VArray, or Array of 1D VArray, or a 1-element Hash as => slice_loc_value(Numeric) ] : locations to which interpolation is made. Names of all the VArray’s in the arguments must exist among the names of the coordinates of self (including associated coordinates), since the dimension finding is made in terms of coordinate names. If an argument is an Array of VArray’s, the first VArray will become the main coordinate variable, and the rest will be associated coordinates.
- SPECIAL CASE
-
You can specfify a one-element Hash as the only argument such as
gphys.interpolate("x"=>varray)
where varray is a coordinate onto which interpolation is made. This is espcially useful if varray is multi-D. If varray’s name “p” (name of a 2D coordnate var), for example, you can interpolate only regarding “x” by retaining other axes. If varray is 1-diemnsional, the same thing can be done simply by
gphys.interpolate(varray)
since the corresponding 1D coordinate is found aotomatically.
RETURN VALUE
-
a GPhys
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# File 'lib/numru/gphys/interpolate.rb', line 389 def interpolate(*coords) coords, org_coords, org_dims, newgrid = _interpo_match_coords(coords) crdmap = _interpo_reorder_2crdmap(coords, org_coords, org_dims) idxmap = _interpo_find_position(crdmap) z = val if z.is_a?(NArrayMiss) missval = ( (a=get_att('_FillValue')) ? a[0] : nil ) || ( (a=get_att('missing_value')) ? a[0] : nil ) || @@interpo_missval z = z.to_na(missval) input_nomiss = false else input_nomiss = true if @@interpo_extrapolation missval = nil else missval = @@interpo_missval end end na = c_interpo_do(newgrid.shape, idxmap, z, missval, @@interpo_extrapolation) # [C-extension] if !input_nomiss || !@@interpo_extrapolation mask = na.ne(missval) if !input_nomiss || mask.min == 0 na = NArrayMiss.to_nam_no_dup(na,mask) end end va = VArray.new(na, data, name) ret = GPhys.new(newgrid, va) ret.grid.set_lost_axes(self.lost_axes) ret end |
#least_square_fit(functions, ensemble_dims = nil, indep_dims = nil) ⇒ Object
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# File 'lib/numru/ganalysis/fitting.rb', line 460 def least_square_fit(functions, ensemble_dims=nil, indep_dims=nil) #< preparation > no_fitting_dims = Array.new if ensemble_dims ensemble_dims = ensemble_dims.collect{|d| @grid.dim_index(d)} no_fitting_dims += ensemble_dims end if indep_dims indep_dims = indep_dims.collect{|d| @grid.dim_index(d)} no_fitting_dims += indep_dims end fitting_dims = (0...rank).collect{|i| i} - no_fitting_dims grid_locs = fitting_dims.collect{|d| coord(d).val} data = self.val #< fitting > c, bf, diff = GAnalysis::Fitting.least_square_fit(data, grid_locs, functions, ensemble_dims, indep_dims) #< make a GPhys of the best fit > if !ensemble_dims grid = self.grid else axes = Array.new (0...rank).each{|d| axes.push(self.axis(d)) unless ensemble_dims.include?(d) } grid = Grid.new(*axes) shape = bf.shape ensemble_dims.sort.reverse_each{|d| shape.delete_at(d)} bf = bf.reshape(*shape) end va = VArray.new(bf, self.data, self.name) bf = GPhys.new(grid, va) [c, bf, diff] end |
#logp_coord_p2z(pdim = nil) ⇒ Object
Convert the pressure coordinate in self to log-pressure height (after duplicating self)
Return value: a GPhys
84 85 86 87 88 89 90 91 92 93 |
# File 'lib/numru/ganalysis/log_p.rb', line 84 def logp_coord_p2z(pdim=nil) pdim = GAnalysis::Met.find_prs_d(self) if !pdim p = self.coord(pdim) z = GAnalysis::LogP.p2z(p) ax = self.axis(pdim).copy ax.set_pos(z) ax.name = z.name grid = self.grid.copy.set_axis(pdim, ax) GPhys.new(grid,self.data) end |
#long_name ⇒ Object
651 652 653 |
