Module: Kramdown::Utils::Entities

Included in:
Parser::Html::ElementConverter
Defined in:
lib/kramdown/utils/entities.rb

Overview

Provides convenience methods for handling named and numeric entities.

Defined Under Namespace

Classes: Entity

Constant Summary collapse

ENTITY_TABLE =

Array of arrays. Each sub-array specifies a code point and the associated name.

This table is not used directly – Entity objects are automatically created from it and put into a Hash map when this file is loaded.

[

  # html4
  [913, 'Alpha'],
  [914, 'Beta'],
  [915, 'Gamma'],
  [916, 'Delta'],
  [917, 'Epsilon'],
  [918, 'Zeta'],
  [919, 'Eta'],
  [920, 'Theta'],
  [921, 'Iota'],
  [922, 'Kappa'],
  [923, 'Lambda'],
  [924, 'Mu'],
  [925, 'Nu'],
  [926, 'Xi'],
  [927, 'Omicron'],
  [928, 'Pi'],
  [929, 'Rho'],
  [931, 'Sigma'],
  [932, 'Tau'],
  [933, 'Upsilon'],
  [934, 'Phi'],
  [935, 'Chi'],
  [936, 'Psi'],
  [937, 'Omega'],
  [945, 'alpha'],
  [946, 'beta'],
  [947, 'gamma'],
  [948, 'delta'],
  [949, 'epsilon'],
  [950, 'zeta'],
  [951, 'eta'],
  [952, 'theta'],
  [953, 'iota'],
  [954, 'kappa'],
  [955, 'lambda'],
  [956, 'mu'],
  [957, 'nu'],
  [958, 'xi'],
  [959, 'omicron'],
  [960, 'pi'],
  [961, 'rho'],
  [963, 'sigma'],
  [964, 'tau'],
  [965, 'upsilon'],
  [966, 'phi'],
  [967, 'chi'],
  [968, 'psi'],
  [969, 'omega'],
  [962, 'sigmaf'],
  [977, 'thetasym'],
  [978, 'upsih'],
  [982, 'piv'],
  [988, 'Gammad'],
  [989, 'gammad'],
  [8204, 'zwnj'],
  [8205, 'zwj'],
  [8206, 'lrm'],
  [8207, 'rlm'],
  [8230, 'hellip'],
  [8242, 'prime'],
  [8243, 'Prime'],
  [8254, 'oline'],
  [8260, 'frasl'],
  [8472, 'weierp'],
  [8465, 'image'],
  [8476, 'real'],
  [8501, 'alefsym'],
  [8226, 'bull'],
  [8482, 'trade'],
  [8592, 'larr'],
  [8594, 'rarr'],
  [8593, 'uarr'],
  [8595, 'darr'],
  [8596, 'harr'],
  [8629, 'crarr'],
  [8657, 'uArr'],
  [8659, 'dArr'],
  [8656, 'lArr'],
  [8658, 'rArr'],
  [8660, 'hArr'],
  [8704, 'forall'],
  [8706, 'part'],
  [8707, 'exist'],
  [8709, 'empty'],
  [8711, 'nabla'],
  [8712, 'isin'],
  [8715, 'ni'],
  [8713, 'notin'],
  [8721, 'sum'],
  [8719, 'prod'],
  [8722, 'minus'],
  [8727, 'lowast'],
  [8730, 'radic'],
  [8733, 'prop'],
  [8734, 'infin'],
  [8736, 'ang'],
  [8743, 'and'],
  [8744, 'or'],
  [8745, 'cap'],
  [8746, 'cup'],
  [8747, 'int'],
  [8756, 'there4'],
  [8764, 'sim'],
  [8776, 'asymp'],
  [8773, 'cong'],
  [8800, 'ne'],
  [8801, 'equiv'],
  [8804, 'le'],
  [8805, 'ge'],
  [8834, 'sub'],
  [8835, 'sup'],
  [8838, 'sube'],
  [8839, 'supe'],
  [8836, 'nsub'],
  [8853, 'oplus'],
  [8855, 'otimes'],
  [8869, 'perp'],
  [8901, 'sdot'],
