Class: Integration

Inherits:
Object
  • Object
show all
Defined in:
lib/integration.rb

Overview

Diverse integration methods Use Integration.integrate as wrapper to direct access to methods

Method API

Constant Summary collapse

VERSION =
'0.2.0'
MInfinity =

Minus Infinity

:minfinity
Infinity =

Infinity

:infinity
RUBY_METHOD =

Methods available on pure ruby

[:rectangle,:trapezoid,:simpson, :adaptive_quadrature , :gauss, :romberg, :monte_carlo, :gauss_kronrod, :simpson3by8, :boole, :open_trapezoid, :milne]
GSL_METHOD =

Methods available with Ruby/GSL library

[:qng, :qag]

Class Method Summary collapse

Class Method Details

.adaptive_quadrature(a, b, tolerance) ⇒ Object

TODO: Document method



130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# File 'lib/integration.rb', line 130

def adaptive_quadrature(a, b, tolerance)  
  h = (b.to_f - a) / 2
  fa = yield(a)
  fc = yield(a + h)
  fb = yield(b)
  s = h * (fa + (4 * fc) + fb) / 3
  helper = Proc.new { |a, b, fa, fb, fc, h, s, level|
    if level < 1/tolerance.to_f
      fd = yield(a + (h / 2))
      fe = yield(a + (3 * (h / 2)))
      s1 = h * (fa + (4.0 * fd) + fc) / 6
      s2 = h * (fc + (4.0 * fe) + fb) / 6
      if ((s1 + s2) - s).abs <= tolerance
        s1 + s2
      else
        helper.call(a, a + h, fa, fc, fd, h / 2, s1, level + 1) +
        helper.call(a + h, b, fc, fb, fe, h / 2, s2, level + 1)
      end
    else
      raise "Integral did not converge"
    end
  }
  return helper.call(a, b, fa, fb, fc, h, s, 1)
end

.boole(t1, t2, n, &f) ⇒ Object

TODO: Document method



102
103
104
105
106
107
108
109
# File 'lib/integration.rb', line 102

def boole(t1, t2, n, &f)
  d = (t2-t1) / n.to_f 
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/90.0)*(7*f[t1+i*d]+32*f[t1+i*d+d/4]+12*f[t1+i*d+d/2]+32*f[t1+i*d+3*d/4]+7*f[t1+(i+1)*d])
  end
  ac
end

.create_has_library(library) ⇒ Object

Create a method ‘has_<library>’ on Module which require a library and return true or false according to success of failure



43
44
45
46
47
48
49
50
51
52
53
54
55
56
# File 'lib/integration.rb', line 43

def create_has_library(library) #:nodoc:
  define_singleton_method("has_#{library}?") do
    cv="@@#{library}"
    if !class_variable_defined? cv
      begin 
        require library.to_s
        class_variable_set(cv, true)
      rescue LoadError
        class_variable_set(cv, false)
      end
    end
    class_variable_get(cv)
  end
end

.gauss(t1, t2, n) ⇒ Object

TODO: Document method



155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# File 'lib/integration.rb', line 155