# File 'lib/numru/gphys/gphys.rb', line 651 def long_name @data.long_name end |
#long_name=(long_name) ⇒ Object
654 655 656 |
# File 'lib/numru/gphys/gphys.rb', line 654 def long_name=(long_name) @data.long_name= long_name end |
#lost_axes ⇒ Object
740 741 742 |
# File 'lib/numru/gphys/gphys.rb', line 740 def lost_axes @grid.lost_axes end |
#marshal_dump ⇒ Object
1105 1106 1107 |
# File 'lib/numru/gphys/gphys.rb', line 1105 def marshal_dump [@data.copy, @grid.copy] end |
#marshal_load(ary) ⇒ Object
1109 1110 1111 1112 |
# File 'lib/numru/gphys/gphys.rb', line 1109 def marshal_load(ary) @data = ary[0] @grid = ary[1] end |
#mouse_cut(dimx, dimy, num = 2, line_type = 1, line_index = 1) ⇒ Object
Makes a subset interactively by specifying a (poly-)line on the DCL viewport
ARGUMENTS
-
dimx {String] : name of number (0,1,..) of the dimension corresponding to the X coordinate in the current window of DCL
-
dimy {String] : name of number (0,1,..) of the dimension corresponding to the Y coordinate in the current window of DCL
-
num {Integer] : the number of points along the (poly-)line (2 or greater – if 2, a single line segment; if 3 or more, a poly-line)
RETURN VALUE
-
a GPhys
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/numru/gphys/interpolate.rb', line 45 def mouse_cut(dimx, dimy, num=2, line_type=1, line_index=1) # < preparation > dimx = dim_index(dimx) dimy = dim_index(dimy) rundef = DCL.glpget("rundef") line = nil while(true) puts "\n*** Waiting for mouse click. Click #{num} points in the current viewport." line = DCLMouseLine.new(num) if line.ux.include?(rundef) puts "** The points specified include one(s) outside the U window. Do it again." else break end end line.draw(line_type, line_index) vx = line.vx vy = line.vy ux = line.ux uy = line.uy gpnew = dcl_fig_cut(dimx,dimy,ux,uy) [gpnew, line] end |
#mouse_cut_repeat ⇒ Object
Interpolation onto grid points specified by the previous call of GPhys#mouse_cut
169 170 171 172 173 174 175 176 |
# File 'lib/numru/gphys/interpolate.rb', line 169 def mouse_cut_repeat if @@interpo_previous_cutter.nil? raise("You must first use GPhys#mouse_cut. This method repeats it") end gpnew = interpolate(@@interpo_previous_cutter) gpnew = @@interpo_previous_modifier[gpnew] if @@interpo_previous_modifier gpnew end |
#name ⇒ Object
592 593 594 |
# File 'lib/numru/gphys/gphys.rb', line 592 def name data.name end |
#name=(nm) ⇒ Object
595 596 597 |
# File 'lib/numru/gphys/gphys.rb', line 595 def name=(nm) data.name=nm end |
#ntype ⇒ Object
631 632 633 |
# File 'lib/numru/gphys/gphys.rb', line 631 def ntype @data.ntype end |
#phase_velocity(kdim, fdim, kconv, fconv, kf0_is_c0 = true, no_kfreorder = false) ⇒ Object
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
# File 'lib/numru/gphys/gphys_fft.rb', line 757 def phase_velocity(kdim,fdim,kconv,fconv,kf0_is_c0=true,no_kfreorder=false) kax = self.axis(kdim) fax = self.axis(fdim) kax.pos = kax.pos*kconv if kconv fax.pos = fax.pos*fconv if fconv cunits = fax.pos.units / kax.pos.units f = fax.pos.val k = kax.pos.val nk = k.length nf = f.length if no_kfreorder k[nk/2+1..-1] = -k[nk/2+1..-1][-1..0]+k[nk/2] f[nf/2+1..-1] = -f[nf/2+1..-1][-1..0]+f[nf/2] end f = -f cp = f.newdim(0) / k.newdim(1) #cp[kdim,fdim] jf0 = f.eq(0).where[0] # where f==0 jk0 = k.eq(0).where[0] # where k==0 if kf0_is_c0 cp[jk0,jf0] = 0.0 # treat k=f=0 as stationary (c=0) else cp[jk0,jf0] = 1.0/0.0 # not to count k=f=0 component at all (c=infty) end [cp, cunits] end |
#phase_velocity_binning(kdim, fdim, cbins, kconv = nil, fconv = nil) ⇒ Object
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
