Class: IPAddress::IPv4
- Inherits:
-
Object
- Object
- IPAddress::IPv4
- Includes:
- Comparable, Enumerable, IPAddress
- Defined in:
- lib/ipaddress/ipv4.rb
Overview
Name
IPAddress::IPv4 - IP version 4 address manipulation library
Synopsis
require 'ipaddress'
Description
Class IPAddress::IPv4 is used to handle IPv4 type addresses.
Constant Summary collapse
- CLASSFUL =
This Hash contains the prefix values for Classful networks
Note that classes C, D and E will all have a default prefix of /24 or 255.255.255.0
{ /^0../ => 8, # Class A, from 0.0.0.0 to 127.255.255.255 /^10./ => 16, # Class B, from 128.0.0.0 to 191.255.255.255 /^110/ => 24 # Class C, D and E, from 192.0.0.0 to 255.255.255.254 }
- REGEXP =
Regular expression to match an IPv4 address
Regexp.new(/((25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)\.){3}(25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)/)
Constants included from IPAddress
Class Method Summary collapse
-
.extract(str) ⇒ Object
Extract an IPv4 address from a string and returns a new object.
-
.parse_classful(ip) ⇒ Object
Creates a new IPv4 address object by parsing the address in a classful way.
-
.parse_data(str, prefix = 32) ⇒ Object
Creates a new IPv4 object from binary data, like the one you get from a network stream.
-
.parse_u32(u32, prefix = 32) ⇒ Object
Creates a new IPv4 object from an unsigned 32bits integer.
-
.summarize(*args) ⇒ Object
Summarization (or aggregation) is the process when two or more networks are taken together to check if a supernet, including all and only these networks, exists.
Instance Method Summary collapse
-
#+(oth) ⇒ Object
Returns a new IPv4 object which is the result of the summarization, if possible, of the two objects.
-
#-(oth) ⇒ Object
Returns the difference between two IP addresses in unsigned int 32 bits format Example:.
-
#<=>(oth) ⇒ Object
Spaceship operator to compare IPv4 objects.
-
#[](index) ⇒ Object
(also: #octet)
Returns the octet specified by index.
-
#[]=(index, value) ⇒ Object
(also: #octet=)
Updated the octet specified at index.
-
#a? ⇒ Boolean
Checks whether the ip address belongs to a RFC 791 CLASS A network, no matter what the subnet mask is.
-
#address ⇒ Object
Returns the address portion of the IPv4 object as a string.
-
#b? ⇒ Boolean
Checks whether the ip address belongs to a RFC 791 CLASS B network, no matter what the subnet mask is.
-
#bits ⇒ Object
Returns the address portion of an IP in binary format, as a string containing a sequence of 0 and 1.
-
#broadcast ⇒ Object
Returns the broadcast address for the given IP.
-
#broadcast_u32 ⇒ Object
Returns the broadcast address in Unsigned 32bits format.
-
#c? ⇒ Boolean
Checks whether the ip address belongs to a RFC 791 CLASS C network, no matter what the subnet mask is.
-
#data ⇒ Object
Returns the address portion of an IPv4 object in a network byte order format.
-
#each ⇒ Object
Iterates over all the IP addresses for the given network (or IP address).
-
#each_host ⇒ Object
Iterates over all the hosts IP addresses for the given network (or IP address).
-
#first ⇒ Object
Returns a new IPv4 object with the first host IP address in the range.
-
#hex(space = true) ⇒ Object
(also: #to_h, #to_hex)
Returns the address portion in hex.
-
#hosts ⇒ Object
Returns an array with the IP addresses of all the hosts in the network.
-
#include?(oth) ⇒ Boolean
Checks whether a subnet includes the given IP address.
-
#include_all?(*others) ⇒ Boolean
Checks whether a subnet includes all the given IPv4 objects.
-
#initialize(str) ⇒ IPv4
constructor
Creates a new IPv4 address object.
-
#last ⇒ Object
Like its sibling method IPv4#first, this method returns a new IPv4 object with the last host IP address in the range.
-
#loopback? ⇒ Boolean
Checks if an IPv4 address objects belongs to a loopback network RFC1122.
