Class: MiniTest::Unit::TestCase
- Extended by:
- Guard
- Includes:
- Assertions, Guard, LifecycleHooks
- Defined in:
- lib/minitest/unit.rb,
lib/minitest/benchmark.rb
Overview
Subclass TestCase to create your own tests. Typically you’ll want a TestCase subclass per implementation class.
See MiniTest::Assertions
Direct Known Subclasses
Constant Summary collapse
- PASSTHROUGH_EXCEPTIONS =
[NoMemoryError, SignalException, Interrupt, SystemExit]
Constants included from Assertions
Instance Attribute Summary collapse
-
#__name__ ⇒ Object
readonly
:nodoc:.
Class Method Summary collapse
-
.bench_exp(min, max, base = 10) ⇒ Object
Returns a set of ranges stepped exponentially from
min
tomax
by powers ofbase
. -
.bench_linear(min, max, step = 10) ⇒ Object
Returns a set of ranges stepped linearly from
min
tomax
bystep
. -
.bench_range ⇒ Object
Specifies the ranges used for benchmarking for that class.
-
.benchmark_methods ⇒ Object
Returns the benchmark methods (methods that start with bench_) for that class.
-
.benchmark_suites ⇒ Object
Returns all test suites that have benchmark methods.
-
.current ⇒ Object
:nodoc:.
-
.i_suck_and_my_tests_are_order_dependent! ⇒ Object
Call this at the top of your tests when you absolutely positively need to have ordered tests.
-
.inherited(klass) ⇒ Object
:nodoc:.
-
.make_my_diffs_pretty! ⇒ Object
Make diffs for this TestCase use #pretty_inspect so that diff in assert_equal can be more details.
-
.parallelize_me! ⇒ Object
Call this at the top of your tests when you want to run your tests in parallel.
-
.reset ⇒ Object
:nodoc:.
-
.test_methods ⇒ Object
:nodoc:.
-
.test_order ⇒ Object
:nodoc:.
-
.test_suites ⇒ Object
:nodoc:.
Instance Method Summary collapse
-
#assert_performance(validation, &work) ⇒ Object
Runs the given
work
, gathering the times of each run. -
#assert_performance_constant(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered fit to match a constant rate (eg, linear slope == 0) within a giventhreshold
. -
#assert_performance_exponential(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered fit to match a exponential curve within a given errorthreshold
. -
#assert_performance_linear(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered fit to match a straight line within a given errorthreshold
. -
#assert_performance_logarithmic(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered fit to match a logarithmic curve within a given errorthreshold
. -
#assert_performance_power(threshold = 0.99, &work) ⇒ Object
Runs the given
work
and asserts that the times gathered curve fit to match a power curve within a given errorthreshold
. -
#fit_error(xys) ⇒ Object
Takes an array of x/y pairs and calculates the general R^2 value.
-
#fit_exponential(xs, ys) ⇒ Object
To fit a functional form: y = ae^(bx).
-
#fit_linear(xs, ys) ⇒ Object
Fits the functional form: a + bx.
-
#fit_logarithmic(xs, ys) ⇒ Object
To fit a functional form: y = a + b*ln(x).
-
#fit_power(xs, ys) ⇒ Object
To fit a functional form: y = ax^b.
-
#initialize(name) ⇒ TestCase
constructor
:nodoc:.
-
#io ⇒ Object
Return the output IO object.
-
#io? ⇒ Boolean
Have we hooked up the IO yet?.
-
#passed? ⇒ Boolean
Returns true if the test passed.
-
#run(runner) ⇒ Object
Runs the tests reporting the status to
runner
. -
#setup ⇒ Object
Runs before every test.
-
#sigma(enum, &block) ⇒ Object
Enumerates over
enum
mappingblock
if given, returning the sum of the result. -
#teardown ⇒ Object
Runs after every test.
-
#validation_for_fit(msg, threshold) ⇒ Object
Returns a proc that calls the specified fit method and asserts that the error is within a tolerable threshold.