def gauss(t1, t2, n)
  case n
    when 1
      z = [0.0]
      w = [2.0]
    when 2
      z = [-0.57735026919, 0.57735026919]
      w = [1.0, 1.0]
    when 3
      z = [-0.774596669241, 0.0, 0.774596669241]
      w = [0.555555555556, 0.888888888889, 0.555555555556]
    when 4
      z = [-0.861136311594, -0.339981043585, 0.339981043585, 0.861136311594]
      w = [0.347854845137, 0.652145154863, 0.652145154863, 0.347854845137]
    when 5
      z = [-0.906179845939, -0.538469310106, 0.0, 0.538469310106, 0.906179845939]
      w = [0.236926885056, 0.478628670499, 0.568888888889, 0.478628670499, 0.236926885056]
    when 6
      z = [-0.932469514203, -0.661209386466, -0.238619186083, 0.238619186083, 0.661209386466, 0.932469514203]
      w = [0.171324492379, 0.360761573048, 0.467913934573, 0.467913934573, 0.360761573048, 0.171324492379]
    when 7
      z = [-0.949107912343, -0.741531185599, -0.405845151377, 0.0, 0.405845151377, 0.741531185599, 0.949107912343]
      w = [0.129484966169, 0.279705391489, 0.381830050505, 0.417959183673, 0.381830050505, 0.279705391489, 0.129484966169]
    when 8
      z = [-0.960289856498, -0.796666477414, -0.525532409916, -0.183434642496, 0.183434642496, 0.525532409916, 0.796666477414, 0.960289856498]
      w = [0.10122853629, 0.222381034453, 0.313706645878, 0.362683783378, 0.362683783378, 0.313706645878, 0.222381034453, 0.10122853629]
    when 9
      z = [-0.968160239508, -0.836031107327, -0.613371432701, -0.324253423404, 0.0, 0.324253423404, 0.613371432701, 0.836031107327, 0.968160239508]
      w = [0.0812743883616, 0.180648160695, 0.260610696403, 0.31234707704, 0.330239355001, 0.31234707704, 0.260610696403, 0.180648160695, 0.0812743883616]
    when 10
      z = [-0.973906528517, -0.865063366689, -0.679409568299, -0.433395394129, -0.148874338982, 0.148874338982, 0.433395394129, 0.679409568299, 0.865063366689, 0.973906528517]
      w = [0.0666713443087, 0.149451349151, 0.219086362516, 0.26926671931, 0.295524224715, 0.295524224715, 0.26926671931, 0.219086362516, 0.149451349151, 0.0666713443087]
    else
      raise "Invalid number of spaced abscissas #{n}, should be 1-10"
  end
  
  sum = 0
  (0...n).each do |i|
    t = ((t1.to_f + t2) / 2.0) + (((t2 - t1) / 2.0) * z[i])        
    sum += w[i] * yield(t)
  end
  return ((t2 - t1) / 2.0) * sum
end

.gauss_kronrod(t1, t2, n, points) ⇒ Object

TODO: Document method



199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# File 'lib/integration.rb', line 199