-
#multicast? ⇒ Boolean
Checks if an IPv4 address objects belongs to a multicast network RFC3171.
-
#netmask ⇒ Object
Returns the prefix as a string in IP format.
-
#netmask=(addr) ⇒ Object
Like IPv4#prefix=, this method allow you to change the prefix / netmask of an IP address object.
-
#network ⇒ Object
Returns a new IPv4 object with the network number for the given IP.
-
#network? ⇒ Boolean
Checks if the IP address is actually a network.
-
#network_u32 ⇒ Object
Returns the network number in Unsigned 32bits format.
-
#octets ⇒ Object
Returns the address as an array of decimal values.
-
#prefix ⇒ Object
Returns the prefix portion of the IPv4 object as a IPAddress::Prefix32 object.
-
#prefix=(num) ⇒ Object
Set a new prefix number for the object.
-
#private? ⇒ Boolean
Checks if an IPv4 address objects belongs to a private network RFC1918.
-
#reverse ⇒ Object
(also: #arpa)
Returns the IP address in in-addr.arpa format for DNS lookups.
-
#size ⇒ Object
Returns the number of IP addresses included in the network.
-
#split(subnets = 2) ⇒ Object
(also: #/)
Splits a network into different subnets.
-
#subnet(subprefix) ⇒ Object
This method implements the subnetting function similar to the one described in RFC3531.
-
#supernet(new_prefix) ⇒ Object
Returns a new IPv4 object from the supernetting of the instance network.
-
#to(e) ⇒ Object
Return a list of IP’s between @address and the supplied IP.
-
#to_ipv6 ⇒ Object
Return the ip address in a format compatible with the IPv6 Mapped IPv4 addresses.
-
#to_s ⇒ Object
Returns a string with the address portion of the IPv4 object.
-
#to_string ⇒ Object
Returns a string with the IP address in canonical form.
-
#u32 ⇒ Object
(also: #to_i, #to_u32)
Returns the address portion in unsigned 32 bits integer format.
Methods included from IPAddress
demongoize, deprecate, evolve, #ipv4?, #ipv6?, mongoize, #mongoize, ntoa, parse, valid?, valid_ipv4?, valid_ipv4_netmask?, valid_ipv6?
Constructor Details
#initialize(str) ⇒ IPv4
Creates a new IPv4 address object.
An IPv4 address can be expressed in any of the following forms:
-
“10.1.1.1/24”: ip
address
andprefix
. This is the common and
suggested way to create an object .
-
“10.1.1.1/255.255.255.0”: ip
address
andnetmask
. Although
convenient sometimes, this format is less clear than the previous one.
-
“10.1.1.1”: if the address alone is specified, the prefix will be
set as default 32, also known as the host prefix
Examples:
# These two are the same
ip = IPAddress::IPv4.new("10.0.0.1/24")
ip = IPAddress("10.0.0.1/24")
# These two are the same
IPAddress::IPv4.new "10.0.0.1/8"
IPAddress::IPv4.new "10.0.0.1/255.0.0.0"
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# File 'lib/ipaddress/ipv4.rb', line 63 def initialize(str) ip, netmask = str.split("/") # Check the ip and remove white space if IPAddress.valid_ipv4?(ip) @address = ip.strip else raise ArgumentError, "Invalid IP #{ip.inspect}" end # Check the netmask if netmask # netmask is defined netmask.strip! if netmask =~ /^\d{1,2}$/ # netmask in cidr format @prefix = Prefix32.new(netmask.to_i) elsif IPAddress.valid_ipv4_netmask?(netmask) # netmask in IP format @prefix = Prefix32.parse_netmask(netmask) else # invalid netmask raise ArgumentError, "Invalid netmask #{netmask}" end else # netmask is nil, reverting to defaul classful mask @prefix = Prefix32.new(32) end # Array formed with the IP octets @octets = @address.split(".").map{|i| i.to_i} # 32 bits interger containing the address @u32 = (@octets[0]<< 24) + (@octets[1]<< 16) + (@octets[2]<< 8) + (@octets[3]) end |
Class Method Details
.extract(str) ⇒ Object
959 960 961 |
# File 'lib/ipaddress/ipv4.rb', line 959 def self.extract(str) self.new REGEXP.match(str).to_s end |
.parse_classful(ip) ⇒ Object
Creates a new IPv4 address object by parsing the address in a classful way.
