Class: KnnCv::Classifier
- Inherits:
-
Object
- Object
- KnnCv::Classifier
- Defined in:
- ext/c_knn/knn.c
Defined Under Namespace
Classes: Classes, Instances, Numerics
Instance Method Summary collapse
- #fitness_for(rb_features) ⇒ Object
- #initialize(rb_k, data, rb_class, rb_numeric, rb_random_par) ⇒ Object constructor
Constructor Details
#initialize(rb_k, data, rb_class, rb_numeric, rb_random_par) ⇒ Object
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# File 'ext/c_knn/knn.c', line 187
VALUE method_c_knn_initialize(VALUE self, VALUE rb_k, VALUE data, VALUE rb_class, VALUE rb_numeric, VALUE rb_random_par) {
long int ncol, nrow;
double * instances = NULL;
int * classes = NULL;
int * which_numeric = NULL;
// VALUE data = rb_funcall(rb_dataset, rb_intern("instances"), 0);
// VALUE rb_class = rb_funcall(rb_dataset, rb_intern("classes"), 0);
// VALUE rb_numeric = rb_funcall(rb_dataset, rb_intern("numeric_attrs"), 0);
// Define global variables
rb_iv_set(self, "@num_neighbors", rb_k);
nrow = RARRAY_LEN(data);
if (nrow > 0) {
rb_iv_set(self, "@nrow", INT2NUM(nrow));
ncol = RARRAY_LEN(rb_ary_entry(data, 0));
rb_iv_set(self, "@ncol", INT2NUM(ncol));
rb_iv_set(self, "@nclass", rb_funcall(rb_funcall(rb_class, rb_intern("uniq"), 0), rb_intern("length"), 0));
FLOAT_MAX = NUM2DBL(rb_intern("Float::MAX"));
rb_iv_set(self, "@rng", rb_random_par);
instances = (double*) malloc(sizeof(double) * nrow * ncol);
int i, j;
for (i = 0; i < nrow; i++) {
for (j = 0; j < ncol; j++) {
if (TYPE(rb_ary_entry(rb_ary_entry(data, i), j)) == T_STRING) {
rb_raise(rb_eArgError, "A string was found within the dataset. Aborting...");
} else
instances[i * ncol + j] = NUM2DBL(rb_ary_entry(rb_ary_entry(data, i), j));
}
}
classes = (int*) malloc(sizeof(int) * nrow);
for (i = 0; i < nrow; i++) {
classes[i] = NUM2INT(rb_ary_entry(rb_class, i));
}
which_numeric = (int*) malloc(sizeof(int) * ncol);
for (j = 0; j < ncol; j++) {
which_numeric[j] = NUM2INT(rb_ary_entry(rb_numeric, j));
}
rb_iv_set(self, "@instances", Data_Wrap_Struct(C_instances, NULL, c_knn_free, instances));
rb_iv_set(self, "@classes", Data_Wrap_Struct(C_classes, NULL, c_knn_free, classes));
rb_iv_set(self, "@which_numeric", Data_Wrap_Struct(C_numerics, NULL, c_knn_free, which_numeric));
} else {
rb_raise(rb_eArgError, "Attempted to create a classifier for an empty dataset. Aborting...");
}
return self;
}
|
Instance Method Details
#fitness_for(rb_features) ⇒ Object
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'ext/c_knn/knn.c', line 44
VALUE method_c_knn_leaveoneout(VALUE self, VALUE rb_features) {
double * instances = NULL;
int * classes = NULL;
int * which_numeric = NULL;
Data_Get_Struct(rb_iv_get(self, "@instances"), double, instances);
Data_Get_Struct(rb_iv_get(self, "@classes"), int, classes);
Data_Get_Struct(rb_iv_get(self, "@which_numeric"), int, which_numeric);
int nrow = NUM2INT(rb_iv_get(self, "@nrow"));
int ncol = NUM2INT(rb_iv_get(self, "@ncol"));
int num_neighbors = NUM2INT(rb_iv_get(self, "@num_neighbors"));
int class_count = NUM2INT(rb_iv_get(self, "@nclass"));
rb_features = rb_funcall(rb_features, rb_intern("to_a"), 0);
int correct_guesses;
double fitness;
/* The following is code based on the "class" package from R */
/***************************************************************
VR_knn input parameters:
Sint *kin, Sint *lin, Sint *pntr, Sint *pnte, Sint *p,
double *train, Sint *class, double *test, Sint *res, double *pr,
Sint *votes, Sint *nc, Sint *cv, Sint *use_all
***************************************************************/
int i, index, j, k, k1, kinit = num_neighbors, kn, l = 0, mm, npat, ntie, extras;
int pos[MAX_TIES];
double dist, tmp, nndist[MAX_TIES];
// Prediction results
int * res = (int*) malloc(sizeof(int) * nrow);
int * votes = (int*) malloc(sizeof(int) * class_count);
/*
Use a 'fence' in the (k+1)st position to avoid special cases.
