Class: Minimization::Brent
- Inherits:
-
Unidimensional
- Object
- Unidimensional
- Minimization::Brent
- Defined in:
- lib/minimization.rb
Overview
Direct port of Brent algorithm found on GSL. See Unidimensional for methods.
Usage
min=Minimization::Brent.new(-1000,20000 , proc {|x| (x+1)**2}
min.expected=1.5 # Expected value
min.iterate
min.x_minimum
min.f_minimum
min.log
Constant Summary collapse
- GSL_SQRT_DBL_EPSILON =
1.4901161193847656e-08
Constants inherited from Unidimensional
Unidimensional::EPSILON, Unidimensional::MAX_ITERATIONS
Instance Attribute Summary
Attributes inherited from Unidimensional
#epsilon, #expected, #f_minimum, #iterations, #log, #log_header, #x_minimum
Instance Method Summary collapse
- #bracketing ⇒ Object
-
#brent_iterate ⇒ Object
Generate one iteration.
- #expected=(v) ⇒ Object
-
#initialize(lower, upper, proc) ⇒ Brent
constructor
A new instance of Brent.
-
#iterate ⇒ Object
Start the minimization process If you want to control manually the process, use brent_iterate.
Methods inherited from Unidimensional
Constructor Details
#initialize(lower, upper, proc) ⇒ Brent
Returns a new instance of Brent.
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# File 'lib/minimization.rb', line 217 def initialize(lower,upper, proc) super @do_bracketing=true # Init golden = 0.3819660; #golden = (3 - sqrt(5))/2 v = @lower + golden * (@upper - @lower); w = v; @x_minimum = v ; @f_minimum = f(v) ; @x_lower=@lower @x_upper=@upper @f_lower = f(@lower) ; @f_upper = f(@lower) ; @v = v; @w = w; @d = 0; @e = 0; @f_v=f(v) @f_w=@f_v end |
Instance Method Details
#bracketing ⇒ Object
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# File 'lib/minimization.rb', line 251 def bracketing eval_max=10 f_left = @f_lower; f_right = @f_upper; x_left = @x_lower; x_right= @x_upper; golden = 0.3819660; # golden = (3 - sqrt(5))/2 */ nb_eval=0 if (f_right >= f_left) x_center = (x_right - x_left) * golden + x_left; nb_eval+=1; f_center=f(x_center) else x_center = x_right ; f_center = f_right ; x_right = (x_center - x_left).quo(golden) + x_left; nb_eval+=1; f_right=f(x_right); end begin @log << ["B#{nb_eval}", x_left, x_right, f_left, f_right, (x_left-x_right).abs, (f_left-f_right).abs] if (f_center < f_left ) if (f_center < f_right) @x_lower = x_left; @x_upper = x_right; @x_minimum = x_center; @f_lower = f_left; @f_upper = f_right; @f_minimum = f_center; return true; elsif (f_center > f_right) x_left = x_center; f_left = f_center; x_center = x_right; f_center = f_right; x_right = (x_center - x_left).quo(golden) + x_left; nb_eval+=1; f_right=f(x_right); else # f_center == f_right */ x_right = x_center; f_right = f_center; x_center = (x_right - x_left).quo(golden) + x_left; nb_eval+=1; f_center=f(x_center); end else # f_center >= f_left */ x_right = x_center; f_right = f_center; x_center = (x_right - x_left) * golden + x_left; nb_eval+=1; f_center=f(x_center); end end while ((nb_eval < eval_max) and ((x_right - x_left) > GSL_SQRT_DBL_EPSILON * ( (x_right + x_left) * 0.5 ) + GSL_SQRT_DBL_EPSILON)) @x_lower = x_left; @x_upper = x_right; @x_minimum = x_center; @f_lower = f_left; @f_upper = f_right; @f_minimum = f_center; return false; end |
#brent_iterate ⇒ Object
Generate one iteration.
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
# File 'lib/minimization.rb', line 336 def brent_iterate x_left = @x_lower; x_right = @x_upper; z = @x_minimum; d = @e; e = @d; v = @v; w = @w; f_v = @f_v; f_w = @f_w; f_z = @f_minimum; golden = 0.3819660; # golden = (3 - sqrt(5))/2 */ w_lower = (z - x_left) w_upper = (x_right - z) tolerance = GSL_SQRT_DBL_EPSILON * z.abs midpoint = 0.5 * (x_left + x_right) _p,q,r=0,0,0 if (e.abs > tolerance) # fit parabola */ r = (z - w) * (f_z - f_v); q = (z - v) * (f_z - f_w); _p = (z - v) * q - (z - w) * r; q = 2 * (q - r); if (q > 0) _p = -_p else q = -q; end r = e; e = d; end if (_p.abs < (0.5 * q * r).abs and _p < q * w_lower and _p < q * w_upper) t2 = 2 * tolerance ; d = _p.quo(q); u = z + d; if ((u - x_left) < t2 or (x_right - u) < t2) d = (z < midpoint) ? tolerance : -tolerance ; end else e = (z < midpoint) ? x_right - z : -(z - x_left) ; d = golden * e; end if ( d.abs >= tolerance) u = z + d; else u = z + ((d > 0) ? tolerance : -tolerance) ; end @e = e; @d = d; f_u=f(u) if (f_u <= f_z) if (u < z) @x_upper = z; @f_upper = f_z; else @x_lower = z; @f_lower = f_z; end @v = w; @f_v = f_w; @w = z; @f_w = f_z; @x_minimum = u; @f_minimum = f_u; return true; else if (u < z) @x_lower = u; @f_lower = f_u; return true; else @x_upper = u; @f_upper = f_u; return true; end if (f_u <= f_w or w == z) @v = w; @f_v = f_w; @w = u; @f_w = f_u; return true; elsif f_u <= f_v or v == z or v == w @v = u; @f_v = f_u; return true; end end return false end |
#expected=(v) ⇒ Object
245 246 247 248 249 |
# File 'lib/minimization.rb', line 245 def expected=(v) @x_minimum=v @f_minimum=f(v) @do_bracketing=false end |
#iterate ⇒ Object
Start the minimization process If you want to control manually the process, use brent_iterate
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# File 'lib/minimization.rb', line 319 def iterate k=0 bracketing if @do_bracketing while k<@max_iteration and (@x_lower-@x_upper).abs>@epsilon k+=1 result=brent_iterate raise FailedIteration,"Error on iteration" if !result begin @log << [k, @x_lower, @x_upper, @f_lower, @f_upper, (@x_lower-@x_upper).abs, (@f_lower-@f_upper).abs] rescue =>@e @log << [k, @e.to_s,nil,nil,nil,nil,nil] end end @iterations=k return true end |