Class: Mittsu::Matrix4
- Inherits:
-
Object
- Object
- Mittsu::Matrix4
- Defined in:
- lib/mittsu/math/matrix4.rb
Constant Summary collapse
- DIMENSIONS =
4
Instance Attribute Summary collapse
-
#elements ⇒ Object
Returns the value of attribute elements.
Instance Method Summary collapse
- #==(other) ⇒ Object
- #apply_to_vector3_array(array, offset = 0, length = array.length) ⇒ Object
- #clone ⇒ Object
- #compose(position, quaternion, scale) ⇒ Object
- #copy(m) ⇒ Object
- #copy_position(m) ⇒ Object
- #decompose(position, quaternion, scale) ⇒ Object
- #determinant ⇒ Object
- #extract_basis(x_axis, y_axis, z_axis) ⇒ Object
- #extract_rotation(m) ⇒ Object
- #flatten_to_array_offset(array, offset) ⇒ Object
- #from_array(array) ⇒ Object
- #identity ⇒ Object
-
#initialize ⇒ Matrix4
constructor
A new instance of Matrix4.
- #inverse(m, throw_on_invertable = false) ⇒ Object
- #look_at(eye, target, up) ⇒ Object
- #make_basis(x_axis, y_axis, z_axis) ⇒ Object
- #make_frustum(left, right, bottom, top, near, far) ⇒ Object
- #make_orthographic(left, right, top, bottom, near, far) ⇒ Object
- #make_perspective(fov, aspect, near, far) ⇒ Object
- #make_rotation_axis(axis, angle) ⇒ Object
- #make_rotation_from_euler(euler) ⇒ Object
- #make_rotation_from_quaternion(q) ⇒ Object
- #make_rotation_x(theta) ⇒ Object
- #make_rotation_y(theta) ⇒ Object
- #make_rotation_z(theta) ⇒ Object
- #make_scale(x, y, z) ⇒ Object
- #make_translation(x, y, z) ⇒ Object
- #max_scale_on_axis ⇒ Object
- #multiply(m) ⇒ Object
- #multiply_matrices(a, b) ⇒ Object
- #multiply_scalar(s) ⇒ Object
- #multiply_to_array(a, b, r) ⇒ Object
- #scale(v) ⇒ Object
- #set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) ⇒ Object
- #set_position(v) ⇒ Object
- #to_a ⇒ Object
- #transpose ⇒ Object
Constructor Details
#initialize ⇒ Matrix4
Returns a new instance of Matrix4.
7 8 9 10 11 12 13 14 |
# File 'lib/mittsu/math/matrix4.rb', line 7 def initialize() @elements = [ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ] end |
Instance Attribute Details
#elements ⇒ Object
Returns the value of attribute elements.
3 4 5 |
# File 'lib/mittsu/math/matrix4.rb', line 3 def elements @elements end |
Instance Method Details
#==(other) ⇒ Object
566 567 568 |
# File 'lib/mittsu/math/matrix4.rb', line 566 def ==(other) other.elements == @elements end |
#apply_to_vector3_array(array, offset = 0, length = array.length) ⇒ Object
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# File 'lib/mittsu/math/matrix4.rb', line 275 def apply_to_vector3_array(array, offset = 0, length = array.length) v1 = Mittsu::Vector3.new i = 0 j = offset while i < length v1.x = array[j].to_f v1.y = array[j + 1].to_f v1.z = array[j + 2].to_f v1.apply_matrix4(self) array[j] = v1.x array[j + 1] = v1.y array[j + 2] = v1.z i += 3 j += 3 end array end |
#clone ⇒ Object
580 581 582 |
# File 'lib/mittsu/math/matrix4.rb', line 580 def clone Mittsu::Matrix4.new.from_array(self.elements) end |
#compose(position, quaternion, scale) ⇒ Object
474 475 476 477 478 479 |
# File 'lib/mittsu/math/matrix4.rb', line 474 def compose(position, quaternion, scale) self.make_rotation_from_quaternion(quaternion) self.scale(scale) self.set_position(position) self end |
#copy(m) ⇒ Object
35 36 37 38 |
# File 'lib/mittsu/math/matrix4.rb', line 35 def copy(m) self.from_array(m.elements) self end |
#copy_position(m) ⇒ Object
40 41 42 43 44 45 46 47 |
# File 'lib/mittsu/math/matrix4.rb', line 40 def copy_position(m) te = self.elements me = m.elements te[12] = me[12] te[13] = me[13] te[14] = me[14] self end |
#decompose(position, quaternion, scale) ⇒ Object
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