  [8942, 'vellip'],
  [8968, 'rceil'],
  [8969, 'lceil'],
  [8970, 'lfloor'],
  [8971, 'rfloor'],
  [9001, 'rang'],
  [9002, 'lang'],
  [9674, 'loz'],
  [9824, 'spades'],
  [9827, 'clubs'],
  [9829, 'hearts'],
  [9830, 'diams'],
  [38, 'amp'],
  [34, 'quot'],
  [39, 'apos'],
  [169, 'copy'],
  [60, 'lt'],
  [62, 'gt'],
  [338, 'OElig'],
  [339, 'oelig'],
  [352, 'Scaron'],
  [353, 'scaron'],
  [376, 'Yuml'],
  [710, 'circ'],
  [732, 'tilde'],
  [8211, 'ndash'],
  [8212, 'mdash'],
  [8216, 'lsquo'],
  [8217, 'rsquo'],
  [8220, 'ldquo'],
  [8221, 'rdquo'],
  [8224, 'dagger'],
  [8225, 'Dagger'],
  [8240, 'permil'],
  [8364, 'euro'],
  [8249, 'lsaquo'],
  [8250, 'rsaquo'],
  [160, 'nbsp'],
  [161, 'iexcl'],
  [163, 'pound'],
  [164, 'curren'],
  [165, 'yen'],
  [166, 'brvbar'],
  [167, 'sect'],
  [168, 'uml'],
  [171, 'laquo'],
  [187, 'raquo'],
  [174, 'reg'],
  [170, 'ordf'],
  [172, 'not'],
  [173, 'shy'],
  [175, 'macr'],
  [176, 'deg'],
  [177, 'plusmn'],
  [180, 'acute'],
  [181, 'micro'],
  [182, 'para'],
  [183, 'middot'],
  [184, 'cedil'],
  [186, 'ordm'],
  [162, 'cent'],
  [185, 'sup1'],
  [178, 'sup2'],
  [179, 'sup3'],
  [189, 'frac12'],
  [188, 'frac14'],
  [190, 'frac34'],
  [8531, 'frac13'],
  [8532, 'frac23'],
  [8533, 'frac15'],
  [8534, 'frac25'],
  [8535, 'frac35'],
  [8536, 'frac45'],
  [8537, 'frac16'],
  [8538, 'frac56'],
  [8539, 'frac18'],
  [8540, 'frac38'],
  [8541, 'frac58'],
  [8542, 'frac78'],
  [191, 'iquest'],
  [192, 'Agrave'],
  [193, 'Aacute'],
  [194, 'Acirc'],
  [195, 'Atilde'],
  [196, 'Auml'],
  [197, 'Aring'],
  [198, 'AElig'],
  [199, 'Ccedil'],
  [200, 'Egrave'],
  [201, 'Eacute'],
  [202, 'Ecirc'],
  [203, 'Euml'],
  [204, 'Igrave'],
  [205, 'Iacute'],
  [206, 'Icirc'],
  [207, 'Iuml'],
  [208, 'ETH'],
  [209, 'Ntilde'],
  [210, 'Ograve'],
  [211, 'Oacute'],
  [212, 'Ocirc'],
  [213, 'Otilde'],
  [214, 'Ouml'],
  [215, 'times'],
  [216, 'Oslash'],
  [217, 'Ugrave'],
  [218, 'Uacute'],
  [219, 'Ucirc'],
  [220, 'Uuml'],
  [221, 'Yacute'],
  [222, 'THORN'],
  [223, 'szlig'],
  [224, 'agrave'],
  [225, 'aacute'],
  [226, 'acirc'],
  [227, 'atilde'],
  [228, 'auml'],
  [229, 'aring'],
  [230, 'aelig'],
  [231, 'ccedil'],
  [232, 'egrave'],
  [233, 'eacute'],
  [234, 'ecirc'],
  [235, 'euml'],
  [236, 'igrave'],
  [237, 'iacute'],
  [238, 'icirc'],
  [239, 'iuml'],
  [240, 'eth'],
  [241, 'ntilde'],
  [242, 'ograve'],
  [243, 'oacute'],
  [244, 'ocirc'],
  [245, 'otilde'],
  [246, 'ouml'],
  [247, 'divide'],
  [248, 'oslash'],
  [249, 'ugrave'],
  [250, 'uacute'],
  [251, 'ucirc'],
  [252, 'uuml'],
  [253, 'yacute'],
  [254, 'thorn'],
  [255, 'yuml'],

