Class: MiniTest::Unit::TestCase
- Includes:
- Assertions
- Defined in:
- lib/minitest/unit.rb,
lib/minitest/benchmark.rb
Overview
Subclass TestCase to create your own tests. Typically you’ll want a TestCase subclass per implementation class.
See MiniTest::Assertions
Direct Known Subclasses
Constant Summary collapse
- PASSTHROUGH_EXCEPTIONS =
[NoMemoryError, SignalException, Interrupt, SystemExit]
- SUPPORTS_INFO_SIGNAL =
:nodoc:
Instance Attribute Summary collapse
-
#__name__ ⇒ Object
readonly
:nodoc:.
Class Method Summary collapse
-
.bench_exp(min, max, base = 10) ⇒ Object
Returns a set of ranges stepped exponentially from
min
tomax
by powers ofbase
. -
.bench_linear(min, max, step = 10) ⇒ Object
Returns a set of ranges stepped linearly from
min
tomax
bystep
. -
.bench_range ⇒ Object
Specifies the ranges used for benchmarking for that class.
-
.benchmark_methods ⇒ Object
Returns the benchmark methods (methods that start with bench_) for that class.
-
.benchmark_suites ⇒ Object
Returns all test suites that have benchmark methods.
-
.inherited(klass) ⇒ Object
:nodoc:.
-
.reset ⇒ Object
:nodoc:.
-
.test_methods ⇒ Object
:nodoc:.
-
.test_order ⇒ Object
Defines test order and is subclassable.
-
.test_suites ⇒ Object
:nodoc:.
Instance Method Summary collapse
-
#assert_performance(validation, &work) ⇒ Object
Runs the given
work
, gathering the times of each run. -
#assert_performance_constant(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered fit to match a constant rate (eg, linear slope == 0) within a given errorthreshold
. -
#assert_performance_exponential(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered fit to match a exponential curve within a given errorthreshold
. -
#assert_performance_linear(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered fit to match a straight line within a given errorthreshold
. -
#assert_performance_power(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered curve fit to match a power curve within a given errorthreshold
. -
#fit_error(xys) ⇒ Object
Takes an array of x/y pairs and calculates the general R^2 value.
-
#fit_exponential(xs, ys) ⇒ Object
To fit a functional form: y = ae^(bx).
-
#fit_linear(xs, ys) ⇒ Object
Fits the functional form: a + bx.
-
#fit_power(xs, ys) ⇒ Object
To fit a functional form: y = ax^b.
-
#initialize(name) ⇒ TestCase
constructor
:nodoc:.
- #io ⇒ Object
- #io? ⇒ Boolean
-
#passed? ⇒ Boolean
Returns true if the test passed.
-
#run(runner) ⇒ Object
Runs the tests reporting the status to
runner
. -
#setup ⇒ Object
Runs before every test.
-
#sigma(enum, &block) ⇒ Object
Enumerates over
enum
mappingblock
if given, returning the sum of the result. -
#teardown ⇒ Object
Runs after every test.
-
#validation_for_fit(msg, threshold) ⇒ Object
Returns a proc that calls the specified fit method and asserts that the error is within a tolerable threshold.
Methods included from Assertions
#_assertions, #_assertions=, #assert, #assert_block, #assert_empty, #assert_equal, #assert_in_delta, #assert_in_epsilon, #assert_includes, #assert_instance_of, #assert_kind_of, #assert_match, #assert_nil, #assert_operator, #assert_output, #assert_raises, #assert_respond_to, #assert_same, #assert_send, #assert_silent, #assert_throws, #capture_io, #exception_details, #flunk, #message, #mu_pp, #pass, #refute, #refute_empty, #refute_equal, #refute_in_delta, #refute_in_epsilon, #refute_includes, #refute_instance_of, #refute_kind_of, #refute_match, #refute_nil, #refute_operator, #refute_respond_to, #refute_same, #skip
Constructor Details
#initialize(name) ⇒ TestCase
:nodoc:
838 839 840 841 842 |
# File 'lib/minitest/unit.rb', line 838 def initialize name # :nodoc: @__name__ = name @__io__ = nil @passed = nil end |
Instance Attribute Details
#__name__ ⇒ Object (readonly)
:nodoc:
796 797 798 |
# File 'lib/minitest/unit.rb', line 796 def __name__ @__name__ end |
Class Method Details
.bench_exp(min, max, base = 10) ⇒ Object
Returns a set of ranges stepped exponentially from min
to max
by powers of base
. Eg:
bench_exp(2, 16, 2) # => [2, 4, 8, 16]
22 23 24 25 26 27 |
# File 'lib/minitest/benchmark.rb', line 22 def self.bench_exp min, max, base = 10 min = (Math.log10(min) / Math.log10(base)).to_i max = (Math.log10(max) / Math.log10(base)).to_i (min..max).map { |m| base ** m }.to_a end |
.bench_linear(min, max, step = 10) ⇒ Object
Returns a set of ranges stepped linearly from min
to max
by step
. Eg:
bench_linear(20, 40, 10) # => [20, 30, 40]
35 36 37 38 39 |
# File 'lib/minitest/benchmark.rb', line 35 def self.bench_linear min, max, step = 10 (min..max).step(step).to_a rescue LocalJumpError # 1.8.6 r = []; (min..max).step(step) { |n| r << n }; r end |
.bench_range ⇒ Object
Specifies the ranges used for benchmarking for that class. Defaults to exponential growth from 1 to 10k by powers of 10. Override if you need different ranges for your benchmarks.