Classful addresses have a fixed netmask based on the class they belong to:
-
Class A, from 0.0.0.0 to 127.255.255.255
-
Class B, from 128.0.0.0 to 191.255.255.255
-
Class C, D and E, from 192.0.0.0 to 255.255.255.254
Example:
ip = IPAddress::IPv4.parse_classful "10.0.0.1"
ip.netmask
#=> "255.0.0.0"
ip.a?
#=> true
Note that classes C, D and E will all have a default prefix of /24 or 255.255.255.0
1070 1071 1072 1073 1074 1075 1076 1077 1078 |
# File 'lib/ipaddress/ipv4.rb', line 1070 def self.parse_classful(ip) if IPAddress.valid_ipv4?(ip) address = ip.strip else raise ArgumentError, "Invalid IP #{ip.inspect}" end prefix = CLASSFUL.find{|h,k| h === ("%.8b" % address.to_i)}.last self.new "#{address}/#{prefix}" end |
.parse_data(str, prefix = 32) ⇒ Object
943 944 945 |
# File 'lib/ipaddress/ipv4.rb', line 943 def self.parse_data(str, prefix=32) self.new(str.unpack("C4").join(".")+"/#{prefix}") end |
.parse_u32(u32, prefix = 32) ⇒ Object
926 927 928 |
# File 'lib/ipaddress/ipv4.rb', line 926 def self.parse_u32(u32, prefix=32) self.new([u32].pack("N").unpack("C4").join(".")+"/#{prefix}") end |
.summarize(*args) ⇒ Object
Summarization (or aggregation) is the process when two or more networks are taken together to check if a supernet, including all and only these networks, exists. If it exists then this supernet is called the summarized (or aggregated) network.
It is very important to understand that summarization can only occur if there are no holes in the aggregated network, or, in other words, if the given networks fill completely the address space of the supernet. So the two rules are:
1) The aggregate network must contain all
the IP addresses of the
original networks;
2) The aggregate network must contain only
the IP addresses of the
original networks;
A few examples will help clarify the above. Let’s consider for instance the following two networks:
ip1 = IPAddress("172.16.10.0/24")
ip2 = IPAddress("172.16.11.0/24")
These two networks can be expressed using only one IP address network if we change the prefix. Let Ruby do the work:
IPAddress::IPv4::summarize(ip1,ip2).to_s
#=> "172.16.10.0/23"
We note how the network “172.16.10.0/23” includes all the addresses specified in the above networks, and (more important) includes ONLY those addresses.
If we summarized ip1
and ip2
with the following network:
"172.16.0.0/16"
we would have satisfied rule #1 above, but not rule #2. So “172.16.0.0/16” is not an aggregate network for ip1
and ip2
.