  [8218, 'sbquo'],
  [402, 'fnof'],
  [8222, 'bdquo'],

  [128, 8364],
  [130, 8218],
  [131, 402],
  [132, 8222],
  [133, 8230],
  [134, 8224],
  [135, 8225],
  [136, 710],
  [137, 8240],
  [138, 352],
  [139, 8249],
  [140, 338],
  [142, 381],
  [145, 8216],
  [146, 8217],
  [147, 8220],
  [148, 8221],
  [149, 8226],
  [150, 8211],
  [151, 8212],
  [152, 732],
  [153, 8482],
  [154, 353],
  [155, 8250],
  [156, 339],
  [158, 382],
  [159, 376],

  [8194, 'ensp'],
  [8195, 'emsp'],
  [8201, 'thinsp'],

  # html5
  [10218, 'Lang'],
  [10219, 'Rang'],
  [10220, 'loang'],
  [10221, 'roang'],
  [10229, 'xlarr'],
  [10229, 'longleftarrow'],
  [10229, 'LongLeftArrow'],
  [10230, 'xrarr'],
  [10230, 'longrightarrow'],
  [10230, 'LongRightArrow'],
  [10231, 'xharr'],
  [10231, 'longleftrightarrow'],
  [10231, 'LongLeftRightArrow'],
  [10232, 'xlArr'],
  [10232, 'Longleftarrow'],
  [10232, 'DoubleLongLeftArrow'],
  [10233, 'xrArr'],
  [10233, 'Longrightarrow'],
  [10233, 'DoubleLongRightArrow'],
  [10234, 'xhArr'],
  [10234, 'Longleftrightarrow'],
  [10234, 'DoubleLongLeftRightArrow'],
  [10236, 'xmap'],
  [10236, 'longmapsto'],
  [10239, 'dzigrarr'],
  [10498, 'nvlArr'],
  [10499, 'nvrArr'],
  [10500, 'nvHarr'],
  [10501, 'Map'],
  [10508, 'lbarr'],
  [10509, 'rbarr'],
  [10509, 'bkarow'],
  [10510, 'lBarr'],
  [10511, 'rBarr'],
  [10511, 'dbkarow'],
  [10512, 'RBarr'],
  [10512, 'drbkarow'],
  [10513, 'DDotrahd'],
  [10514, 'UpArrowBar'],
  [10515, 'DownArrowBar'],
  [10518, 'Rarrtl'],
  [10521, 'latail'],
  [10522, 'ratail'],
  [10523, 'lAtail'],
  [10524, 'rAtail'],
  [10525, 'larrfs'],
  [10526, 'rarrfs'],
  [10527, 'larrbfs'],
  [10528, 'rarrbfs'],
  [10531, 'nwarhk'],
  [10532, 'nearhk'],
  [10533, 'searhk'],
  [10533, 'hksearow'],
  [10534, 'swarhk'],
  [10534, 'hkswarow'],
  [10535, 'nwnear'],
  [10536, 'nesear'],
  [10536, 'toea'],
  [10537, 'seswar'],
  [10537, 'tosa'],
  [10538, 'swnwar'],
  [10547, 'rarrc'],
  [10549, 'cudarrr'],
  [10550, 'ldca'],
  [10551, 'rdca'],
  [10552, 'cudarrl'],
  [10553, 'larrpl'],
  [10556, 'curarrm'],
  [10557, 'cularrp'],
  [10565, 'rarrpl'],
  [10568, 'harrcir'],
  [10569, 'Uarrocir'],
  [10570, 'lurdshar'],
  [10571, 'ldrushar'],
  [10574, 'LeftRightVector'],
  [10575, 'RightUpDownVector'],
  [10576, 'DownLeftRightVector'],
  [10577, 'LeftUpDownVector'],
  [10578, 'LeftVectorBar'],
  [10579, 'RightVectorBar'],
  [10580, 'RightUpVectorBar'],
  [10581, 'RightDownVectorBar'],
