Class: Model
- Inherits:
-
Object
- Object
- Model
- Defined in:
- lib/svm.rb
Instance Attribute Summary collapse
-
#model ⇒ Object
Returns the value of attribute model.
Instance Method Summary collapse
- #destroy ⇒ Object
- #get_labels ⇒ Object
- #get_nr_class ⇒ Object
- #get_svr_pdf ⇒ Object
- #get_svr_probability ⇒ Object
-
#initialize(arg1, arg2 = nil) ⇒ Model
constructor
A new instance of Model.
- #predict(x) ⇒ Object
- #predict_probability(x) ⇒ Object
- #predict_values(x) ⇒ Object
- #predict_values_raw(x) ⇒ Object
- #save(filename) ⇒ Object
Constructor Details
#initialize(arg1, arg2 = nil) ⇒ Model
Returns a new instance of Model.
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/svm.rb', line 186 def initialize(arg1,arg2=nil) if arg2 == nil # create model from file filename = arg1 @model = svm_load_model(filename) else # create model from problem and parameter prob,param = arg1,arg2 @prob = prob if param.gamma == 0 param.gamma = 1.0/prob.maxlen end msg = svm_check_parameter(prob.prob,param.param) raise ::ArgumentError, msg if msg @model = svm_train(prob.prob,param.param) end #setup some classwide variables @nr_class = svm_get_nr_class(@model) @svm_type = svm_get_svm_type(@model) #create labels(classes) intarr = new_int(@nr_class) svm_get_labels(@model,intarr) @labels = _int_array_to_list(intarr, @nr_class) delete_int(intarr) #check if valid probability model @probability = svm_check_probability_model(@model) end |
Instance Attribute Details
#model ⇒ Object
Returns the value of attribute model.
184 185 186 |
# File 'lib/svm.rb', line 184 def model @model end |
Instance Method Details
#destroy ⇒ Object
317 318 319 |
# File 'lib/svm.rb', line 317 def destroy svm_destroy_model(@model) end |
#get_labels ⇒ Object
228 229 230 231 232 233 |
# File 'lib/svm.rb', line 228 def get_labels if @svm_type == NU_SVR or @svm_type == EPSILON_SVR or @svm_type == ONE_CLASS raise TypeError, "Unable to get label from a SVR/ONE_CLASS model" end return @labels end |
#get_nr_class ⇒ Object
224 225 226 |
# File 'lib/svm.rb', line 224 def get_nr_class return @nr_class end |
#get_svr_pdf ⇒ Object
307 308 309 310 311 |
# File 'lib/svm.rb', line 307 def get_svr_pdf #get_svr_probability will handle error checking sigma = get_svr_probability() return Proc.new{|z| exp(-z.abs/sigma)/(2*sigma)} # TODO: verify this works end |
#get_svr_probability ⇒ Object
298 299 300 301 302 303 304 305 |
# File 'lib/svm.rb', line 298 def get_svr_probability #leave the Error checking to svm.cpp code ret = svm_get_svr_probability(@model) if ret == 0 raise TypeError, "not a regression model or probability information not available" end return ret end |
#predict(x) ⇒ Object
216 217 218 219 220 221 |
# File 'lib/svm.rb', line 216 def predict(x) data = _convert_to_svm_node_array(x) ret = svm_predict(@model,data) svm_node_array_destroy(data) return ret end |
#predict_probability(x) ⇒ Object
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# File 'lib/svm.rb', line 272 def predict_probability(x) #c code will do nothing on wrong type, so we have to check ourself if @svm_type == NU_SVR or @svm_type == EPSILON_SVR raise TypeError, "call get_svr_probability or get_svr_pdf for probability output of regression" elsif @svm_type == ONE_CLASS raise TypeError, "probability not supported yet for one-class problem" end #only C_SVC,NU_SVC goes in if not @probability raise TypeError, "model does not support probabiliy estimates" end #convert x into svm_node, alloc a double array to receive probabilities data = _convert_to_svm_node_array(x) dblarr = new_double(@nr_class) pred = svm_predict_probability(@model, data, dblarr) pv = _double_array_to_list(dblarr, @nr_class) delete_double(dblarr) svm_node_array_destroy(data) p = {} for i in (0..@labels.size-1) p[@labels[i]] = pv[i] end return pred, p end |
#predict_values(x) ⇒ Object
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# File 'lib/svm.rb', line 247 def predict_values(x) v=predict_values_raw(x) #puts v.inspect if @svm_type == NU_SVR or @svm_type == EPSILON_SVR or @svm_type == ONE_CLASS return v[0] else #self.svm_type == C_SVC or self.svm_type == NU_SVC count = 0 # create a width x height array width = @labels.size height = @labels.size d = Array.new(width) d.map! { Array.new(height) } for i in (0..@labels.size-1) for j in (i+1..@labels.size-1) d[@labels[i]][@labels[j]] = v[count] d[@labels[j]][@labels[i]] = -v[count] count += 1 end end return d end end |
#predict_values_raw(x) ⇒ Object
235 236 237 238 239 240 241 242 243 244 245 |
# File 'lib/svm.rb', line 235 def predict_values_raw(x) #convert x into svm_node, allocate a double array for return n = (@nr_class*(@nr_class-1)/2).floor data = _convert_to_svm_node_array(x) dblarr = new_double(n) svm_predict_values(@model, data, dblarr) ret = _double_array_to_list(dblarr, n) delete_double(dblarr) svm_node_array_destroy(data) return ret end |
#save(filename) ⇒ Object
313 314 315 |
# File 'lib/svm.rb', line 313 def save(filename) svm_save_model(filename,@model) end |