def gauss_kronrod(t1,t2,n,points)
  #g7k15
  case points
    when 15
      z = [-0.9914553711208126, -0.9491079123427585, -0.8648644233597691, -0.7415311855993945, -0.5860872354676911, -0.4058451513773972, -0.20778495500789848, 0.0, 0.20778495500789848, 0.4058451513773972, 0.5860872354676911, 0.7415311855993945, 0.8648644233597691, 0.9491079123427585, 0.9914553711208126]
      w = [0.022935322010529224, 0.06309209262997856, 0.10479001032225019, 0.14065325971552592, 0.1690047266392679, 0.19035057806478542, 0.20443294007529889, 0.20948214108472782, 0.20443294007529889, 0.19035057806478542, 0.1690047266392679, 0.14065325971552592, 0.10479001032225019, 0.06309209262997856, 0.022935322010529224]
    when 21
      #g10k21
      z = [-0.9956571630258081, -0.9739065285171717, -0.9301574913557082, -0.8650633666889845, -0.7808177265864169, -0.6794095682990244, -0.5627571346686047, -0.4333953941292472, -0.2943928627014602, -0.14887433898163122, 0.0, 0.14887433898163122, 0.2943928627014602, 0.4333953941292472, 0.5627571346686047, 0.6794095682990244, 0.7808177265864169, 0.8650633666889845, 0.9301574913557082, 0.9739065285171717, 0.9956571630258081]
      w = [0.011694638867371874, 0.032558162307964725, 0.054755896574351995, 0.07503967481091996, 0.0931254545836976, 0.10938715880229764, 0.12349197626206584, 0.13470921731147334, 0.14277593857706009, 0.14773910490133849, 0.1494455540029169, 0.14773910490133849, 0.14277593857706009, 0.13470921731147334, 0.12349197626206584, 0.10938715880229764, 0.0931254545836976, 0.07503967481091996, 0.054755896574351995, 0.032558162307964725, 0.011694638867371874]
    when 31
      #g15k31
      z = [-0.9980022986933971, -0.9879925180204854, -0.9677390756791391, -0.937273392400706, -0.8972645323440819, -0.8482065834104272, -0.790418501442466, -0.7244177313601701, -0.650996741297417, -0.5709721726085388, -0.4850818636402397, -0.3941513470775634, -0.29918000715316884, -0.20119409399743451, -0.1011420669187175, 0.0, 0.1011420669187175, 0.20119409399743451, 0.29918000715316884, 0.3941513470775634, 0.4850818636402397, 0.5709721726085388, 0.650996741297417, 0.7244177313601701, 0.790418501442466, 0.8482065834104272, 0.8972645323440819, 0.937273392400706, 0.9677390756791391, 0.9879925180204854, 0.9980022986933971]
      w = [0.005377479872923349, 0.015007947329316122, 0.02546084732671532, 0.03534636079137585, 0.04458975132476488, 0.05348152469092809, 0.06200956780067064, 0.06985412131872826, 0.07684968075772038, 0.08308050282313302, 0.08856444305621176, 0.09312659817082532, 0.09664272698362368, 0.09917359872179196, 0.10076984552387559, 0.10133000701479154, 0.10076984552387559, 0.09917359872179196, 0.09664272698362368, 0.09312659817082532, 0.08856444305621176, 0.08308050282313302, 0.07684968075772038, 0.06985412131872826, 0.06200956780067064, 0.05348152469092809, 0.04458975132476488, 0.03534636079137585, 0.02546084732671532, 0.015007947329316122, 0.005377479872923349]
    when 41
      #g20k41
      z = [-0.9988590315882777, -0.9931285991850949, -0.9815078774502503, -0.9639719272779138, -0.9408226338317548, -0.912234428251326, -0.878276811252282, -0.8391169718222188, -0.7950414288375512, -0.7463319064601508, -0.6932376563347514, -0.636053680726515, -0.5751404468197103, -0.5108670019508271, -0.4435931752387251, -0.37370608871541955, -0.301627868114913, -0.22778585114164507, -0.15260546524092267, -0.07652652113349734, 0.0, 0.07652652113349734, 0.15260546524092267, 0.22778585114164507, 0.301627868114913, 0.37370608871541955, 0.4435931752387251, 0.5108670019508271, 0.5751404468197103, 0.636053680726515, 0.6932376563347514, 0.7463319064601508, 0.7950414288375512, 0.8391169718222188, 0.878276811252282, 0.912234428251326, 0.9408226338317548, 0.9639719272779138, 0.9815078774502503, 0.9931285991850949, 0.9988590315882777]
