Class: Langchain::LLM::Ollama
Overview
Interface to Ollama API. Available models: ollama.ai/library
Usage:
llm = Langchain::LLM::Ollama.new(url: ENV["OLLAMA_URL"], default_options: {})
Constant Summary collapse
- DEFAULTS =
{ temperature: 0.0, completion_model: "llama3.2", embedding_model: "llama3.2", chat_model: "llama3.2", options: {} }.freeze
- EMBEDDING_SIZES =
{ codellama: 4_096, "dolphin-mixtral": 4_096, llama2: 4_096, llama3: 4_096, "llama3.1": 4_096, "llama3.2": 4_096, llava: 4_096, mistral: 4_096, "mistral-openorca": 4_096, mixtral: 4_096, tinydolphin: 2_048 }.freeze
Instance Attribute Summary collapse
-
#defaults ⇒ Object
readonly
Returns the value of attribute defaults.
-
#url ⇒ Object
readonly
Returns the value of attribute url.
Instance Method Summary collapse
-
#chat(messages:, model: nil, **params, &block) ⇒ Langchain::LLM::OllamaResponse
Generate a chat completion.
-
#complete(prompt:, model: defaults[:completion_model], images: nil, format: nil, system: nil, template: nil, context: nil, raw: nil, mirostat: nil, mirostat_eta: nil, mirostat_tau: nil, num_ctx: nil, num_gqa: nil, num_gpu: nil, num_thread: nil, repeat_last_n: nil, repeat_penalty: nil, temperature: defaults[:temperature], seed: nil, stop: nil, tfs_z: nil, num_predict: nil, top_k: nil, top_p: nil, stop_sequences: nil, &block) ⇒ Langchain::LLM::OllamaResponse
Generate the completion for a given prompt.
-
#default_dimensions ⇒ Integer
Returns the # of vector dimensions for the embeddings.
-
#embed(text:, model: , mirostat: nil, mirostat_eta: nil, mirostat_tau: nil, num_ctx: nil, num_gqa: nil, num_gpu: nil, num_thread: nil, repeat_last_n: nil, repeat_penalty: nil, temperature: , seed: nil, stop: nil, tfs_z: nil, num_predict: nil, top_k: nil, top_p: nil) ⇒ Langchain::LLM::OllamaResponse
Generate an embedding for a given text.
-
#initialize(url: "http://localhost:11434", api_key: nil, default_options: {}) ⇒ Ollama
constructor
Initialize the Ollama client.
-
#summarize(text:) ⇒ String
Generate a summary for a given text.
Methods inherited from Base
#chat_parameters, #default_dimension
Methods included from DependencyHelper
Constructor Details
#initialize(url: "http://localhost:11434", api_key: nil, default_options: {}) ⇒ Ollama
Initialize the Ollama client
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# File 'lib/langchain/llm/ollama.rb', line 40 def initialize(url: "http://localhost:11434", api_key: nil, default_options: {}) depends_on "faraday" @url = url @api_key = api_key @defaults = DEFAULTS.merge() chat_parameters.update( model: {default: @defaults[:chat_model]}, temperature: {default: @defaults[:temperature]}, template: {}, stream: {default: false}, response_format: {default: @defaults[:response_format]}, options: {default: @defaults[:options]} ) chat_parameters.remap(response_format: :format) end |
Instance Attribute Details
#defaults ⇒ Object (readonly)
Returns the value of attribute defaults.
11 12 13 |
# File 'lib/langchain/llm/ollama.rb', line 11 def defaults @defaults end |
#url ⇒ Object (readonly)
Returns the value of attribute url.