  [10582, 'DownLeftVectorBar'],
  [10583, 'DownRightVectorBar'],
  [10584, 'LeftUpVectorBar'],
  [10585, 'LeftDownVectorBar'],
  [10586, 'LeftTeeVector'],
  [10587, 'RightTeeVector'],
  [10588, 'RightUpTeeVector'],
  [10589, 'RightDownTeeVector'],
  [10590, 'DownLeftTeeVector'],
  [10591, 'DownRightTeeVector'],
  [10592, 'LeftUpTeeVector'],
  [10593, 'LeftDownTeeVector'],
  [10594, 'lHar'],
  [10595, 'uHar'],
  [10596, 'rHar'],
  [10597, 'dHar'],
  [10598, 'luruhar'],
  [10599, 'ldrdhar'],
  [10600, 'ruluhar'],
  [10601, 'rdldhar'],
  [10602, 'lharul'],
  [10603, 'llhard'],
  [10604, 'rharul'],
  [10605, 'lrhard'],
  [10606, 'udhar'],
  [10606, 'UpEquilibrium'],
  [10607, 'duhar'],
  [10607, 'ReverseUpEquilibrium'],
  [10608, 'RoundImplies'],
  [10609, 'erarr'],
  [10610, 'simrarr'],
  [10611, 'larrsim'],
  [10612, 'rarrsim'],
  [10613, 'rarrap'],
  [10614, 'ltlarr'],
  [10616, 'gtrarr'],
  [10617, 'subrarr'],
  [10619, 'suplarr'],
  [10620, 'lfisht'],
  [10621, 'rfisht'],
  [10622, 'ufisht'],
  [10623, 'dfisht'],
  [10629, 'lopar'],
  [10630, 'ropar'],
  [10635, 'lbrke'],
  [10636, 'rbrke'],
  [10637, 'lbrkslu'],
  [10638, 'rbrksld'],
  [10639, 'lbrksld'],
  [10640, 'rbrkslu'],
  [10641, 'langd'],
  [10642, 'rangd'],
  [10643, 'lparlt'],
  [10644, 'rpargt'],
  [10645, 'gtlPar'],
  [10646, 'ltrPar'],
  [10650, 'vzigzag'],
  [10652, 'vangrt'],
  [10653, 'angrtvbd'],
  [10660, 'ange'],
  [10661, 'range'],
  [10662, 'dwangle'],
  [10663, 'uwangle'],
  [10664, 'angmsdaa'],
  [10665, 'angmsdab'],
  [10666, 'angmsdac'],
  [10667, 'angmsdad'],
  [10668, 'angmsdae'],
  [10669, 'angmsdaf'],
  [10670, 'angmsdag'],
  [10671, 'angmsdah'],
  [10672, 'bemptyv'],
  [10673, 'demptyv'],
  [10674, 'cemptyv'],
  [10675, 'raemptyv'],
  [10676, 'laemptyv'],
  [10677, 'ohbar'],
  [10678, 'omid'],
  [10679, 'opar'],
  [10681, 'operp'],
  [10683, 'olcross'],
  [10684, 'odsold'],
  [10686, 'olcir'],
  [10687, 'ofcir'],
  [10688, 'olt'],
  [10689, 'ogt'],
  [10690, 'cirscir'],
  [10691, 'cirE'],
  [10692, 'solb'],
  [10693, 'bsolb'],
  [10697, 'boxbox'],
  [10701, 'trisb'],
  [10702, 'rtriltri'],
  [10703, 'LeftTriangleBar'],
  [10704, 'RightTriangleBar'],
  [10716, 'iinfin'],
  [10717, 'infintie'],
  [10718, 'nvinfin'],
  [10723, 'eparsl'],
  [10724, 'smeparsl'],
  [10725, 'eqvparsl'],
  [10731, 'lozf'],
  [10731, 'blacklozenge'],
  [10740, 'RuleDelayed'],
  [10742, 'dsol'],
  [10752, 'xodot'],
  [10752, 'bigodot'],
  [10753, 'xoplus'],