# File 'lib/numru/gphys/gphys_fft.rb', line 673 def phase_velocity_binning(kdim, fdim, cbins, kconv=nil, fconv=nil) # < process arguments > case cbins when Hash min = cbins["min"] ||raise(ArgumentError,"a Hash cbins must have 'min'") max = cbins["max"] ||raise(ArgumentError,"a Hash cbins must have 'max'") int = cbins["int"] ||raise(ArgumentError,"a Hash cbins must have 'int'") cbins = Array.new eps = int.abs*1e-6 # epsilon to deal with float steps (min.to_f..(max.to_f+eps)).step(int){|c| cbins.push(c)} cbins = NArray.to_na(cbins) when Array cbins = NArray.to_na(cbins) when NArray else raise ArgumentError, "cbins must be a Hash or Array or NArray" end kdim = dim_index(kdim) if kdim.is_a?(String) kdim += rank if kdim < 0 fdim = dim_index(fdim) if fdim.is_a?(String) fdim += rank if fdim < 0 # < sort along wavenumber/freuqency axis > pw = self.spect_zero_centering(kdim).spect_one_sided(fdim) # < process axes > cp, cunits = pw.phase_velocity(kdim,fdim,kconv,fconv,false) vcbins = VArray.new(cbins, {"units"=>cunits.to_s, "long_name"=>"phase velocity bounds"}, "cbounds") vccent = VArray.new( (cbins[0..-2] + cbins[1..-1])/2, {"units"=>cunits.to_s, "long_name"=>"phase velocity"}, "c") axc = Axis.new(true).set_cell(vccent, vcbins).set_pos_to_center axes = [axc] # the first dimension will be "c" gr = pw.grid (0...pw.rank).each do |d| if d!=kdim && d!=fdim axes.push(gr.axis(d)) end end newgrid = Grid.new(*axes) nk = pw.shape[kdim] nf = pw.shape[fdim] cp.reshape!(nk*nf) # < reorder input data > dimorder = (0...pw.rank).collect{|i| i} dimorder.delete(fdim) dimorder.unshift(fdim) dimorder.delete(kdim) dimorder.unshift(kdim) # --> [kdim, fdim, the other dims...] sh = pw.shape reshape = [nk*nf] (0...rank).each{|i| reshape.push(sh[i]) if i!=fdim && i!=kdim} pwv = pw.val.transpose(*dimorder).reshape(*reshape) # --> [ combined k&fdim, the other dims...] # < binning > shc = newgrid.shape pwc = NArray.new(pwv.typecode, *shc) # will have no missing data nc = axc.length for jc in 0...nc w = (cp.gt(cbins[jc]) & cp.lt(cbins[jc+1])).where pwc[jc,false] += pwv[w,false].sum(0) if w.length>0 w = (cp.eq(cbins[jc])).where pwc[jc,false] += pwv[w,false].sum(0)/2 if w.length>0 # half from bdry w = (cp.eq(cbins[jc+1])).where pwc[jc,false] += pwv[w,false].sum(0)/2 if w.length>0 # half from bdry end vpwc = VArray.new(pwc,pw.data,pw.name) gpwc = GPhys.new(newgrid,vpwc) gpwc end |
#phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv = nil, fconv = nil) ⇒ Object
665 666 667 668 669 670 671 |
# File 'lib/numru/gphys/gphys_fft.rb', line 665 def phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv=nil, fconv=nil) cbins = {"min"=>cmin,"max"=>cmax,"int"=>cint} pwc = phase_velocity_binning(kdim, fdim, cbins, kconv, fconv) fact = UNumeric[int, pwc.coord(0).units] pwc/fact end |
#phase_velocity_filter(xdim, tdim, cmin = nil, cmax = nil, xconv = nil, tconv = nil, remove_xtmean = false) ⇒ Object
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
# File 'lib/numru/gphys/gphys_fft.rb', line 628 def phase_velocity_filter(xdim, tdim, cmin=nil, cmax=nil, xconv=nil, tconv=nil, remove_xtmean=false) raise(ArgumentError,"need at least cmin or cmax") if !(cmin || cmax) xdim = dim_index(xdim) if xdim.is_a?(String) xdim += rank if xdim < 0 tdim = dim_index(tdim) if tdim.is_a?(String) tdim += rank if tdim < 0 fc = self.fft(nil,xdim,tdim) kdim = xdim fdim = tdim kconv = ( xconv ? 1.0/xconv : nil ) fconv = ( tconv ? 1.0/tconv : nil ) cp, = fc.phase_velocity(kdim,fdim,kconv,fconv,!remove_xtmean,true) fcv = fc.val nk = fc.shape[kdim] nf = fc.shape[fdim] sel = [true]*fc.rank for jf in 0...nf for jk in 0...nk c = cp[jk,jf] if ( cmin && c<cmin or cmax && c>cmax) sel[kdim]=jk sel[fdim]=jf fcv[*sel] = 0.0 end end end fc.replace_val(fcv) gp = fc.fft(true,xdim,tdim) gp = gp.real if (self.typecode <= NArray::FLOAT) GPhys.new(self.grid_copy, gp.data) #^ use the original grid, since units may have changed end |
#rank ⇒ Object