      w = [0.0030735837185205317, 0.008600269855642943, 0.014626169256971253, 0.020388373461266523, 0.02588213360495116, 0.0312873067770328, 0.036600169758200796, 0.041668873327973685, 0.04643482186749767, 0.05094457392372869, 0.05519510534828599, 0.05911140088063957, 0.06265323755478117, 0.06583459713361842, 0.06864867292852161, 0.07105442355344407, 0.07303069033278667, 0.07458287540049918, 0.07570449768455667, 0.07637786767208074, 0.07660071191799965, 0.07637786767208074, 0.07570449768455667, 0.07458287540049918, 0.07303069033278667, 0.07105442355344407, 0.06864867292852161, 0.06583459713361842, 0.06265323755478117, 0.05911140088063957, 0.05519510534828599, 0.05094457392372869, 0.04643482186749767, 0.041668873327973685, 0.036600169758200796, 0.0312873067770328, 0.02588213360495116, 0.020388373461266523, 0.014626169256971253, 0.008600269855642943, 0.0030735837185205317]
    when 61
      #g30k61
      z = [-0.9994844100504906, -0.9968934840746495, -0.9916309968704046, -0.9836681232797472, -0.9731163225011262, -0.9600218649683075, -0.94437444474856, -0.9262000474292743, -0.9055733076999078, -0.8825605357920527, -0.8572052335460612, -0.8295657623827684, -0.799727835821839, -0.7677774321048262, -0.7337900624532268, -0.6978504947933158, -0.6600610641266269, -0.6205261829892429, -0.5793452358263617, -0.5366241481420199, -0.49248046786177857, -0.44703376953808915, -0.4004012548303944, -0.3527047255308781, -0.30407320227362505, -0.25463692616788985, -0.20452511668230988, -0.15386991360858354, -0.10280693796673702, -0.0514718425553177, 0.0, 0.0514718425553177, 0.10280693796673702, 0.15386991360858354, 0.20452511668230988, 0.25463692616788985, 0.30407320227362505, 0.3527047255308781, 0.4004012548303944, 0.44703376953808915, 0.49248046786177857, 0.5366241481420199, 0.5793452358263617, 0.6205261829892429, 0.6600610641266269, 0.6978504947933158, 0.7337900624532268, 0.7677774321048262, 0.799727835821839, 0.8295657623827684, 0.8572052335460612, 0.8825605357920527, 0.9055733076999078, 0.9262000474292743, 0.94437444474856, 0.9600218649683075, 0.9731163225011262, 0.9836681232797472, 0.9916309968704046, 0.9968934840746495, 0.9994844100504906]
      w = [0.0013890136986770077, 0.003890461127099884, 0.0066307039159312926, 0.009273279659517764, 0.011823015253496341, 0.014369729507045804, 0.01692088918905327, 0.019414141193942382, 0.021828035821609193, 0.0241911620780806, 0.0265099548823331, 0.02875404876504129, 0.030907257562387762, 0.03298144705748372, 0.034979338028060025, 0.03688236465182123, 0.038678945624727595, 0.040374538951535956, 0.041969810215164244, 0.04345253970135607, 0.04481480013316266, 0.04605923827100699, 0.04718554656929915, 0.04818586175708713, 0.04905543455502978, 0.04979568342707421, 0.05040592140278235, 0.05088179589874961, 0.051221547849258774, 0.05142612853745902, 0.05149472942945157, 0.05142612853745902, 0.051221547849258774, 0.05088179589874961, 0.05040592140278235, 0.04979568342707421, 0.04905543455502978, 0.04818586175708713, 0.04718554656929915, 0.04605923827100699, 0.04481480013316266, 0.04345253970135607, 0.041969810215164244, 0.040374538951535956, 0.038678945624727595, 0.03688236465182123, 0.034979338028060025, 0.03298144705748372, 0.030907257562387762, 0.02875404876504129, 0.0265099548823331, 0.0241911620780806, 0.021828035821609193, 0.019414141193942382, 0.01692088918905327, 0.014369729507045804, 0.011823015253496341, 0.009273279659517764, 0.0066307039159312926, 0.003890461127099884, 0.0013890136986770077]
    else # using 15 point quadrature
      n = 15
      z = [-0.9914553711208126, -0.9491079123427585, -0.8648644233597691, -0.7415311855993945, -0.5860872354676911, -0.4058451513773972, -0.20778495500789848, 0.0, 0.20778495500789848, 0.4058451513773972, 0.5860872354676911, 0.7415311855993945, 0.8648644233597691, 0.9491079123427585, 0.9914553711208126]
      w = [0.022935322010529224, 0.06309209262997856, 0.10479001032225019, 0.14065325971552592, 0.1690047266392679, 0.19035057806478542, 0.20443294007529889, 0.20948214108472782, 0.20443294007529889, 0.19035057806478542, 0.1690047266392679, 0.14065325971552592, 0.10479001032225019, 0.06309209262997856, 0.022935322010529224]
  end
  sum = 0
  (0...n).each do |i|
    t = ((t1.to_f + t2) / 2.0) + (((t2 - t1) / 2.0) * z[i])
    sum += w[i] * yield(t)
  end
  return ((t2 - t1) / 2.0) * sum
end