  [10753, 'bigoplus'],
  [10754, 'xotime'],
  [10754, 'bigotimes'],
  [10756, 'xuplus'],
  [10756, 'biguplus'],
  [10758, 'xsqcup'],
  [10758, 'bigsqcup'],
  [10764, 'qint'],
  [10764, 'iiiint'],
  [10765, 'fpartint'],
  [10768, 'cirfnint'],
  [10769, 'awint'],
  [10770, 'rppolint'],
  [10771, 'scpolint'],
  [10772, 'npolint'],
  [10773, 'pointint'],
  [10774, 'quatint'],
  [10775, 'intlarhk'],
  [10786, 'pluscir'],
  [10787, 'plusacir'],
  [10788, 'simplus'],
  [10789, 'plusdu'],
  [10790, 'plussim'],
  [10791, 'plustwo'],
  [10793, 'mcomma'],
  [10794, 'minusdu'],
  [10797, 'loplus'],
  [10798, 'roplus'],
  [10799, 'Cross'],
  [10800, 'timesd'],
  [10801, 'timesbar'],
  [10803, 'smashp'],
  [10804, 'lotimes'],
  [10805, 'rotimes'],
  [10806, 'otimesas'],
  [10807, 'Otimes'],
  [10808, 'odiv'],
  [10809, 'triplus'],
  [10810, 'triminus'],
  [10811, 'tritime'],
  [10812, 'iprod'],
  [10812, 'intprod'],
  [10815, 'amalg'],
  [10816, 'capdot'],
  [10818, 'ncup'],
  [10819, 'ncap'],
  [10820, 'capand'],
  [10821, 'cupor'],
  [10822, 'cupcap'],
  [10823, 'capcup'],
  [10824, 'cupbrcap'],
  [10825, 'capbrcup'],
  [10826, 'cupcup'],
  [10827, 'capcap'],
  [10828, 'ccups'],
  [10829, 'ccaps'],
  [10832, 'ccupssm'],
  [10835, 'And'],
  [10836, 'Or'],
  [10837, 'andand'],
  [10838, 'oror'],
  [10839, 'orslope'],
  [10840, 'andslope'],
  [10842, 'andv'],
  [10843, 'orv'],
  [10844, 'andd'],
  [10845, 'ord'],
  [10847, 'wedbar'],
  [10854, 'sdote'],
  [10858, 'simdot'],
  [10861, 'congdot'],
  [10862, 'easter'],
  [10863, 'apacir'],
  [10864, 'apE'],
  [10865, 'eplus'],
  [10866, 'pluse'],
  [10867, 'Esim'],
  [10868, 'Colone'],
  [10869, 'Equal'],
  [10871, 'eDDot'],
  [10871, 'ddotseq'],
  [10872, 'equivDD'],
  [10873, 'ltcir'],
  [10874, 'gtcir'],
  [10875, 'ltquest'],
  [10876, 'gtquest'],
  [10877, 'les'],
  [10877, 'LessSlantEqual'],
  [10877, 'leqslant'],
  [10878, 'ges'],
  [10878, 'GreaterSlantEqual'],
  [10878, 'geqslant'],
  [10879, 'lesdot'],
  [10880, 'gesdot'],
  [10881, 'lesdoto'],
  [10882, 'gesdoto'],
  [10883, 'lesdotor'],
  [10884, 'gesdotol'],
  [10885, 'lap'],
  [10885, 'lessapprox'],
  [10886, 'gap'],
  [10886, 'gtrapprox'],
  [10887, 'lne'],
  [10887, 'lneq'],
  [10888, 'gne'],
  [10888, 'gneq'],
  [10889, 'lnap'],
  [10889, 'lnapprox'],
  [10890, 'gnap'],
  [10890, 'gnapprox'],
  [10891, 'lEg'],
  [10891, 'lesseqqgtr'],
  [10892, 'gEl'],
  [10892, 'gtreqqless'],
  [10893, 'lsime'],
  [10894, 'gsime'],