727 728 729 |
# File 'lib/numru/gphys/gphys.rb', line 727 def rank @grid.rank end |
#rawspect2powerspect(*dims) ⇒ Object
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
# File 'lib/numru/gphys/gphys_fft.rb', line 612 def rawspect2powerspect(*dims) # developpers memo: Needs Units conversion. factor = nil dims.each{|dim| ax = self.coord(dim) dwn = UNumeric.new( ((ax[-1].val - ax[0].val)/(ax.length - 1)).abs, ax.units ) if !factor factor = dwn**(-1) else factor = factor / dwn.to_f end } self * factor end |
#regrid(to) ⇒ Object
Interpolate to conform the grid to a target GPhys object
ARGUMENTS
-
to [GPhys] : the target gphys
RETURN VALUE
-
a GPhys
208 209 210 211 |
# File 'lib/numru/gphys/interpolate.rb', line 208 def regrid(to) coords = to.axnames.collect{|nm| to.coord(nm)} interpolate(*coords) end |
#rename(nm) ⇒ Object
598 599 600 601 |
# File 'lib/numru/gphys/gphys.rb', line 598 def rename(nm) data.name=nm self end |
#replace_val(v) ⇒ Object
609 610 611 612 613 |
# File 'lib/numru/gphys/gphys.rb', line 609 def replace_val(v) raise(ArgumentError,"Shape miss-match") if @grid.shape != v.shape @data.replace_val(v) self end |
#running_mean(dim, len_or_wgt = nil, bc = BC_SIMPLE, nminvalid = 1) ⇒ Object
Running mean along a dimension (with optional weight specification).
ARGUMENTS
-
dim (Integer or String) : the dimension
-
len_or_wgt : If Integer, specifies the length; if 1D NArray, specifies the weight (e.g., NArray[1.0, 2.0, 1.0] for the 1-2-1 smooting)
-
bc (Integer; optional) : Speficy one of the folloing:
-
GPhys::BC_SIMPLE (default) : Averaging is trucated at the boundaries (the number of grid points used is reduced near the boundaries). The shape of the object is conserved.
-
GPhys::BC_CYCLIC : Cyclic boundary condition. Shape conserved.
-
GPhys::BC_TRIM : Grids near the boundaries are trimmed to secure the number of grid points to average. Shape not conserved; length along the dim is reduced by (len-1).
-
-
nminvalid (Integer; optional; defualt=1): This parameter is used only when the data have missing. Minimum number of grid points needed for averaging. Must be from 1 to len.
RETURN VALUE
-
a GPhys
REMARK AND LIMITATION
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
# File 'lib/numru/gphys/gphys_dim_op.rb', line 46 def running_mean(dim, len_or_wgt=nil, bc=BC_SIMPLE, nminvalid=1) #< process arguments > dim = dim_index(dim) # to handle String or negative specification case len_or_wgt when nil raise ArgumentError, "You need to specify the length (Integer) or the weight (1D NArray) as the 2nd argument" when Integer # len_or_wgt is a length len = len_or_wgt wgt = NArray.float(len).fill!(1.0) else # len_or_wgt is a weight wgt = len_or_wgt if (!wgt.respond_to?(:rank) || wgt.rank != 1) raise ArgumentError, "wgt: expect a 1D NArray(-like obj)" end len = wgt.length end #< calc running mean > vi = self.val if (vi.typecode > NArray::DFLOAT) raise("This method supports only real or integer data") end if vi.is_a?(NArrayMiss) vi, missval = nam2na_missval(vi) vo = c_running_mean(vi,dim,wgt,bc,missval,nminvalid) vo = NArrayMiss.to_nam(vo, vo.ne(missval) ) else vo = c_running_mean(vi,dim,wgt,bc) end #< grid > if (bc == BC_TRIM) fst = (len-1)/2 # if odd len/2, if even len/2-1 lst = -(len/2) - 1 grid = self.grid[ *([true]*dim + [fst..lst, false]) ] else grid = self.grid end #< result > vvo = VArray.new( vo, self.data, self.name ) # Inherit name & attrs GPhys.new( grid, vvo ) end |
#set_assoc_coords(assoc_crds) ⇒ Object