11 12 13 |
# File 'lib/langchain/llm/ollama.rb', line 11 def url @url end |
Instance Method Details
#chat(messages:, model: nil, **params, &block) ⇒ Langchain::LLM::OllamaResponse
Generate a chat completion
Example:
final_resp = ollama.chat(messages:) { |resp| print resp.chat_completion }
final_resp.total_tokens
The message object has the following fields:
role: the role of the message, either system, user or assistant
content: the content of the message
images (optional): a list of images to include in the message (for multimodal models such as llava)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# File 'lib/langchain/llm/ollama.rb', line 180 def chat(messages:, model: nil, **params, &block) parameters = chat_parameters.to_params(params.merge(messages:, model:, stream: block_given?)) # rubocop:disable Performance/BlockGivenWithExplicitBlock responses_stream = [] client.post("api/chat", parameters) do |req| req..on_data = json_responses_chunk_handler do |parsed_chunk| responses_stream << parsed_chunk block&.call(OllamaResponse.new(parsed_chunk, model: parameters[:model])) end end generate_final_chat_completion_response(responses_stream, parameters[:model]) end |
#complete(prompt:, model: defaults[:completion_model], images: nil, format: nil, system: nil, template: nil, context: nil, raw: nil, mirostat: nil, mirostat_eta: nil, mirostat_tau: nil, num_ctx: nil, num_gqa: nil, num_gpu: nil, num_thread: nil, repeat_last_n: nil, repeat_penalty: nil, temperature: defaults[:temperature], seed: nil, stop: nil, tfs_z: nil, num_predict: nil, top_k: nil, top_p: nil, stop_sequences: nil, &block) ⇒ Langchain::LLM::OllamaResponse
Generate the completion for a given prompt
Example:
final_resp = ollama.complete(prompt:) { |resp| print resp.completion }
final_resp.total_tokens
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# File 'lib/langchain/llm/ollama.rb', line 81 def complete( prompt:, model: defaults[:completion_model], images: nil, format: nil, system: nil, template: nil, context: nil, raw: nil, mirostat: nil, mirostat_eta: nil, mirostat_tau: nil, num_ctx: nil, num_gqa: nil, num_gpu: nil, num_thread: nil, repeat_last_n: nil, repeat_penalty: nil, temperature: defaults[:temperature], seed: nil, stop: nil, tfs_z: nil, num_predict: nil, top_k: nil, top_p: nil, stop_sequences: nil, &block ) if stop_sequences stop = stop_sequences end parameters = { prompt: prompt, model: model, images: images, format: format, system: system, template: template, context: context, stream: block_given?, # rubocop:disable Performance/BlockGivenWithExplicitBlock raw: raw }.compact llm_parameters = { mirostat: mirostat, mirostat_eta: mirostat_eta, mirostat_tau: mirostat_tau, num_ctx: num_ctx, num_gqa: num_gqa, num_gpu: num_gpu, num_thread: num_thread, repeat_last_n: repeat_last_n, repeat_penalty: repeat_penalty, temperature: temperature, seed: seed, stop: stop, tfs_z: tfs_z, num_predict: num_predict, top_k: top_k, top_p: top_p } parameters[:options] = llm_parameters.compact responses_stream = [] client.post("api/generate", parameters) do |req| req..on_data = json_responses_chunk_handler do |parsed_chunk| responses_stream << parsed_chunk block&.call(OllamaResponse.new(parsed_chunk, model: parameters[:model])) end end generate_final_completion_response(responses_stream, parameters[:model]) end |
#default_dimensions ⇒ Integer
Returns the # of vector dimensions for the embeddings
58 59 60 61 62 63 64 |
# File 'lib/langchain/llm/ollama.rb', line 58 def default_dimensions # since Ollama can run multiple models, look it up or generate an embedding and return the size @default_dimensions ||= EMBEDDING_SIZES.fetch(defaults[:embedding_model].to_sym) do (text: "test")..size end end |
#embed(text:, model: , mirostat: nil, mirostat_eta: nil, mirostat_tau: nil, num_ctx: nil, num_gqa: nil, num_gpu: nil, num_thread: nil, repeat_last_n: nil, repeat_penalty: nil, temperature: , seed: nil, stop: nil, tfs_z: nil, num_predict: nil, top_k: nil, top_p: nil) ⇒ Langchain::LLM::OllamaResponse
Generate an embedding for a given text
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# File 'lib/langchain/llm/ollama.rb', line 203 def ( text:, model: defaults[:embedding_model], mirostat: nil, mirostat_eta: nil, mirostat_tau: nil, num_ctx: nil, num_gqa: nil, num_gpu: nil, num_thread: nil, repeat_last_n: nil, repeat_penalty: nil, temperature: defaults[:temperature], seed: nil, stop: nil, tfs_z: nil, num_predict: nil, top_k: nil, top_p: nil ) parameters = { model: model, input: Array(text) }.compact llm_parameters = { mirostat: mirostat, mirostat_eta: mirostat_eta, mirostat_tau: mirostat_tau, num_ctx: num_ctx, num_gqa: num_gqa, num_gpu: num_gpu, num_thread: num_thread, repeat_last_n: repeat_last_n, repeat_penalty: repeat_penalty, temperature: temperature, seed: seed, stop: stop, tfs_z: tfs_z, num_predict: num_predict, top_k: top_k, top_p: top_p } parameters[:options] = llm_parameters.compact response = client.post("api/embed") do |req| req.body = parameters end OllamaResponse.new(response.body, model: parameters[:model]) end |
#summarize(text:) ⇒ String
Generate a summary for a given text
260 261 262 263 264 265 266 267 |
# File 'lib/langchain/llm/ollama.rb', line 260 def summarize(text:) prompt_template = Langchain::Prompt.load_from_path( file_path: Langchain.root.join("langchain/llm/prompts/ollama/summarize_template.yaml") ) prompt = prompt_template.format(text: text) complete(prompt: prompt) end |