# File 'lib/mittsu/math/matrix4.rb', line 481 def decompose(position, quaternion, scale) vector = Mittsu::Vector3.new matrix = Mittsu::Matrix4.new te = self.elements sx = vector.set(te[0], te[1], te[2]).length sy = vector.set(te[4], te[5], te[6]).length sz = vector.set(te[8], te[9], te[10]).length # if determine is negative, we need to invert one scale det = self.determinant if det < 0.0 sx = -sx end position.x = te[12] position.y = te[13] position.z = te[14] # scale the rotation part matrix.elements[0...15] = self.elements # at this point matrix is incomplete so we can't use .copy inv_sx = 1.0 / sx inv_sy = 1.0 / sy inv_sz = 1.0 / sz matrix.elements[0] *= inv_sx matrix.elements[1] *= inv_sx matrix.elements[2] *= inv_sx matrix.elements[4] *= inv_sy matrix.elements[5] *= inv_sy matrix.elements[6] *= inv_sy matrix.elements[8] *= inv_sz matrix.elements[9] *= inv_sz matrix.elements[10] *= inv_sz quaternion.set_from_rotation_matrix(matrix) scale.x = sx scale.y = sy scale.z = sz self end |
#determinant ⇒ Object
293 294 295 296 297 298 299 300 301 302 303 304 305 |
# File 'lib/mittsu/math/matrix4.rb', line 293 def determinant te = self.elements n11 = te[0]; n12 = te[4]; n13 = te[8]; n14 = te[12] n21 = te[1]; n22 = te[5]; n23 = te[9]; n24 = te[13] n31 = te[2]; n32 = te[6]; n33 = te[10]; n34 = te[14] n41 = te[3]; n42 = te[7]; n43 = te[11]; n44 = te[15] #TODO: make this more efficient #(based on http:#www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm) n41 * (n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31) end |
#extract_basis(x_axis, y_axis, z_axis) ⇒ Object
49 50 51 52 53 54 55 |
# File 'lib/mittsu/math/matrix4.rb', line 49 def extract_basis(x_axis, y_axis, z_axis) te = self.elements x_axis.set(te[0], te[1], te[2]) y_axis.set(te[4], te[5], te[6]) z_axis.set(te[8], te[9], te[10]) self end |
#extract_rotation(m) ⇒ Object
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# File 'lib/mittsu/math/matrix4.rb', line 67 def extract_rotation(m) v1 = Mittsu::Vector3.new te = self.elements me = m.elements scale_x = 1.0 / v1.set(me[0], me[1], me[2]).length scale_y = 1.0 / v1.set(me[4], me[5], me[6]).length scale_z = 1.0 / v1.set(me[8], me[9], me[10]).length te[0] = me[0] * scale_x te[1] = me[1] * scale_x te[2] = me[2] * scale_x te[4] = me[4] * scale_y te[5] = me[5] * scale_y te[6] = me[6] * scale_y te[8] = me[8] * scale_z te[9] = me[9] * scale_z te[10] = me[10] * scale_z self end |
#flatten_to_array_offset(array, offset) ⇒ Object
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# File 'lib/mittsu/math/matrix4.rb', line 318 def flatten_to_array_offset(array, offset) te = self.elements array[offset ] = te[0] array[offset + 1] = te[1] array[offset + 2] = te[2] array[offset + 3] = te[3] array[offset + 4] = te[4] array[offset + 5] = te[5] array[offset + 6] = te[6] array[offset + 7] = te[7] array[offset + 8] = te[8] array[offset + 9] = te[9] array[offset + 10] = te[10] array[offset + 11] = te[11] array[offset + 12] = te[12] array[offset + 13] = te[13] array[offset + 14] = te[14] array[offset + 15] = te[15] array end |
#from_array(array) ⇒ Object
561 562 563 564 |
# File 'lib/mittsu/math/matrix4.rb', line 561 def from_array(array) self.elements[0..array.length] = array self end |
#identity ⇒ Object
25 26 27 28 29 30 31 32 33 |
# File 'lib/mittsu/math/matrix4.rb', line 25 def identity self.set( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#inverse(m, throw_on_invertable = false) ⇒ Object
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# File 'lib/mittsu/math/matrix4.rb', line 347 def inverse(m, throw_on_invertable = false) # based on http:#www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm te = @elements me = m.elements n11 = me[0]; n12 = me[4]; n13 = me[8]; n14 = me[12] n21 = me[1]; n22 = me[5]; n23 = me[9]; n24 = me[13] n31 = me[2]; n32 = me[6]; n33 = me[10]; n34 = me[14] n41 = me[3]; n42 = me[7]; n43 = me[11]; n44 = me[15] te[0] = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44 te[4] = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44 