If it’s not possible to compute a single aggregated network for all the original networks, the method returns an array with all the aggregate networks found. For example, the following four networks can be aggregated in a single /22:
ip1 = IPAddress("10.0.0.1/24")
ip2 = IPAddress("10.0.1.1/24")
ip3 = IPAddress("10.0.2.1/24")
ip4 = IPAddress("10.0.3.1/24")
IPAddress::IPv4::summarize(ip1,ip2,ip3,ip4).to_string
#=> "10.0.0.0/22",
But the following networks can’t be summarized in a single network:
ip1 = IPAddress("10.0.1.1/24")
ip2 = IPAddress("10.0.2.1/24")
ip3 = IPAddress("10.0.3.1/24")
ip4 = IPAddress("10.0.4.1/24")
IPAddress::IPv4::summarize(ip1,ip2,ip3,ip4).map{|i| i.to_string}
#=> ["10.0.1.0/24","10.0.2.0/23","10.0.4.0/24"]
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
# File 'lib/ipaddress/ipv4.rb', line 1025 def self.summarize(*args) # one network? no need to summarize return [args.first.network] if args.size == 1 i = 0 result = args.dup.sort.map{|ip| ip.network} while i < result.size-1 sum = result[i] + result[i+1] result[i..i+1] = sum.first if sum.size == 1 i += 1 end result.flatten! if result.size == args.size # nothing more to summarize return result else # keep on summarizing return self.summarize(*result) end end |
Instance Method Details
#+(oth) ⇒ Object
Returns a new IPv4 object which is the result of the summarization, if possible, of the two objects
Example:
ip1 = IPAddress("172.16.10.1/24")
ip2 = IPAddress("172.16.11.2/24")
p (ip1 + ip2).map {|i| i.to_string}
#=> ["172.16.10.0/23"]
If the networks are not contiguous, returns the two network numbers from the objects
ip1 = IPAddress("10.0.0.1/24")
ip2 = IPAddress("10.0.2.1/24")
p (ip1 + ip2).map {|i| i.to_string}
#=> ["10.0.0.0/24","10.0.2.0/24"]
842 843 844 |
# File 'lib/ipaddress/ipv4.rb', line 842 def +(oth) aggregate(*[self,oth].sort.map{|i| i.network}) end |
#-(oth) ⇒ Object
816 817 818 |
# File 'lib/ipaddress/ipv4.rb', line 816 def -(oth) return (to_u32 - oth.to_u32).abs end |
#<=>(oth) ⇒ Object
Spaceship operator to compare IPv4 objects
Comparing IPv4 addresses is useful to ordinate them into lists that match our intuitive perception of ordered IP addresses.
The first comparison criteria is the u32 value. For example, 10.100.100.1 will be considered to be less than 172.16.0.1, because, in a ordered list, we expect 10.100.100.1 to come before 172.16.0.1.
The second criteria, in case two IPv4 objects have identical addresses, is the prefix. An higher prefix will be considered greater than a lower prefix. This is because we expect to see 10.100.100.0/24 come before 10.100.100.0/25.
Example:
ip1 = IPAddress "10.100.100.1/8"
ip2 = IPAddress "172.16.0.1/16"
ip3 = IPAddress "10.100.100.1/16"
ip1 < ip2
#=> true
ip1 > ip3
#=> false
[ip1,ip2,ip3].sort.map{|i| i.to_string}
#=> ["10.100.100.1/8","10.100.100.1/16","172.16.0.1/16"]
511 512 513 514 |
# File 'lib/ipaddress/ipv4.rb', line 511 def <=>(oth) return prefix <=> oth.prefix if to_u32 == oth.to_u32 to_u32 <=> oth.to_u32 end |
#[](index) ⇒ Object Also known as: octet
Returns the octet specified by index
ip = IPAddress("172.16.100.50/24")
ip[0]
#=> 172
ip[1]
#=> 16
ip[2]
#=> 100
ip[3]
#=> 50
285 286 287 |
# File 'lib/ipaddress/ipv4.rb', line 285 def [](index) @octets[index] end |
#[]=(index, value) ⇒ Object Also known as: octet=
Updated the octet specified at index
ip = IPAddress("172.16.100.50/24")
ip[2] = 200
#=> #<IPAddress::IPv4:0x00000000000000 @address="172.16.200.1",
#=> @prefix=32, @octets=[172, 16, 200, 1], @u32=2886780929>
299 300 301 302 |
# File 'lib/ipaddress/ipv4.rb', line 299 def []=(index, value) @octets[index] = value.to_i initialize("#{@octets.join('.')}/#{prefix}") end |
#a? ⇒ Boolean
Checks whether the ip address belongs to a RFC 791 CLASS A network, no matter what the subnet mask is.
Example:
ip = IPAddress("10.0.0.1/24")
ip.a?
#=> true
858 859 860 |
# File 'lib/ipaddress/ipv4.rb', line 858 def a? CLASSFUL.key(8) === bits end |
#address ⇒ Object
Returns the address portion of the IPv4 object as a string.
ip = IPAddress("172.16.100.4/22")
ip.address
#=> "172.16.100.4"
103 104 105 |
# File 'lib/ipaddress/ipv4.rb', line 103 def address @address end |
#b? ⇒ Boolean
Checks whether the ip address belongs to a RFC 791 CLASS B network, no matter what the subnet mask is.