  [10895, 'lsimg'],
  [10896, 'gsiml'],
  [10897, 'lgE'],
  [10898, 'glE'],
  [10899, 'lesges'],
  [10900, 'gesles'],
  [10901, 'els'],
  [10901, 'eqslantless'],
  [10902, 'egs'],
  [10902, 'eqslantgtr'],
  [10903, 'elsdot'],
  [10904, 'egsdot'],
  [10905, 'el'],
  [10906, 'eg'],
  [10909, 'siml'],
  [10910, 'simg'],
  [10911, 'simlE'],
  [10912, 'simgE'],
  [10913, 'LessLess'],
  [10914, 'GreaterGreater'],
  [10916, 'glj'],
  [10917, 'gla'],
  [10918, 'ltcc'],
  [10919, 'gtcc'],
  [10920, 'lescc'],
  [10921, 'gescc'],
  [10922, 'smt'],
  [10923, 'lat'],
  [10924, 'smte'],
  [10925, 'late'],
  [10926, 'bumpE'],
  [10927, 'pre'],
  [10927, 'preceq'],
  [10927, 'PrecedesEqual'],
  [10928, 'sce'],
  [10928, 'succeq'],
  [10928, 'SucceedsEqual'],
  [10931, 'prE'],
  [10932, 'scE'],
  [10933, 'prnE'],
  [10933, 'precneqq'],
  [10934, 'scnE'],
  [10934, 'succneqq'],
  [10935, 'prap'],
  [10935, 'precapprox'],
  [10936, 'scap'],
  [10936, 'succapprox'],
  [10937, 'prnap'],
  [10937, 'precnapprox'],
  [10938, 'scnap'],
  [10938, 'succnapprox'],
  [10939, 'Pr'],
  [10940, 'Sc'],
  [10941, 'subdot'],
  [10942, 'supdot'],
  [10943, 'subplus'],
  [10944, 'supplus'],
  [10945, 'submult'],
  [10946, 'supmult'],
  [10947, 'subedot'],
  [10948, 'supedot'],
  [10949, 'subE'],
  [10949, 'subseteqq'],
  [10950, 'supE'],
  [10950, 'supseteqq'],
  [10951, 'subsim'],
  [10952, 'supsim'],
  [10955, 'subnE'],
  [10955, 'subsetneqq'],
  [10956, 'supnE'],
  [10956, 'supsetneqq'],
  [10959, 'csub'],
  [10960, 'csup'],
  [10961, 'csube'],
  [10962, 'csupe'],
  [10963, 'subsup'],
  [10964, 'supsub'],
  [10965, 'subsub'],
  [10966, 'supsup'],
  [10967, 'suphsub'],
  [10968, 'supdsub'],
  [10969, 'forkv'],
  [10970, 'topfork'],
  [10971, 'mlcp'],
  [10980, 'Dashv'],
  [10980, 'DoubleLeftTee'],
  [10982, 'Vdashl'],
  [10983, 'Barv'],
  [10984, 'vBar'],
  [10985, 'vBarv'],
  [10987, 'Vbar'],
  [10988, 'Not'],
  [10989, 'bNot'],
  [10990, 'rnmid'],
  [10991, 'cirmid'],
  [10992, 'midcir'],
  [10993, 'topcir'],
  [10994, 'nhpar'],
  [10995, 'parsim'],
  [11005, 'parsl'],
  [64256, 'fflig'],
  [64257, 'filig'],
  [64258, 'fllig'],
  [64259, 'ffilig'],
  [64260, 'ffllig'],
  [119964, 'Ascr'],
  [119966, 'Cscr'],
  [119967, 'Dscr'],
  [119970, 'Gscr'],
  [119973, 'Jscr'],
  [119974, 'Kscr'],
  [119977, 'Nscr'],
  [119978, 'Oscr'],
  [119979, 'Pscr'],
  [119980, 'Qscr'],
  [119982, 'Sscr'],
  [119983, 'Tscr'],
  [119984, 'Uscr'],
  [119985, 'Vscr'],
  [119986, 'Wscr'],
