Class: Langchain::Vectorsearch::Milvus

Inherits:
Base
  • Object
show all
Defined in:
lib/langchain/vectorsearch/milvus.rb

Constant Summary

Constants inherited from Base

Base::DEFAULT_METRIC

Instance Attribute Summary

Attributes inherited from Base

#client, #index_name, #llm

Instance Method Summary collapse

Methods inherited from Base

#add_data, #generate_hyde_prompt, #generate_rag_prompt, #similarity_search_with_hyde, #update_texts

Methods included from DependencyHelper

#depends_on

Constructor Details

#initialize(url:, index_name:, llm:, api_key: nil) ⇒ Milvus

Wrapper around Milvus REST APIs.

Gem requirements:

gem "milvus", "~> 0.10.3"

Usage:

milvus = Langchain::Vectorsearch::Milvus.new(url:, index_name:, llm:, api_key:)


14
15
16
17
18
19
20
21
22
23
24
# File 'lib/langchain/vectorsearch/milvus.rb', line 14

def initialize(url:, index_name:, llm:, api_key: nil)
  depends_on "milvus"

  @client = ::Milvus::Client.new(
    url: url,
    logger: Langchain.logger
  )
  @index_name = index_name

  super(llm: llm)
end

Instance Method Details

#add_texts(texts:) ⇒ Object



26
27
28
29
30
31
32
33
# File 'lib/langchain/vectorsearch/milvus.rb', line 26

def add_texts(texts:)
  client.entities.insert(
    collection_name: index_name,
    data: texts.map do |text|
      {content: text, vector: llm.embed(text: text).embedding}
    end
  )
end

#ask(question:, k: 4) {|String| ... } ⇒ String

Ask a question and return the answer

Parameters:

  • question (String)

    The question to ask

  • k (Integer) (defaults to: 4)

    The number of results to have in context

Yields:

  • (String)

    Stream responses back one String at a time

Returns:

  • (String)

    The answer to the question



144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# File 'lib/langchain/vectorsearch/milvus.rb', line 144

def ask(question:, k: 4, &block)
  search_results = similarity_search(query: question, k: k)

  content_data = search_results.dig("data").map { |result| result.dig("content") }

  context = content_data.join("\n---\n")

  prompt = generate_rag_prompt(question: question, context: context)

  messages = [{role: "user", content: prompt}]
  response = llm.chat(messages: messages, &block)

  response.context = context
  response
end

#create_default_indexBoolean

Create the default index

Returns:

  • (Boolean)

    The response from the server



84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# File 'lib/langchain/vectorsearch/milvus.rb', line 84

def create_default_index
  client.indexes.create(
    collection_name: index_name,
    index_params: [
      {
        metricType: "L2",
        fieldName: "vector",
        indexName: "vector_idx",
        indexConfig: {
          index_type: "AUTOINDEX"
        }
      }
    ]
  )
end

#create_default_schemaHash

Create default schema

Returns:

  • (Hash)

    The response from the server



54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# File 'lib/langchain/vectorsearch/milvus.rb', line 54

def create_default_schema
  client.collections.create(
    auto_id: true,
    collection_name: index_name,
    fields: [
      {
        fieldName: "id",
        isPrimary: true,
        dataType: "Int64"
      }, {
        fieldName: "content",
        isPrimary: false,
        dataType: "VarChar",
        elementTypeParams: {
          max_length: "32768" # Largest allowed value
        }
      }, {
        fieldName: "vector",
        isPrimary: false,
        dataType: "FloatVector",
        elementTypeParams: {
          dim: llm.default_dimensions.to_s
        }
      }
    ]
  )
end

#destroy_default_schemaHash

Delete default schema

Returns:

  • (Hash)

    The response from the server



108
109
110
# File 'lib/langchain/vectorsearch/milvus.rb', line 108

def destroy_default_schema
  client.collections.drop(collection_name: index_name)
end

#get_default_schemaHash

Get the default schema

Returns:

  • (Hash)

    The response from the server



102
103
104
# File 'lib/langchain/vectorsearch/milvus.rb', line 102

def get_default_schema
  client.collections.describe(collection_name: index_name)
end

#load_default_schemaBoolean

Load default schema into memory

Returns:

  • (Boolean)

    The response from the server



114
115
116
# File 'lib/langchain/vectorsearch/milvus.rb', line 114

def load_default_schema
  client.collections.load(collection_name: index_name)
end

#remove_texts(ids:) ⇒ Boolean

Deletes a list of texts in the index

Parameters:

  • ids (Array<Integer>)

    The ids of texts to delete

Returns:

  • (Boolean)

    The response from the server

Raises:

  • (ArgumentError)


41
42
43
44
45
46
47
48
# File 'lib/langchain/vectorsearch/milvus.rb', line 41

def remove_texts(ids:)
  raise ArgumentError, "ids must be an array" unless ids.is_a?(Array)

  client.entities.delete(
    collection_name: index_name,
    filter: "id in #{ids}"
  )
end

#similarity_search(query:, k: 4) ⇒ Object



118
119
120
121
122
123
124
125
# File 'lib/langchain/vectorsearch/milvus.rb', line 118

def similarity_search(query:, k: 4)
  embedding = llm.embed(text: query).embedding

  similarity_search_by_vector(
    embedding: embedding,
    k: k
  )
end

#similarity_search_by_vector(embedding:, k: 4) ⇒ Object



127
128
129
130
131
132
133
134
135
136
137
# File 'lib/langchain/vectorsearch/milvus.rb', line 127

def similarity_search_by_vector(embedding:, k: 4)
  load_default_schema

  client.entities.search(
    collection_name: index_name,
    anns_field: "vector",
    data: [embedding],
    limit: k,
    output_fields: ["content", "id", "vector"]
  )
end