Methods included from Guard
jruby?, maglev?, mri?, rubinius?, windows?
Methods included from Assertions
#_assertions, #_assertions=, #assert, #assert_empty, #assert_equal, #assert_in_delta, #assert_in_epsilon, #assert_includes, #assert_instance_of, #assert_kind_of, #assert_match, #assert_nil, #assert_operator, #assert_output, #assert_predicate, #assert_raises, #assert_respond_to, #assert_same, #assert_send, #assert_silent, #assert_throws, #capture_io, #capture_subprocess_io, #diff, diff, diff=, #exception_details, #flunk, #message, #mu_pp, #mu_pp_for_diff, #pass, #refute, #refute_empty, #refute_equal, #refute_in_delta, #refute_in_epsilon, #refute_includes, #refute_instance_of, #refute_kind_of, #refute_match, #refute_nil, #refute_operator, #refute_predicate, #refute_respond_to, #refute_same, #skip, #skipped?, #synchronize
Methods included from LifecycleHooks
#after_setup, #after_teardown, #before_setup, #before_teardown
Constructor Details
#initialize(name) ⇒ TestCase
:nodoc:
1289 1290 1291 1292 1293 1294 |
# File 'lib/minitest/unit.rb', line 1289 def initialize name # :nodoc: @__name__ = name @__io__ = nil @passed = nil @@current = self # FIX: make thread local end |
Instance Attribute Details
#__name__ ⇒ Object (readonly)
:nodoc:
1231 1232 1233 |
# File 'lib/minitest/unit.rb', line 1231 def __name__ @__name__ end |
Class Method Details
.bench_exp(min, max, base = 10) ⇒ Object
Returns a set of ranges stepped exponentially from min
to max
by powers of base
. Eg:
bench_exp(2, 16, 2) # => [2, 4, 8, 16]
20 21 22 23 24 25 |
# File 'lib/minitest/benchmark.rb', line 20 def self.bench_exp min, max, base = 10 min = (Math.log10(min) / Math.log10(base)).to_i max = (Math.log10(max) / Math.log10(base)).to_i (min..max).map { |m| base ** m }.to_a end |
.bench_linear(min, max, step = 10) ⇒ Object
Returns a set of ranges stepped linearly from min
to max
by step
. Eg:
bench_linear(20, 40, 10) # => [20, 30, 40]
33 34 35 36 37 |
# File 'lib/minitest/benchmark.rb', line 33 def self.bench_linear min, max, step = 10 (min..max).step(step).to_a rescue LocalJumpError # 1.8.6 r = []; (min..max).step(step) { |n| r << n }; r end |
.bench_range ⇒ Object
Specifies the ranges used for benchmarking for that class. Defaults to exponential growth from 1 to 10k by powers of 10. Override if you need different ranges for your benchmarks.
See also: ::bench_exp and ::bench_linear.
61 62 63 |
# File 'lib/minitest/benchmark.rb', line 61 def self.bench_range bench_exp 1, 10_000 end |
.benchmark_methods ⇒ Object
Returns the benchmark methods (methods that start with bench_) for that class.
43 44 45 |
# File 'lib/minitest/benchmark.rb', line 43 def self.benchmark_methods # :nodoc: public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort end |
.benchmark_suites ⇒ Object
Returns all test suites that have benchmark methods.
50 51 52 |
# File 'lib/minitest/benchmark.rb', line 50 def self.benchmark_suites TestCase.test_suites.reject { |s| s.benchmark_methods.empty? } end |
.current ⇒ Object
:nodoc:
1296 1297 1298 |
# File 'lib/minitest/unit.rb', line 1296 def self.current # :nodoc: @@current # FIX: make thread local end |
.i_suck_and_my_tests_are_order_dependent! ⇒ Object
Call this at the top of your tests when you absolutely positively need to have ordered tests. In doing so, you’re admitting that you suck and your tests are weak.