  [119987, 'Xscr'],
  [119988, 'Yscr'],
  [119989, 'Zscr'],
  [119990, 'ascr'],
  [119991, 'bscr'],
  [119992, 'cscr'],
  [119993, 'dscr'],
  [119995, 'fscr'],
  [119997, 'hscr'],
  [119998, 'iscr'],
  [119999, 'jscr'],
  [120000, 'kscr'],
  [120001, 'lscr'],
  [120002, 'mscr'],
  [120003, 'nscr'],
  [120005, 'pscr'],
  [120006, 'qscr'],
  [120007, 'rscr'],
  [120008, 'sscr'],
  [120009, 'tscr'],
  [120010, 'uscr'],
  [120011, 'vscr'],
  [120012, 'wscr'],
  [120013, 'xscr'],
  [120014, 'yscr'],
  [120015, 'zscr'],
  [120068, 'Afr'],
  [120069, 'Bfr'],
  [120071, 'Dfr'],
  [120072, 'Efr'],
  [120073, 'Ffr'],
  [120074, 'Gfr'],
  [120077, 'Jfr'],
  [120078, 'Kfr'],
  [120079, 'Lfr'],
  [120080, 'Mfr'],
  [120081, 'Nfr'],
  [120082, 'Ofr'],
  [120083, 'Pfr'],
  [120084, 'Qfr'],
  [120086, 'Sfr'],
  [120087, 'Tfr'],
  [120088, 'Ufr'],
  [120089, 'Vfr'],
  [120090, 'Wfr'],
  [120091, 'Xfr'],
  [120092, 'Yfr'],
  [120094, 'afr'],
  [120095, 'bfr'],
  [120096, 'cfr'],
  [120097, 'dfr'],
  [120098, 'efr'],
  [120099, 'ffr'],
  [120100, 'gfr'],
  [120101, 'hfr'],
  [120102, 'ifr'],
  [120103, 'jfr'],
  [120104, 'kfr'],
  [120105, 'lfr'],
  [120106, 'mfr'],
  [120107, 'nfr'],
  [120108, 'ofr'],
  [120109, 'pfr'],
  [120110, 'qfr'],
  [120111, 'rfr'],
  [120112, 'sfr'],
  [120113, 'tfr'],
  [120114, 'ufr'],
  [120115, 'vfr'],
  [120116, 'wfr'],
  [120117, 'xfr'],
  [120118, 'yfr'],
  [120119, 'zfr'],
  [120120, 'Aopf'],
  [120121, 'Bopf'],
  [120123, 'Dopf'],
  [120124, 'Eopf'],
  [120125, 'Fopf'],
  [120126, 'Gopf'],
  [120128, 'Iopf'],
  [120129, 'Jopf'],
  [120130, 'Kopf'],
  [120131, 'Lopf'],
  [120132, 'Mopf'],
  [120134, 'Oopf'],
  [120138, 'Sopf'],
  [120139, 'Topf'],
  [120140, 'Uopf'],
  [120141, 'Vopf'],
  [120142, 'Wopf'],
  [120143, 'Xopf'],
  [120144, 'Yopf'],
  [120146, 'aopf'],
  [120147, 'bopf'],
  [120148, 'copf'],
  [120149, 'dopf'],
  [120150, 'eopf'],
  [120151, 'fopf'],
  [120152, 'gopf'],
  [120153, 'hopf'],
  [120154, 'iopf'],
  [120155, 'jopf'],
  [120156, 'kopf'],
  [120157, 'lopf'],
  [120158, 'mopf'],
  [120159, 'nopf'],
  [120160, 'oopf'],
  [120161, 'popf'],
  [120162, 'qopf'],
  [120163, 'ropf'],
  [120164, 'sopf'],
  [120165, 'topf'],
  [120166, 'uopf'],
  [120167, 'vopf'],
  [120168, 'wopf'],
  [120169, 'xopf'],
  [120170, 'yopf'],
  [120171, 'zopf'],
  [60, 'nvlt'],
  [61, 'bne'],
  [62, 'nvgt'],
  [102, 'fjlig'],
  [8287, 'ThickSpace'],
  [8605, 'nrarrw'],
  [8706, 'npart'],
  [8736, 'nang'],
