Class: MiniHistogram
- Inherits:
-
Object
- Object
- MiniHistogram
- Defined in:
- lib/mini_histogram.rb,
lib/mini_histogram/plot.rb,
lib/mini_histogram/version.rb
Overview
Plots the histogram in unicode characters
Thanks to github.com/red-data-tools/unicode_plot.rb it could not be used because the dependency enumerable-statistics has a hard lock on a specific version of Ruby and this library needs to support older Rubies
Example:
require 'mini_histogram/plot'
array = 50.times.map { rand(11.2..11.6) }
histogram = MiniHistogram.new(array)
puts histogram.plot => Generates a plot
Defined Under Namespace
Classes: Error
Constant Summary collapse
- INT64_MIN =
-9223372036854775808
- INT64_MAX =
9223372036854775807
- VERSION =
"0.3.1"
Instance Attribute Summary collapse
-
#array ⇒ Object
readonly
Returns the value of attribute array.
-
#left_p ⇒ Object
readonly
Returns the value of attribute left_p.
-
#max ⇒ Object
readonly
Returns the value of attribute max.
Class Method Summary collapse
- .dual_plot {|a, b| ... } ⇒ Object
-
.set_average_edges!(*array_of_histograms) ⇒ Object
Given an array of Histograms this function calcualtes an average edge size along with the minimum and maximum edge values.
Instance Method Summary collapse
- #bin_size ⇒ Object
- #closed ⇒ Object
-
#edges ⇒ Object
(also: #edge)
Finds the “edges” of a given histogram that will mark the boundries for the histogram’s “bins”.
- #edges_max ⇒ Object
- #edges_min ⇒ Object
- #histogram(*_) ⇒ Object
-
#initialize(array, left_p: true, edges: nil) ⇒ MiniHistogram
constructor
A new instance of MiniHistogram.
- #plot(nbins: nil, closed: :left, symbol: "▇", **kw) ⇒ Object
-
#sturges ⇒ Object
Weird name, right? There are multiple ways to calculate the number of “bins” a histogram should have, one of the most common is the “sturges” method.
-
#update_values(edges:, max:) ⇒ Object
Sets the edge value to something new, also clears any previously calculated values.
-
#weights ⇒ Object
Given an array of edges and an array we want to generate a histogram from return the counts for each “bin”.
Constructor Details
#initialize(array, left_p: true, edges: nil) ⇒ MiniHistogram
Returns a new instance of MiniHistogram.
24 25 26 27 28 29 30 31 |
# File 'lib/mini_histogram.rb', line 24 def initialize(array, left_p: true, edges: nil) @array = array @left_p = left_p @edges = edges @weights = nil @min, @max = array.minmax end |
Instance Attribute Details
#array ⇒ Object (readonly)
Returns the value of attribute array.
22 23 24 |
# File 'lib/mini_histogram.rb', line 22 def array @array end |
#left_p ⇒ Object (readonly)
Returns the value of attribute left_p.
22 23 24 |
# File 'lib/mini_histogram.rb', line 22 def left_p @left_p end |
#max ⇒ Object (readonly)
Returns the value of attribute max.
22 23 24 |
# File 'lib/mini_histogram.rb', line 22 def max @max end |
Class Method Details
.dual_plot {|a, b| ... } ⇒ Object
66 67 68 69 70 71 72 73 74 75 76 77 78 |
# File 'lib/mini_histogram/plot.rb', line 66 def self.dual_plot a = PlotValue.new b = PlotValue.new yield a, b if b.[:ylabel] == a.[:ylabel] b.[:ylabel] = nil end MiniHistogram.set_average_edges!(a.histogram, b.histogram) PlotValue.dual_plot(a.plot, b.plot) end |
.set_average_edges!(*array_of_histograms) ⇒ Object
Given an array of Histograms this function calcualtes an average edge size along with the minimum and maximum edge values. It then updates the edge value on all inputs
The main pourpose of this method is to be able to chart multiple distributions against a similar axis
See for more context: github.com/schneems/derailed_benchmarks/pull/169
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# File 'lib/mini_histogram.rb', line 213 def self.set_average_edges!(*array_of_histograms) array_of_histograms.each { |x| raise "Input expected to be a histogram but is #{x.inspect}" unless x.is_a?(MiniHistogram) } steps = array_of_histograms.map(&:bin_size) avg_step_size = steps.inject(&:+).to_f / steps.length max_value = array_of_histograms.map(&:max).max max_edge = array_of_histograms.map(&:edges_max).max min_edge = array_of_histograms.map(&:edges_min).min average_edges = [min_edge] while average_edges.last < max_edge average_edges << average_edges.last + avg_step_size end array_of_histograms.each {|h| h.update_values(edges: average_edges, max: max_value) } return array_of_histograms end |