1326 1327 1328 1329 1330 1331 |
# File 'lib/minitest/unit.rb', line 1326 def self.i_suck_and_my_tests_are_order_dependent! class << self undef_method :test_order if method_defined? :test_order define_method :test_order do :alpha end end end |
.inherited(klass) ⇒ Object
:nodoc:
1361 1362 1363 1364 |
# File 'lib/minitest/unit.rb', line 1361 def self.inherited klass # :nodoc: @@test_suites[klass] = true super end |
.make_my_diffs_pretty! ⇒ Object
Make diffs for this TestCase use #pretty_inspect so that diff in assert_equal can be more details. NOTE: this is much slower than the regular inspect but much more usable for complex objects.
1339 1340 1341 1342 1343 1344 1345 |
# File 'lib/minitest/unit.rb', line 1339 def self.make_my_diffs_pretty! require 'pp' define_method :mu_pp do |o| o.pretty_inspect end end |
.parallelize_me! ⇒ Object
Call this at the top of your tests when you want to run your tests in parallel. In doing so, you’re admitting that you rule and your tests are awesome.
1352 1353 1354 1355 1356 1357 1358 1359 |
# File 'lib/minitest/unit.rb', line 1352 def self.parallelize_me! require "minitest/parallel_each" class << self undef_method :test_order if method_defined? :test_order define_method :test_order do :parallel end end end |
.reset ⇒ Object
:nodoc:
1315 1316 1317 |
# File 'lib/minitest/unit.rb', line 1315 def self.reset # :nodoc: @@test_suites = {} end |
.test_methods ⇒ Object
:nodoc:
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 |
# File 'lib/minitest/unit.rb', line 1374 def self.test_methods # :nodoc: methods = public_instance_methods(true).grep(/^test/).map { |m| m.to_s } case self.test_order when :parallel max = methods.size ParallelEach.new methods.sort.sort_by { rand max } when :random then max = methods.size methods.sort.sort_by { rand max } when :alpha, :sorted then methods.sort else raise "Unknown test_order: #{self.test_order.inspect}" end end |
.test_order ⇒ Object
:nodoc:
1366 1367 1368 |
# File 'lib/minitest/unit.rb', line 1366 def self.test_order # :nodoc: :random end |
.test_suites ⇒ Object
:nodoc:
1370 1371 1372 |
# File 'lib/minitest/unit.rb', line 1370 def self.test_suites # :nodoc: @@test_suites.keys.sort_by { |ts| ts.name.to_s } end |
Instance Method Details
#assert_performance(validation, &work) ⇒ Object
Runs the given work
, gathering the times of each run. Range and times are then passed to a given validation
proc. Outputs the benchmark name and times in tab-separated format, making it easy to paste into a spreadsheet for graphing or further analysis.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
validation = proc { |x, y| ... }
assert_performance validation do |n|
@obj.algorithm(n)
end
end
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# File 'lib/minitest/benchmark.rb', line 83 def assert_performance validation, &work range = self.class.bench_range io.print "#{__name__}" times = [] range.each do |x| GC.start t0 = Time.now instance_exec(x, &work) t = Time.now - t0 io.print "\t%9.6f" % t times << t end io.puts validation[range, times] end |
#assert_performance_constant(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered fit to match a constant rate (eg, linear slope == 0) within a given threshold
. Note: because we’re testing for a slope of 0, R^2 is not a good determining factor for the fit, so the threshold is applied against the slope itself. As such, you probably want to tighten it from the default.
See www.graphpad.com/curvefit/goodness_of_fit.htm for more details.
Fit is calculated by #fit_linear.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_constant 0.9999 do |n|
@obj.algorithm(n)
end
end
127 128 129 130 131 132 133 134 135 |
# File 'lib/minitest/benchmark.rb', line 127 def assert_performance_constant threshold = 0.99, &work validation = proc do |range, times| a, b, rr = fit_linear range, times assert_in_delta 0, b, 1 - threshold [a, b, rr] end assert_performance validation, &work end |
#assert_performance_exponential(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered fit to match a exponential curve within a given error threshold
.