  [8745, 'caps'],
  [8746, 'cups'],
  [8764, 'nvsim'],
  [8765, 'race'],
  [8766, 'acE'],
  [8770, 'nesim'],
  [8770, 'NotEqualTilde'],
  [8779, 'napid'],
  [8781, 'nvap'],
  [8782, 'nbump'],
  [8782, 'NotHumpDownHump'],
  [8783, 'nbumpe'],
  [8783, 'NotHumpEqual'],
  [8784, 'nedot'],
  [8801, 'bnequiv'],
  [8804, 'nvle'],
  [8805, 'nvge'],
  [8806, 'nlE'],
  [8806, 'nleqq'],
  [8807, 'ngE'],
  [8807, 'ngeqq'],
  [8807, 'NotGreaterFullEqual'],
  [8808, 'lvertneqq'],
  [8808, 'lvnE'],
  [8809, 'gvertneqq'],
  [8809, 'gvnE'],
  [8810, 'nLtv'],
  [8810, 'NotLessLess'],
  [8810, 'nLt'],
  [8811, 'nGtv'],
  [8811, 'NotGreaterGreater'],
  [8811, 'nGt'],
  [8831, 'NotSucceedsTilde'],
  [8834, 'NotSubset'],
  [8834, 'nsubset'],
  [8834, 'vnsub'],
  [8835, 'NotSuperset'],
  [8835, 'nsupset'],
  [8835, 'vnsup'],
  [8842, 'varsubsetneq'],
  [8842, 'vsubne'],
  [8843, 'varsupsetneq'],
  [8843, 'vsupne'],
  [8847, 'NotSquareSubset'],
  [8848, 'NotSquareSuperset'],
  [8851, 'sqcaps'],
  [8852, 'sqcups'],
  [8884, 'nvltrie'],
  [8885, 'nvrtrie'],
  [8920, 'nLl'],
  [8921, 'nGg'],
  [8922, 'lesg'],
  [8923, 'gesl'],
  [8949, 'notindot'],
  [8953, 'notinE'],
  [10547, 'nrarrc'],
  [10703, 'NotLeftTriangleBar'],
  [10704, 'NotRightTriangleBar'],
  [10861, 'ncongdot'],
  [10864, 'napE'],
  [10877, 'nleqslant'],
  [10877, 'nles'],
  [10877, 'NotLessSlantEqual'],
  [10878, 'ngeqslant'],
  [10878, 'nges'],
  [10878, 'NotGreaterSlantEqual'],
  [10913, 'NotNestedLessLess'],
  [10914, 'NotNestedGreaterGreater'],
  [10924, 'smtes'],
  [10925, 'lates'],
  [10927, 'NotPrecedesEqual'],
  [10927, 'npre'],
  [10927, 'npreceq'],
  [10928, 'NotSucceedsEqual'],
  [10928, 'nsce'],
  [10928, 'nsucceq'],
  [10949, 'nsubE'],
  [10949, 'nsubseteqq'],
  [10950, 'nsupE'],
  [10950, 'nsupseteqq'],
  [10955, 'varsubsetneqq'],
  [10955, 'vsubnE'],
  [10956, 'varsupsetneqq'],
  [10956, 'vsupnE'],
  [11005, 'nparsl'],

]
ENTITY_MAP =

Contains the mapping of code point (or name) to the actual Entity object.

Hash.new do |h, k|
  if k.kind_of?(Integer)
    h[k] = Entity.new(k, nil)
  else
    raise Kramdown::Error, "Can't handle generic non-integer character reference '#{k}'"
  end
end

Class Method Summary collapse

Class Method Details

.entity(point_or_name) ⇒ Object

Return the entity for the given code point or name point_or_name.



990
991
992
# File 'lib/kramdown/utils/entities.rb', line 990

def entity(point_or_name)
  ENTITY_MAP[point_or_name]
end