.integrate(t1, t2, options = Hash.new, &f) ⇒ Object

Get the integral for a function f, with bounds t1 and t2 given a hash of options. If Ruby/GSL is available, you could use Integration::Minfinity and Integration::Infinity as bounds. Method Options are

:tolerance

Maximum difference between real and calculated integral. Default: 1e-10

:initial_step

Initial number of subdivitions

:step

Subdivitions increment on each iteration

:method

Integration method.

Methods are

:rectangle

for [:initial_step+:step*iteration] quadrilateral subdivisions

:trapezoid

for [:initial_step+:step*iteration] trapezoid-al subdivisions

:simpson

for [:initial_step+:step*iteration] parabolic subdivisions

:adaptive_quadrature

for recursive appoximations until error [tolerance]

:gauss
:initial_step+:step*iteration

weighted subdivisons using translated -1 -> +1 endpoints

:romberg

extrapolation of recursion approximation until error < [tolerance]

:monte_carlo

make [:initial_step+:step*iteration] random samples, and check for above/below curve

:qng

GSL QNG non-adaptive Gauss-Kronrod integration

:qag

GSL QAG adaptive integration, with support for infinite bounds



299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# File 'lib/integration.rb', line 299

def integrate(t1,t2,options=Hash.new, &f)
  inf_bounds=(is_infinite?(t1) or is_infinite?(t2))
  raise "No function passed" unless block_given?
  raise "Non-numeric bounds" unless ((t1.is_a? Numeric) and (t2.is_a? Numeric)) or inf_bounds
  if(inf_bounds)
    lower_bound=t1
    upper_bound=t2
    options[:method]=:qag if options[:method].nil?
  else 
    lower_bound = [t1, t2].min
    upper_bound = [t1, t2].max
  end
  def_method=(has_gsl?) ? :qag : :simpson
  default_opts={:tolerance=>1e-10, :initial_step=>16, :step=>16, :method=>def_method}
  options=default_opts.merge(options)
  if RUBY_METHOD.include? options[:method]
    raise "Ruby methods doesn't support infinity bounds" if inf_bounds
    integrate_ruby(lower_bound,upper_bound,options,&f)
  elsif GSL_METHOD.include? options[:method]
    integrate_gsl(lower_bound,upper_bound,options,&f)
  else
    raise "Unknown integration method \"#{options[:method]}\""
  end
end

.integrate_gsl(lower_bound, upper_bound, options, &f) ⇒ Object

TODO: Document method



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# File 'lib/integration.rb', line 324

def integrate_gsl(lower_bound,upper_bound,options,&f) 
  
  f = GSL::Function.alloc(&f)
  method=options[:method]
  tolerance=options[:tolerance]
 
  if(method==:qag)
    w = GSL::Integration::Workspace.alloc()
    if(is_infinite?(lower_bound) and  is_infinite?(upper_bound))        
      #puts "ambos"
      val=f.qagi([tolerance,0.0], 1000, w)  
    elsif is_infinite?(lower_bound)
      #puts "inferior #{upper_bound}"
      val=f.qagil(upper_bound, [tolerance, 0], w) 
    elsif is_infinite?(upper_bound)
      #puts "superior"
      val=f.qagiu(lower_bound, [tolerance, 0], w)
    else
      
      val=f.qag([lower_bound,upper_bound],[tolerance,0.0], GSL::Integration::GAUSS61, w)
    end
  elsif(method==:qng)
    val=f.qng([lower_bound, upper_bound], [tolerance, 0.0]) 
  else
    raise "Unknown integration method \"#{method}\""
  end
  val[0]
end

.integrate_ruby(lower_bound, upper_bound, options, &f) ⇒ Object



352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# File 'lib/integration.rb', line 352

def integrate_ruby(lower_bound,upper_bound,options,&f)
  method=options[:method]
  tolerance=options[:tolerance]
  initial_step=options[:initial_step]
  step=options[:step]
  points = options[:points]
  begin
    method_obj = Integration.method(method.to_s.downcase)
  rescue
    raise "Unknown integration method \"#{method}\""
  end
  current_step=initial_step

  if(method==:adaptive_quadrature or method==:romberg or method==:gauss or method== :gauss_kronrod)
    if(method==:gauss )
      initial_step=10 if initial_step>10
      tolerance = initial_step
      method_obj.call(lower_bound, upper_bound, tolerance, &f)
    elsif (method==:gauss_kronrod)
      initial_step=10 if initial_step>10
      tolerance=initial_step
      points = points if points != nil
      method_obj.call(lower_bound, upper_bound, tolerance, points, &f)
    else
      method_obj.call(lower_bound, upper_bound, tolerance, &f)
    end
  else
    #puts "iniciando"
    value=method_obj.call(lower_bound, upper_bound, current_step, &f)
    previous=value+(tolerance*2)
    diffs=[]
    while((previous-value).abs > tolerance) do
      #puts("Valor:#{value}, paso:#{current_step}")
      #puts(current_step)
      diffs.push((previous-value).abs)
      #diffs.push value
      current_step+=step
      previous=value
      #puts "Llamando al metodo"
      
      value=method_obj.call(lower_bound, upper_bound, current_step, &f)
    end
    #p diffs
    
    value
  end
end

.is_infinite?(v) ⇒ Boolean

Returns:

  • (Boolean)