Example:
ip = IPAddress("172.16.10.1/24")
ip.b?
#=> true
874 875 876 |
# File 'lib/ipaddress/ipv4.rb', line 874 def b? CLASSFUL.key(16) === bits end |
#bits ⇒ Object
Returns the address portion of an IP in binary format, as a string containing a sequence of 0 and 1
ip = IPAddress("127.0.0.1")
ip.bits
#=> "01111111000000000000000000000001"
314 315 316 |
# File 'lib/ipaddress/ipv4.rb', line 314 def bits data.unpack("B*").first end |
#broadcast ⇒ Object
Returns the broadcast address for the given IP.
ip = IPAddress("172.16.10.64/24")
ip.broadcast.to_s
#=> "172.16.10.255"
326 327 328 329 330 331 332 333 334 335 |
# File 'lib/ipaddress/ipv4.rb', line 326 def broadcast case when prefix <= 30 self.class.parse_u32(broadcast_u32, @prefix) when prefix == 31 self.class.parse_u32(-1, @prefix) when prefix == 32 return self end end |
#broadcast_u32 ⇒ Object
Returns the broadcast address in Unsigned 32bits format
ip = IPaddress("10.0.0.1/29")
ip.broadcast_u32
#=> 167772167
568 569 570 |
# File 'lib/ipaddress/ipv4.rb', line 568 def broadcast_u32 network_u32 + size - 1 end |
#c? ⇒ Boolean
Checks whether the ip address belongs to a RFC 791 CLASS C network, no matter what the subnet mask is.
Example:
ip = IPAddress("192.168.1.1/30")
ip.c?
#=> true
890 891 892 |
# File 'lib/ipaddress/ipv4.rb', line 890 def c? CLASSFUL.key(24) === bits end |
#data ⇒ Object
Returns the address portion of an IPv4 object in a network byte order format.
ip = IPAddress("172.16.10.1/24")
ip.data
#=> "\254\020\n\001"
It is usually used to include an IP address in a data packet to be sent over a socket
a = Socket.open(params) # socket details here
ip = IPAddress("10.1.1.0/24")
binary_data = ["Address: "].pack("a*") + ip.data
# Send binary data
a.puts binary_data
267 268 269 |
# File 'lib/ipaddress/ipv4.rb', line 267 def data [@u32].pack("N") end |
#each ⇒ Object
Iterates over all the IP addresses for the given network (or IP address).
The object yielded is a new IPv4 object created from the iteration.
ip = IPAddress("10.0.0.1/29")
ip.each do |i|
p i.address
end
#=> "10.0.0.0"
#=> "10.0.0.1"
#=> "10.0.0.2"
#=> "10.0.0.3"
#=> "10.0.0.4"
#=> "10.0.0.5"
#=> "10.0.0.6"
#=> "10.0.0.7"
473 474 475 476 477 |
# File 'lib/ipaddress/ipv4.rb', line 473 def each (network_u32..broadcast_u32).each do |i| yield self.class.parse_u32(i, @prefix) end end |
#each_host ⇒ Object
Iterates over all the hosts IP addresses for the given network (or IP address).
ip = IPAddress("10.0.0.1/29")
ip.each_host do |i|
p i.to_s
end
#=> "10.0.0.1"
#=> "10.0.0.2"
#=> "10.0.0.3"
#=> "10.0.0.4"
#=> "10.0.0.5"
#=> "10.0.0.6"
446 447 448 449 450 |
# File 'lib/ipaddress/ipv4.rb', line 446 def each_host (network_u32+1..broadcast_u32-1).each do |i| yield self.class.parse_u32(i, @prefix) end end |
#first ⇒ Object
Returns a new IPv4 object with the first host IP address in the range.