Instance Method Details
#bin_size ⇒ Object
57 58 59 60 61 |
# File 'lib/mini_histogram.rb', line 57 def bin_size return 0 if edges.length <= 1 edges[1] - edges[0] end |
#closed ⇒ Object
45 46 47 |
# File 'lib/mini_histogram.rb', line 45 def closed @left_p ? :left : :right end |
#edges ⇒ Object Also known as: edge
Finds the “edges” of a given histogram that will mark the boundries for the histogram’s “bins”
Example:
a = [1,1,1, 5, 5, 5, 5, 10, 10, 10]
MiniHistogram.new(a).edges
# => [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0]
There are multiple ways to find edges, this was taken from
https://github.com/mrkn/enumerable-statistics/issues/24
Another good set of implementations is in numpy
https://github.com/numpy/numpy/blob/d9b1e32cb8ef90d6b4a47853241db2a28146a57d/numpy/lib/histograms.py#L222
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'lib/mini_histogram.rb', line 122 def edges return @edges if @edges return @edges = [0.0] if array.empty? lo = @min hi = @max nbins = sturges.to_f if hi == lo start = lo step = 1.0 divisor = 1.0 len = 1 else bw = (hi - lo) / nbins lbw = Math.log10(bw) if lbw >= 0 step = 10 ** lbw.floor * 1.0 r = bw/step if r <= 1.1 # do nothing elsif r <= 2.2 step *= 2.0 elsif r <= 5.5 step *= 5.0 else step *= 10 end divisor = 1.0 start = step * (lo/step).floor len = ((hi - start)/step).ceil else divisor = 10 ** - lbw.floor r = bw * divisor if r <= 1.1 # do nothing elsif r <= 2.2 divisor /= 2.0 elsif r <= 5.5 divisor /= 5.0 else divisor /= 10.0 end step = 1.0 start = (lo * divisor).floor len = (hi * divisor - start).ceil end end if left_p while (lo < start/divisor) start -= step end while (start + (len - 1)*step)/divisor <= hi len += 1 end else while lo <= start/divisor start -= step end while (start + (len - 1)*step)/divisor < hi len += 1 end end @edges = [] len.times.each do @edges << start/divisor start += step end return @edges end |
#edges_max ⇒ Object
37 38 39 |
# File 'lib/mini_histogram.rb', line 37 def edges_max edges.max end |
#edges_min ⇒ Object
33 34 35 |
# File 'lib/mini_histogram.rb', line 33 def edges_min edges.min end |
#histogram(*_) ⇒ Object
41 42 43 |
# File 'lib/mini_histogram.rb', line 41 def histogram(*_) self end |
#plot(nbins: nil, closed: :left, symbol: "▇", **kw) ⇒ Object
201 202 203 |
# File 'lib/mini_histogram.rb', line 201 def plot raise "You must `require 'mini_histogram/plot'` to get this feature" end |
#sturges ⇒ Object
Weird name, right? There are multiple ways to calculate the number of “bins” a histogram should have, one of the most common is the “sturges” method
Here are some alternatives from numpy: github.com/numpy/numpy/blob/d9b1e32cb8ef90d6b4a47853241db2a28146a57d/numpy/lib/histograms.py#L489-L521
69 70 71 72 73 74 75 |
# File 'lib/mini_histogram.rb', line 69 def sturges len = array.length return 1.0 if len == 0 # return (long)(ceil(Math.log2(n)) + 1); return Math.log2(len).ceil + 1 end |
#update_values(edges:, max:) ⇒ Object
Sets the edge value to something new, also clears any previously calculated values
51 52 53 54 55 |
# File 'lib/mini_histogram.rb', line 51 def update_values(edges:, max: ) @edges = edges @max = max @weights = nil # clear memoized value end |
#weights ⇒ Object
Given an array of edges and an array we want to generate a histogram from return the counts for each “bin”
Example:
a = [1,1,1, 5, 5, 5, 5, 10, 10, 10]
edges = [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0]
MiniHistogram.new(a).weights
# => [3, 0, 4, 0, 0, 3]
This means that the `a` array has 3 values between 0.0 and 2.0
4 values between 4.0 and 6.0 and three values between 10.0 and 12.0
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# File 'lib/mini_histogram.rb', line 90 def weights return @weights if @weights return @weights = [] if array.empty? lo = edges.first step = edges[1] - edges[0] max_index = ((@max - lo) / step).floor @weights = Array.new(max_index + 1, 0) array.each do |x| index = ((x - lo) / step).floor @weights[index] += 1 end return @weights end |