272
273
274
# File 'lib/integration.rb', line 272

def is_infinite?(v)
  v==Infinity or v==MInfinity
end

.milne(t1, t2, n, &f) ⇒ Object

TODO: Document method



121
122
123
124
125
126
127
128
# File 'lib/integration.rb', line 121

def milne(t1, t2, n, &f)
  d = (t2-t1) / n.to_f 
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/3.0)*(2*f[t1+i*d+d/4]-f[t1+i*d+d/2]+2*f[t1+i*d+3*d/4])
  end
  ac
end

.monte_carlo(t1, t2, n) ⇒ Object

TODO: Document method



256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# File 'lib/integration.rb', line 256

def monte_carlo(t1, t2, n)
  width = (t2 - t1).to_f
  height = nil
  vals = []
  n.times do
    t = t1 + (rand() * width)
    ft = yield(t)
    height = ft if height.nil? || ft > height
    vals << ft
  end
  area_ratio = 0
  vals.each do |ft|
    area_ratio += (ft / height.to_f) / n.to_f
  end
  return (width * height) * area_ratio
end

.open_trapezoid(t1, t2, n, &f) ⇒ Object

TODO: Document method



112
113
114
115
116
117
118
119
# File 'lib/integration.rb', line 112

def open_trapezoid(t1, t2, n, &f)
  d = (t2-t1) / n.to_f 
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/2.0)*(f[t1+i*d+d/3]+f[t1+i*d+2*d/3])
  end
  ac
end

.rectangle(t1, t2, n, &f) ⇒ Object Also known as: midpoint

Rectangle method n implies number of subdivisions Source:

* Ayres : Outline of calculus


61
62
63
64
65
66
# File 'lib/integration.rb', line 61

def rectangle(t1, t2, n, &f)
  d=(t2-t1) / n.to_f
  n.times.inject(0) {|ac,i| 
    ac+f[t1+d*(i+0.5)]
  }*d
end

.romberg(a, b, tolerance, max_iter = 20) ⇒ Object

TODO: Document method



234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File 'lib/integration.rb', line 234

def romberg(a, b, tolerance,max_iter=20)
  # NOTE one-based arrays are used for convenience
  h = b.to_f - a
  m = 1
  close = 1
  r = [[(h / 2) * (yield(a) + yield(b))]]
  j = 0
  hn=lambda {|n| h/(2**n)}
  while j <= max_iter && tolerance < close
    j+=1
    r.push((j+1).times.map{[]})
    ul=2**(j-1)
    r[j][0]=r[j-1][0] / 2.0 + hn[j] * (1..ul).inject(0) {|ac,k| ac+yield(a + (2*k-1)* hn[j])}
    (1..j).each do |k|
      r[j][k] = ( (4**k) * r[j][k-1] - r[j-1][k-1]) / ((4**k)-1)
    end
    close = (r[j][j] - r[j-1][j-1])
  end
  r[j][j]
end

.simpson(t1, t2, n, &f) ⇒ Object

Simpson’s rule n implies number of subdivisions Source:

* Ayres : Outline of calculus


83
84
85
86
87
88
89
90
91
# File 'lib/integration.rb', line 83

def simpson(t1, t2, n, &f)
  n += 1 unless n % 2 == 0
  d=(t2-t1) / n.to_f      
  out= (d / 3.0)*(f[t1.to_f].to_f+
  ((1..(n-1)).inject(0) {|ac,i|
    ac+((i%2==0) ? 2 : 4)*f[t1+d*i]  
  })+f[t2.to_f].to_f)
  out
end

.simpson3by8(t1, t2, n, &f) ⇒ Object

TODO: Document method



93
94
95
96
97
98
99
100
# File 'lib/integration.rb', line 93

def simpson3by8(t1, t2, n, &f)
  d = (t2-t1) / n.to_f 
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/8.0)*(f[t1+i*d]+3*f[t1+i*d+d/3]+3*f[t1+i*d+2*d/3]+f[t1+(i+1)*d])
  end
  ac
end

.trapezoid(t1, t2, n, &f) ⇒ Object

Trapezoid method n implies number of subdivisions Source:

* Ayres : Outline of calculus


72
73
74
75
76
77
78
# File 'lib/integration.rb', line 72

def trapezoid(t1, t2, n, &f)
  d=(t2-t1) / n.to_f
  (d/2.0)*(f[t1]+
  2*(1..(n-1)).inject(0){|ac,i| 
  ac+f[t1+d*i]
  }+f[t2])
end