Example: given the 192.168.100.0/24 network, the first host IP address is 192.168.100.1.
ip = IPAddress("192.168.100.0/24")
ip.first.to_s
#=> "192.168.100.1"
The object IP doesn’t need to be a network: the method automatically gets the network number from it
ip = IPAddress("192.168.100.50/24")
ip.first.to_s
#=> "192.168.100.1"
387 388 389 390 391 392 393 394 395 396 |
# File 'lib/ipaddress/ipv4.rb', line 387 def first case when prefix <= 30 self.class.parse_u32(network_u32+1, @prefix) when prefix == 31 self.class.parse_u32(network_u32, @prefix) when prefix == 32 return self end end |
#hex(space = true) ⇒ Object Also known as: to_h, to_hex
Returns the address portion in hex
ip = IPAddress("10.0.0.0")
ip.to_h
#=> 0a000000
242 243 244 |
# File 'lib/ipaddress/ipv4.rb', line 242 def hex(space=true) "%.4x%.4x" % [to_u32].pack("N").unpack("nn") end |
#hosts ⇒ Object
Returns an array with the IP addresses of all the hosts in the network.
ip = IPAddress("10.0.0.1/29")
ip.hosts.map {|i| i.address}
#=> ["10.0.0.1",
#=> "10.0.0.2",
#=> "10.0.0.3",
#=> "10.0.0.4",
#=> "10.0.0.5",
#=> "10.0.0.6"]
544 545 546 |
# File 'lib/ipaddress/ipv4.rb', line 544 def hosts to_a[1..-2] end |
#include?(oth) ⇒ Boolean
587 588 589 |
# File 'lib/ipaddress/ipv4.rb', line 587 def include?(oth) @prefix <= oth.prefix and network_u32 == (oth.to_u32 & @prefix.to_u32) end |
#include_all?(*others) ⇒ Boolean
603 604 605 |
# File 'lib/ipaddress/ipv4.rb', line 603 def include_all?(*others) others.all? {|oth| include?(oth)} end |
#last ⇒ Object
Like its sibling method IPv4#first, this method returns a new IPv4 object with the last host IP address in the range.
Example: given the 192.168.100.0/24 network, the last host IP address is 192.168.100.254
ip = IPAddress("192.168.100.0/24")
ip.last.to_s
#=> "192.168.100.254"
The object IP doesn’t need to be a network: the method automatically gets the network number from it
ip = IPAddress("192.168.100.50/24")
ip.last.to_s
#=> "192.168.100.254"
419 420 421 422 423 424 425 426 427 428 |
# File 'lib/ipaddress/ipv4.rb', line 419 def last case when prefix <= 30 self.class.parse_u32(broadcast_u32-1, @prefix) when prefix == 31 self.class.parse_u32(broadcast_u32, @prefix) when prefix == 32 return self end end |
#loopback? ⇒ Boolean
Checks if an IPv4 address objects belongs to a loopback network RFC1122
Example:
ip = IPAddress "127.0.0.1"
ip.loopback?
#=> true
661 662 663 |
# File 'lib/ipaddress/ipv4.rb', line 661 def loopback? [self.class.new("127.0.0.0/8")].any? {|i| i.include? self} end |
#multicast? ⇒ Boolean
Checks if an IPv4 address objects belongs to a multicast network RFC3171
Example:
ip = IPAddress "224.0.0.0/4"
ip.multicast?
#=> true
633 634 635 |
# File 'lib/ipaddress/ipv4.rb', line 633 def multicast? [self.class.new("224.0.0.0/4")].any? {|i| i.include? self} end |
#netmask ⇒ Object
Returns the prefix as a string in IP format
ip = IPAddress("172.16.100.4/22")
ip.netmask
#=> "255.255.252.0"
191 192 193 |
# File 'lib/ipaddress/ipv4.rb', line 191 def netmask @prefix.to_ip end |
#netmask=(addr) ⇒ Object
Like IPv4#prefix=, this method allow you to change the prefix / netmask of an IP address object.
ip = IPAddress("172.16.100.4")
puts ip
#=> 172.16.100.4/16
ip.netmask = "255.255.252.0"
puts ip
#=> 172.16.100.4/22
210 211 212 |
# File 'lib/ipaddress/ipv4.rb', line 210 def netmask=(addr) @prefix = Prefix32.parse_netmask(addr) end |
#network ⇒ Object
Returns a new IPv4 object with the network number for the given IP.