Simple insertion sort will suffice since k will be small.
*/
for (npat = 0; npat < nrow; npat++) {
kn = kinit;
for (k = 0; k < kn; k++)
nndist[k] = 0.99 * FLOAT_MAX;
for (j = 0; j < nrow; j++) {
if (j == npat) // Skip own instance for leave-one-out cross_validation
continue;
dist = 0.0;
for (k = 0; k < ncol; k++) {
// Skip unselected features
if (NUM2INT(rb_ary_entry(rb_features, k))) {
// Distinguish numeric attributes from nominal
tmp = instances[npat * ncol + k] - instances[j * ncol + k];
if (which_numeric[k]) {
dist += tmp * tmp;
} else if (tmp < EPS && tmp > -EPS) { // Nominal feature
// Add 1 if values are different
dist += 1;
}
}
}
/* Use 'fuzz' since distance computed could depend on order of coordinates */
if (dist <= nndist[kinit - 1] * (1 + EPS))
for (k = 0; k <= kn; k++)
if (dist < nndist[k]) {
for (k1 = kn; k1 > k; k1--) {
nndist[k1] = nndist[k1 - 1];
pos[k1] = pos[k1 - 1];
}
nndist[k] = dist;
pos[k] = j;
/* Keep an extra distance if the largest current one ties with current kth */
if (nndist[kn] <= nndist[kinit - 1])
if (++kn == MAX_TIES - 1)
return rb_float_new(-2.0); // Too many ties. Fail
break;
}
nndist[kn] = 0.99 * FLOAT_MAX;
}
for (j = 0; j < class_count; j++)
votes[j] = 0;
// use_all is true always so unneeded code has been removed
for (j = 0; j < kinit; j++){
votes[classes[pos[j]]]++;
}
extras = 0;
for (j = kinit; j < kn; j++) {
if (nndist[j] > nndist[kinit - 1] * (1 + EPS))
break;
extras++;
votes[classes[pos[j]]]++;
}
/* Use reservoir sampling to choose amongst the tied votes */
ntie = 1;
mm = votes[0];
index = 0;
for (i = 1; i < class_count; i++)
if (votes[i] > mm) {
ntie = 1;
index = i;
mm = votes[i];
} else if (votes[i] == mm && votes[i] >= l) {
// This line is causing segfaults:
//if (++ntie * NUM2DBL(rb_funcall(rb_random, rb_intern("rand"), 0)) < 1.0)
if (++ntie * NUM2DBL(rb_funcall(rb_iv_get(self, "@rng"), rb_intern("rand"), 0)) < 1.0)
index = i;
}
res[npat] = index;
//pr[npat] = (double) mm / (kinit + extras);
}
/* end of "class" code */
free(votes);
correct_guesses = 0;
for (npat = 0; npat < nrow; npat++) {
// Count correct guesses
correct_guesses += res[npat] == classes[npat];
}
free(res);
fitness = (double)(correct_guesses) / (double)(nrow);
return rb_float_new(fitness);
}
|