See also: ::bench_exp and ::bench_linear.
63 64 65 |
# File 'lib/minitest/benchmark.rb', line 63 def self.bench_range bench_exp 1, 10_000 end |
.benchmark_methods ⇒ Object
Returns the benchmark methods (methods that start with bench_) for that class.
45 46 47 |
# File 'lib/minitest/benchmark.rb', line 45 def self.benchmark_methods # :nodoc: public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort end |
.benchmark_suites ⇒ Object
Returns all test suites that have benchmark methods.
52 53 54 |
# File 'lib/minitest/benchmark.rb', line 52 def self.benchmark_suites TestCase.test_suites.reject { |s| s.benchmark_methods.empty? } end |
.inherited(klass) ⇒ Object
:nodoc:
859 860 861 |
# File 'lib/minitest/unit.rb', line 859 def self.inherited klass # :nodoc: @@test_suites[klass] = true end |
.reset ⇒ Object
:nodoc:
853 854 855 |
# File 'lib/minitest/unit.rb', line 853 def self.reset # :nodoc: @@test_suites = {} end |
.test_methods ⇒ Object
:nodoc:
876 877 878 879 880 881 882 883 884 885 886 887 888 |
# File 'lib/minitest/unit.rb', line 876 def self.test_methods # :nodoc: methods = public_instance_methods(true).grep(/^test/).map { |m| m.to_s } case self.test_order when :random then max = methods.size methods.sort.sort_by { rand max } when :alpha, :sorted then methods.sort else raise "Unknown test_order: #{self.test_order.inspect}" end end |
.test_order ⇒ Object
Defines test order and is subclassable. Defaults to :random but can be overridden to return :alpha if your tests are order dependent (read: weak).
868 869 870 |
# File 'lib/minitest/unit.rb', line 868 def self.test_order :random end |
.test_suites ⇒ Object
:nodoc:
872 873 874 |
# File 'lib/minitest/unit.rb', line 872 def self.test_suites # :nodoc: @@test_suites.keys.sort_by { |ts| ts.name.to_s } end |
Instance Method Details
#assert_performance(validation, &work) ⇒ Object
Runs the given work
, gathering the times of each run. Range and times are then passed to a given validation
proc. Outputs the benchmark name and times in tab-separated format, making it easy to paste into a spreadsheet for graphing or further analysis.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
validation = proc { |x, y| ... }
assert_performance validation do |x|
@obj.algorithm
end
end
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# File 'lib/minitest/benchmark.rb', line 85 def assert_performance validation, &work range = self.class.bench_range io.print "#{__name__}" times = [] range.each do |x| GC.start t0 = Time.now instance_exec(x, &work) t = Time.now - t0 io.print "\t%9.6f" % t times << t end io.puts validation[range, times] end |
#assert_performance_constant(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered fit to match a constant rate (eg, linear slope == 0) within a given error threshold
.
Fit is calculated by #fit_constant.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_constant 0.9999 do |x|
@obj.algorithm
end
end
123 124 125 126 127 128 129 130 131 |
# File 'lib/minitest/benchmark.rb', line 123 def assert_performance_constant threshold = 0.99, &work validation = proc do |range, times| a, b, rr = fit_linear range, times assert_in_delta 0, b, 1 - threshold [a, b, rr] end assert_performance validation, &work end |
#assert_performance_exponential(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered fit to match a exponential curve within a given error threshold
.
Fit is calculated by #fit_exponential.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_exponential 0.9999 do |x|
@obj.algorithm
end
end
149 150 151 |
# File 'lib/minitest/benchmark.rb', line 149 def assert_performance_exponential threshold = 0.99, &work assert_performance validation_for_fit(:exponential, threshold), &work end |
#assert_performance_linear(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered fit to match a straight line within a given error threshold
.
Fit is calculated by #fit_linear.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_linear 0.9999 do |x|
@obj.algorithm
end
end
169 170 171 |
# File 'lib/minitest/benchmark.rb', line 169 def assert_performance_linear threshold = 0.99, &work assert_performance validation_for_fit(:linear, threshold), &work end |
#assert_performance_power(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered curve fit to match a power curve within a given error threshold
.