769 770 771 |
# File 'lib/numru/gphys/gphys.rb', line 769 def set_assoc_coords(assoc_crds) @grid.set_assoc_coords(assoc_crds) end |
#set_att(name, val) ⇒ Object Also known as: put_att
621 622 623 624 |
# File 'lib/numru/gphys/gphys.rb', line 621 def set_att(name, val) @data.set_att(name, val) self end |
#set_lost_axes(lost) ⇒ Object
743 744 745 746 |
# File 'lib/numru/gphys/gphys.rb', line 743 def set_lost_axes( lost ) @grid.set_lost_axes( lost ) self end |
#shape_coerce(other) ⇒ Object
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
# File 'lib/numru/gphys/gphys.rb', line 810 def shape_coerce(other) # # for binary operations # if self.rank == other.rank # nothing to do [other, self] else if self.rank < other.rank shorter = self longer = other i_am_the_shorter = true else shorter = other longer = self i_am_the_shorter = false end reshape_args = __shape_matching( shorter.shape_current, longer.shape_current, shorter.axnames, longer.axnames ) shorter = shorter.data.copy.reshape!(*reshape_args) ##def shorter.data; self; end # singular method! if i_am_the_shorter [longer, shorter] else [shorter, longer] end end end |
#shape_coerce_full(other) ⇒ Object
840 841 842 843 844 845 846 847 848 |
# File 'lib/numru/gphys/gphys.rb', line 840 def shape_coerce_full(other) o, s = shape_coerce(other) if o.length < s.length o = self.class.new( s.grid, o + NArray.new(o.typecode,*s.shape) ) elsif o.length > s.length s = self.class.new( o.grid, s + NArray.new(s.typecode,*o.shape) ) end [o, s] end |
#shape_current ⇒ Object Also known as: shape
944 945 946 |
# File 'lib/numru/gphys/gphys.rb', line 944 def shape_current @data.shape_current end |
#spect_one_sided(dim) ⇒ Object
601 602 603 604 605 606 607 608 609 610 |
# File 'lib/numru/gphys/gphys_fft.rb', line 601 def spect_one_sided(dim) dim = dim + self.rank if dim<0 len = self.shape[dim] b = self[ *([true]*dim + [0..len/2,false]) ] * 2 b[*([true]*dim + [0,false])] = b[*([true]*dim + [0,false])] / 2 if (self.shape[dim] % 2) == 0 # --> even number b[*([true]*dim + [-1,false])] = b[*([true]*dim + [-1,false])] / 2 end b end |
#spect_zero_centering(dim) ⇒ Object
587 588 589 590 591 592 593 594 595 596 597 598 599 |
# File 'lib/numru/gphys/gphys_fft.rb', line 587 def spect_zero_centering(dim) dim = dim + self.rank if dim<0 len = self.shape[dim] b = self[ *( [true]*dim + [[(len+1)/2..len-1,0..len/2],false] ) ].copy s1 = [true]*dim + [0, false] s2 = [true]*dim + [-1, false] if (len % 2) == 0 #--> even number b[*s1] = b[*s1]/2 # the ends are duplicated --> halved b[*s2] = b[*s1] end b.coord(dim)[0..len/2-1] = -b.coord(dim)[len/2+1..-1].val[-1..0] b end |
#threepoint_O2nd_deriv(*args) ⇒ Object
94 95 96 |
# File 'lib/numru/gphys/derivative.rb', line 94 def threepoint_O2nd_deriv(*args) Derivative::threepoint_O2nd_deriv(self,*args) end |
#transpose(*dims) ⇒ Object
850 851 852 853 854 |
# File 'lib/numru/gphys/gphys.rb', line 850 def transpose(*dims) grid = @grid.transpose(*dims) data = @data.transpose(*dims) self.class.new( grid, data ) end |
#units ⇒ Object
635 636 637 |
# File 'lib/numru/gphys/gphys.rb', line 635 def units @data.units end |
#units=(units) ⇒ Object
638 639 640 |
# File 'lib/numru/gphys/gphys.rb', line 638 def units=(units) @data.units= units end |
#val ⇒ Object
603 604 605 |
# File 'lib/numru/gphys/gphys.rb', line 603 def val @data.val end |
#val=(v) ⇒ Object
606 607 608 |
# File 'lib/numru/gphys/gphys.rb', line 606 def val=(v) @data.val= v end |