Fit is calculated by #fit_exponential.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_exponential 0.9999 do |n|
@obj.algorithm(n)
end
end
153 154 155 |
# File 'lib/minitest/benchmark.rb', line 153 def assert_performance_exponential threshold = 0.99, &work assert_performance validation_for_fit(:exponential, threshold), &work end |
#assert_performance_linear(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered fit to match a straight line within a given error threshold
.
Fit is calculated by #fit_linear.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_linear 0.9999 do |n|
@obj.algorithm(n)
end
end
193 194 195 |
# File 'lib/minitest/benchmark.rb', line 193 def assert_performance_linear threshold = 0.99, &work assert_performance validation_for_fit(:linear, threshold), &work end |
#assert_performance_logarithmic(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered fit to match a logarithmic curve within a given error threshold
.
Fit is calculated by #fit_logarithmic.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_logarithmic 0.9999 do |n|
@obj.algorithm(n)
end
end
173 174 175 |
# File 'lib/minitest/benchmark.rb', line 173 def assert_performance_logarithmic threshold = 0.99, &work assert_performance validation_for_fit(:logarithmic, threshold), &work end |
#assert_performance_power(threshold = 0.99, &work) ⇒ Object
Runs the given work
and asserts that the times gathered curve fit to match a power curve within a given error threshold
.
Fit is calculated by #fit_power.
Ranges are specified by ::bench_range.
Eg:
def bench_algorithm
assert_performance_power 0.9999 do |x|
@obj.algorithm
end
end
213 214 215 |
# File 'lib/minitest/benchmark.rb', line 213 def assert_performance_power threshold = 0.99, &work assert_performance validation_for_fit(:power, threshold), &work end |
#fit_error(xys) ⇒ Object
Takes an array of x/y pairs and calculates the general R^2 value.
222 223 224 225 226 227 228 |
# File 'lib/minitest/benchmark.rb', line 222 def fit_error xys = sigma(xys) { |x, y| y } / xys.size.to_f ss_tot = sigma(xys) { |x, y| (y - ) ** 2 } ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 } 1 - (ss_err / ss_tot) end |
#fit_exponential(xs, ys) ⇒ Object
To fit a functional form: y = ae^(bx).
Takes x and y values and returns [a, b, r^2].
See: mathworld.wolfram.com/LeastSquaresFittingExponential.html
237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'lib/minitest/benchmark.rb', line 237 def fit_exponential xs, ys n = xs.size xys = xs.zip(ys) sxlny = sigma(xys) { |x,y| x * Math.log(y) } slny = sigma(xys) { |x,y| Math.log(y) } sx2 = sigma(xys) { |x,y| x * x } sx = sigma xs c = n * sx2 - sx ** 2 a = (slny * sx2 - sx * sxlny) / c b = ( n * sxlny - sx * slny ) / c return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) } end |
#fit_linear(xs, ys) ⇒ Object
Fits the functional form: a + bx.
Takes x and y values and returns [a, b, r^2].
282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# File 'lib/minitest/benchmark.rb', line 282 def fit_linear xs, ys n = xs.size xys = xs.zip(ys) sx = sigma xs sy = sigma ys sx2 = sigma(xs) { |x| x ** 2 } sxy = sigma(xys) { |x,y| x * y } c = n * sx2 - sx**2 a = (sy * sx2 - sx * sxy) / c b = ( n * sxy - sx * sy ) / c return a, b, fit_error(xys) { |x| a + b * x } end |
#fit_logarithmic(xs, ys) ⇒ Object
To fit a functional form: y = a + b*ln(x).
Takes x and y values and returns [a, b, r^2].