ip = IPAddress("172.16.10.64/24")
ip.network.to_s
#=> "172.16.10.0"
363 364 365 |
# File 'lib/ipaddress/ipv4.rb', line 363 def network self.class.parse_u32(network_u32, @prefix) end |
#network? ⇒ Boolean
350 351 352 |
# File 'lib/ipaddress/ipv4.rb', line 350 def network? (@prefix < 32) && (@u32 | @prefix.to_u32 == @prefix.to_u32) end |
#network_u32 ⇒ Object
Returns the network number in Unsigned 32bits format
ip = IPAddress("10.0.0.1/29")
ip.network_u32
#=> 167772160
556 557 558 |
# File 'lib/ipaddress/ipv4.rb', line 556 def network_u32 @u32 & @prefix.to_u32 end |
#octets ⇒ Object
Returns the address as an array of decimal values
ip = IPAddress("172.16.100.4")
ip.octets
#=> [172, 16, 100, 4]
153 154 155 |
# File 'lib/ipaddress/ipv4.rb', line 153 def octets @octets end |
#prefix ⇒ Object
Returns the prefix portion of the IPv4 object as a IPAddress::Prefix32 object
ip = IPAddress("172.16.100.4/22")
ip.prefix
#=> 22
ip.prefix.class
#=> IPAddress::Prefix32
119 120 121 |
# File 'lib/ipaddress/ipv4.rb', line 119 def prefix @prefix end |
#prefix=(num) ⇒ Object
Set a new prefix number for the object
This is useful if you want to change the prefix to an object created with IPv4::parse_u32 or if the object was created using the classful mask.
ip = IPAddress("172.16.100.4")
puts ip
#=> 172.16.100.4/16
ip.prefix = 22
puts ip
#=> 172.16.100.4/22
141 142 143 |
# File 'lib/ipaddress/ipv4.rb', line 141 def prefix=(num) @prefix = Prefix32.new(num) end |
#private? ⇒ Boolean
Checks if an IPv4 address objects belongs to a private network RFC1918
Example:
ip = IPAddress "10.1.1.1/24"
ip.private?
#=> true
617 618 619 620 621 |
# File 'lib/ipaddress/ipv4.rb', line 617 def private? [self.class.new("10.0.0.0/8"), self.class.new("172.16.0.0/12"), self.class.new("192.168.0.0/16")].any? {|i| i.include? self} end |
#reverse ⇒ Object Also known as: arpa
Returns the IP address in in-addr.arpa format for DNS lookups
ip = IPAddress("172.16.100.50/24")
ip.reverse
#=> "50.100.16.172.in-addr.arpa"
674 675 676 |
# File 'lib/ipaddress/ipv4.rb', line 674 def reverse @octets.reverse.join(".") + ".in-addr.arpa" end |
#size ⇒ Object
Returns the number of IP addresses included in the network. It also counts the network address and the broadcast address.
ip = IPAddress("10.0.0.1/29")
ip.size
#=> 8
526 527 528 |
# File 'lib/ipaddress/ipv4.rb', line 526 def size 2 ** @prefix.host_prefix end |
#split(subnets = 2) ⇒ Object Also known as: /
Splits a network into different subnets
If the IP Address is a network, it can be divided into multiple networks. If self
is not a network, this method will calculate the network from the IP and then subnet it.
If subnets
is an power of two number, the resulting networks will be divided evenly from the supernet.
network = IPAddress("172.16.10.0/24")
network / 4 # implies map{|i| i.to_string}
#=> ["172.16.10.0/26",
#=> "172.16.10.64/26",
#=> "172.16.10.128/26",
#=> "172.16.10.192/26"]
If num
is any other number, the supernet will be divided into some networks with a even number of hosts and other networks with the remaining addresses.
network = IPAddress("172.16.10.0/24")
network / 3 # implies map{|i| i.to_string}
#=> ["172.16.10.0/26",
#=> "172.16.10.64/26",
#=> "172.16.10.128/25"]
Returns an array of IPv4 objects
731 732 733 734 735 736 737 738 739 740 |
# File 'lib/ipaddress/ipv4.rb', line 731 def split(subnets=2) unless (1..(2**@prefix.host_prefix)).include? subnets raise ArgumentError, "Value #{subnets} out of range" end networks = subnet(newprefix(subnets)) until networks.size == subnets networks = sum_first_found(networks) end return networks end |
#subnet(subprefix) ⇒ Object
This method implements the subnetting function similar to the one described in RFC3531.