Fit is calculated by #fit_power.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_power 0.9999 do |x|
@obj.algorithm
end
end
189 190 191 |
# File 'lib/minitest/benchmark.rb', line 189 def assert_performance_power threshold = 0.99, &work assert_performance validation_for_fit(:power, threshold), &work end |
#fit_error(xys) ⇒ Object
Takes an array of x/y pairs and calculates the general R^2 value.
198 199 200 201 202 203 204 |
# File 'lib/minitest/benchmark.rb', line 198 def fit_error xys = sigma(xys) { |x, y| y } / xys.size.to_f ss_tot = sigma(xys) { |x, y| (y - ) ** 2 } ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 } 1 - (ss_err / ss_tot) end |
#fit_exponential(xs, ys) ⇒ Object
To fit a functional form: y = ae^(bx).
Takes x and y values and returns [a, b, r^2].
See: mathworld.wolfram.com/LeastSquaresFittingExponential.html
213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# File 'lib/minitest/benchmark.rb', line 213 def fit_exponential xs, ys n = xs.size xys = xs.zip(ys) sxlny = sigma(xys) { |x,y| x * Math.log(y) } slny = sigma(xys) { |x,y| Math.log(y) } sx2 = sigma(xys) { |x,y| x * x } sx = sigma xs c = n * sx2 - sx ** 2 a = (slny * sx2 - sx * sxlny) / c b = ( n * sxlny - sx * slny ) / c return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) } end |
#fit_linear(xs, ys) ⇒ Object
Fits the functional form: a + bx.
Takes x and y values and returns [a, b, r^2].
235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# File 'lib/minitest/benchmark.rb', line 235 def fit_linear xs, ys n = xs.size xys = xs.zip(ys) sx = sigma xs sy = sigma ys sx2 = sigma(xs) { |x| x ** 2 } sxy = sigma(xys) { |x,y| x * y } c = n * sx2 - sx**2 a = (sy * sx2 - sx * sxy) / c b = ( n * sxy - sx * sy ) / c return a, b, fit_error(xys) { |x| a + b * x } end |
#fit_power(xs, ys) ⇒ Object
To fit a functional form: y = ax^b.
Takes x and y values and returns [a, b, r^2].
257 258 259 260 261 262 263 264 265 266 267 268 269 |
# File 'lib/minitest/benchmark.rb', line 257 def fit_power xs, ys n = xs.size xys = xs.zip(ys) slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) } slnx = sigma(xs) { |x | Math.log(x) } slny = sigma(ys) { | y| Math.log(y) } slnx2 = sigma(xs) { |x | Math.log(x) ** 2 } b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2); a = (slny - b * slnx) / n return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) } end |
#io ⇒ Object
844 845 846 847 |
# File 'lib/minitest/unit.rb', line 844 def io @__io__ = true MiniTest::Unit.output end |
#io? ⇒ Boolean
849 850 851 |
# File 'lib/minitest/unit.rb', line 849 def io? @__io__ end |
#passed? ⇒ Boolean
Returns true if the test passed.
893 894 895 |
# File 'lib/minitest/unit.rb', line 893 def passed? @passed end |
#run(runner) ⇒ Object
Runs the tests reporting the status to runner
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
# File 'lib/minitest/unit.rb', line 806 def run runner trap "INFO" do time = runner.start_time ? Time.now - runner.start_time : 0 warn "%s#%s %.2fs" % [self.class, self.__name__, time] runner.status $stderr end if SUPPORTS_INFO_SIGNAL result = "" begin @passed = nil self.setup self.__send__ self.__name__ result = "." unless io? @passed = true rescue *PASSTHROUGH_EXCEPTIONS raise rescue Exception => e @passed = false result = runner.puke self.class, self.__name__, e ensure begin self.teardown rescue *PASSTHROUGH_EXCEPTIONS raise rescue Exception => e result = runner.puke self.class, self.__name__, e end trap 'INFO', 'DEFAULT' if SUPPORTS_INFO_SIGNAL end result end |
#setup ⇒ Object
Runs before every test. Use this to refactor test initialization.
900 |
# File 'lib/minitest/unit.rb', line 900 def setup; end |
#sigma(enum, &block) ⇒ Object
Enumerates over enum
mapping block
if given, returning the sum of the result. Eg:
sigma([1, 2, 3]) # => 1 + 2 + 3 => 7
sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14
278 279 280 281 |
# File 'lib/minitest/benchmark.rb', line 278 def sigma enum, &block enum = enum.map(&block) if block enum.inject { |sum, n| sum + n } end |
#teardown ⇒ Object
Runs after every test. Use this to refactor test cleanup.
905 |
# File 'lib/minitest/unit.rb', line 905 def teardown; end |
#validation_for_fit(msg, threshold) ⇒ Object
Returns a proc that calls the specified fit method and asserts that the error is within a tolerable threshold.
287 288 289 290 291 292 293 |
# File 'lib/minitest/benchmark.rb', line 287 def validation_for_fit msg, threshold proc do |range, times| a, b, rr = send "fit_#{msg}", range, times assert_operator rr, :>=, threshold [a, b, rr] end end |