See: mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# File 'lib/minitest/benchmark.rb', line 259 def fit_logarithmic xs, ys n = xs.size xys = xs.zip(ys) slnx2 = sigma(xys) { |x,y| Math.log(x) ** 2 } slnx = sigma(xys) { |x,y| Math.log(x) } sylnx = sigma(xys) { |x,y| y * Math.log(x) } sy = sigma(xys) { |x,y| y } c = n * slnx2 - slnx ** 2 b = ( n * sylnx - sy * slnx ) / c a = (sy - b * slnx) / n return a, b, fit_error(xys) { |x| a + b * Math.log(x) } end |
#fit_power(xs, ys) ⇒ Object
To fit a functional form: y = ax^b.
Takes x and y values and returns [a, b, r^2].
304 305 306 307 308 309 310 311 312 313 314 315 316 |
# File 'lib/minitest/benchmark.rb', line 304 def fit_power xs, ys n = xs.size xys = xs.zip(ys) slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) } slnx = sigma(xs) { |x | Math.log(x) } slny = sigma(ys) { | y| Math.log(y) } slnx2 = sigma(xs) { |x | Math.log(x) ** 2 } b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2); a = (slny - b * slnx) / n return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) } end |
#io ⇒ Object
Return the output IO object
1303 1304 1305 1306 |
# File 'lib/minitest/unit.rb', line 1303 def io @__io__ = true MiniTest::Unit.output end |
#io? ⇒ Boolean
Have we hooked up the IO yet?
1311 1312 1313 |
# File 'lib/minitest/unit.rb', line 1311 def io? @__io__ end |
#passed? ⇒ Boolean
Returns true if the test passed.
1394 1395 1396 |
# File 'lib/minitest/unit.rb', line 1394 def passed? @passed end |
#run(runner) ⇒ Object
Runs the tests reporting the status to runner
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
# File 'lib/minitest/unit.rb', line 1239 def run runner trap "INFO" do runner.report.each_with_index do |msg, i| warn "\n%3d) %s" % [i + 1, msg] end warn '' time = runner.start_time ? Time.now - runner.start_time : 0 warn "Current Test: %s#%s %.2fs" % [self.class, self.__name__, time] runner.status $stderr end if runner.info_signal start_time = Time.now result = "" begin @passed = nil self.before_setup self.setup self.after_setup self.run_test self.__name__ result = "." unless io? time = Time.now - start_time runner.record self.class, self.__name__, self._assertions, time, nil @passed = true rescue *PASSTHROUGH_EXCEPTIONS raise rescue Exception => e @passed = Skip === e time = Time.now - start_time runner.record self.class, self.__name__, self._assertions, time, e result = runner.puke self.class, self.__name__, e ensure %w{ before_teardown teardown after_teardown }.each do |hook| begin self.send hook rescue *PASSTHROUGH_EXCEPTIONS raise rescue Exception => e @passed = false runner.record self.class, self.__name__, self._assertions, time, e result = runner.puke self.class, self.__name__, e end end trap 'INFO', 'DEFAULT' if runner.info_signal end result end |
#setup ⇒ Object
Runs before every test. Use this to set up before each test run.
1402 |
# File 'lib/minitest/unit.rb', line 1402 def setup; end |
#sigma(enum, &block) ⇒ Object
Enumerates over enum
mapping block
if given, returning the sum of the result. Eg:
sigma([1, 2, 3]) # => 1 + 2 + 3 => 7
sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14
325 326 327 328 |
# File 'lib/minitest/benchmark.rb', line 325 def sigma enum, &block enum = enum.map(&block) if block enum.inject { |sum, n| sum + n } end |
#teardown ⇒ Object
Runs after every test. Use this to clean up after each test run.
1408 |
# File 'lib/minitest/unit.rb', line 1408 def teardown; end |
#validation_for_fit(msg, threshold) ⇒ Object
Returns a proc that calls the specified fit method and asserts that the error is within a tolerable threshold.
334 335 336 337 338 339 340 |
# File 'lib/minitest/benchmark.rb', line 334 def validation_for_fit msg, threshold proc do |range, times| a, b, rr = send "fit_#{msg}", range, times assert_operator rr, :>=, threshold [a, b, rr] end end |