By specifying a new prefix, the method calculates the network number for the given IPv4 object and calculates the subnets associated to the new prefix.
For example, given the following network:
ip = IPAddress "172.16.10.0/24"
we can calculate the subnets with a /26 prefix
ip.subnets(26).map{&:to_string)
#=> ["172.16.10.0/26", "172.16.10.64/26",
"172.16.10.128/26", "172.16.10.192/26"]
The resulting number of subnets will of course always be a power of two.
795 796 797 798 799 800 801 802 |
# File 'lib/ipaddress/ipv4.rb', line 795 def subnet(subprefix) unless ((@prefix.to_i)..32).include? subprefix raise ArgumentError, "New prefix must be between #@prefix and 32" end Array.new(2**(subprefix-@prefix.to_i)) do |i| self.class.parse_u32(network_u32+(i*(2**(32-subprefix))), subprefix) end end |
#supernet(new_prefix) ⇒ Object
Returns a new IPv4 object from the supernetting of the instance network.
Supernetting is similar to subnetting, except that you getting as a result a network with a smaller prefix (bigger host space). For example, given the network
ip = IPAddress("172.16.10.0/24")
you can supernet it with a new /23 prefix
ip.supernet(23).to_string
#=> "172.16.10.0/23"
However if you supernet it with a /22 prefix, the network address will change:
ip.supernet(22).to_string
#=> "172.16.8.0/22"
If new_prefix
is less than 1, returns 0.0.0.0/0
767 768 769 770 771 |
# File 'lib/ipaddress/ipv4.rb', line 767 def supernet(new_prefix) raise ArgumentError, "New prefix must be smaller than existing prefix" if new_prefix >= @prefix.to_i return self.class.new("0.0.0.0/0") if new_prefix < 1 return self.class.new(@address+"/#{new_prefix}").network end |
#to(e) ⇒ Object
Return a list of IP’s between @address and the supplied IP
ip = IPAddress("172.16.100.51/32")
ip.to("172.16.100.100")
#=> ["172.16.100.51",
#=> "172.16.100.52",
#=> ...
#=> "172.16.100.99",
#=> "172.16.100.100"]
692 693 694 695 696 697 698 |
# File 'lib/ipaddress/ipv4.rb', line 692 def to(e) unless e.is_a? IPAddress::IPv4 e = IPv4.new(e) end Range.new(@u32, e.to_u32).map{|i| IPAddress.ntoa(i) } end |
#to_ipv6 ⇒ Object
Return the ip address in a format compatible with the IPv6 Mapped IPv4 addresses
Example:
ip = IPAddress("172.16.10.1/24")
ip.to_ipv6
#=> "ac10:0a01"
905 906 907 |
# File 'lib/ipaddress/ipv4.rb', line 905 def to_ipv6 "%.4x:%.4x" % [to_u32].pack("N").unpack("nn") end |
#to_s ⇒ Object
Returns a string with the address portion of the IPv4 object
ip = IPAddress("172.16.100.4/22")
ip.to_s
#=> "172.16.100.4"
166 167 168 |
# File 'lib/ipaddress/ipv4.rb', line 166 def to_s @address end |
#to_string ⇒ Object
Returns a string with the IP address in canonical form.
ip = IPAddress("172.16.100.4/22")
ip.to_string
#=> "172.16.100.4/22"
179 180 181 |
# File 'lib/ipaddress/ipv4.rb', line 179 def to_string "#@address/#@prefix" end |
#u32 ⇒ Object Also known as: to_i, to_u32
Returns the address portion in unsigned 32 bits integer format.
This method is identical to the C function inet_pton to create a 32 bits address family structure.
ip = IPAddress("10.0.0.0/8")
ip.to_i
#=> 167772160
227 228 229 |
# File 'lib/ipaddress/ipv4.rb', line 227 def u32 @u32 end |