te[8] = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44 te[12] = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 te[1] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 te[5] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 te[9] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 te[13] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 te[2] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 te[6] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 te[10] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 te[14] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 te[3] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 te[7] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 te[11] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 te[15] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 det = n11 * te[0] + n21 * te[4] + n31 * te[8] + n41 * te[12] if det.zero? msg = "Mittsu::Matrix4#inverse: can't invert matrix, determinant is 0" if throw_on_invertable raise Error.new(msg) else # THREE.warn(msg) puts "WARNING: #{msg}" end self.identity return self end self.multiply_scalar(1.0 / det) self end |
#look_at(eye, target, up) ⇒ Object
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# File 'lib/mittsu/math/matrix4.rb', line 199 def look_at(eye, target, up) x = Mittsu::Vector3.new y = Mittsu::Vector3.new z = Mittsu::Vector3.new te = self.elements z.sub_vectors(eye, target).normalize if z.length.zero? z.z = 1.0 end x.cross_vectors(up, z).normalize if x.length.zero? z.x += 0.0001 x.cross_vectors(up, z).normalize end y.cross_vectors(z, x) te[0] = x.x; te[4] = y.x; te[8] = z.x te[1] = x.y; te[5] = y.y; te[9] = z.y te[2] = x.z; te[6] = y.z; te[10] = z.z self end |
#make_basis(x_axis, y_axis, z_axis) ⇒ Object
57 58 59 60 61 62 63 64 65 |
# File 'lib/mittsu/math/matrix4.rb', line 57 def make_basis(x_axis, y_axis, z_axis) self.set( x_axis.x, y_axis.x, z_axis.x, 0.0, x_axis.y, y_axis.y, z_axis.y, 0.0, x_axis.z, y_axis.z, z_axis.z, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_frustum(left, right, bottom, top, near, far) ⇒ Object
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
# File 'lib/mittsu/math/matrix4.rb', line 517 def make_frustum(left, right, bottom, top, near, far) left, right, bottom, top, near, far = left.to_f, right.to_f, bottom.to_f, top.to_f, near.to_f, far.to_f te = self.elements x = 2.0 * near / (right - left) y = 2.0 * near / (top - bottom) a = (right + left) / (right - left) b = (top + bottom) / (top - bottom) c = -(far + near) / (far - near) d = -2.0 * far * near / (far - near) te[0] = x; te[4] = 0.0; te[8] = a; te[12] = 0.0 te[1] = 0.0; te[5] = y; te[9] = b; te[13] = 0.0 te[2] = 0.0; te[6] = 0.0; te[10] = c; te[14] = d te[3] = 0.0; te[7] = 0.0; te[11] = -1.0; te[15] = 0.0 self end |
#make_orthographic(left, right, top, bottom, near, far) ⇒ Object
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# File 'lib/mittsu/math/matrix4.rb', line 544 def make_orthographic(left, right, top, bottom, near, far) left, right, top, bottom, near, far = left.to_f, right.to_f, top.to_f, bottom.to_f, near.to_f, far.to_f te = self.elements w = right - left h = top - bottom p = far - near x = (right + left) / w y = (top + bottom) / h z = (far + near) / p te[0] = 2.0 / w; te[4] = 0.0; te[8] = 0.0; te[12] = -x te[1] = 0.0; te[5] = 2.0 / h; te[9] = 0.0; te[13] = -y te[2] = 0.0; te[6] = 0.0; te[10] = -2.0 / p; te[14] = -z te[3] = 0.0; te[7] = 0.0; te[11] = 0.0; te[15] = 1.0 self end |
#make_perspective(fov, aspect, near, far) ⇒ Object
534 535 536 537 538 539 540 541 542 |
# File 'lib/mittsu/math/matrix4.rb', line 534 def make_perspective(fov, aspect, near, far) fov, aspect, near, far = fov.to_f, aspect.to_f, near.to_f, far.to_f ymax = near * ::Math.tan(Math.deg_to_rad(fov * 0.5)) ymin = -ymax xmin = ymin * aspect xmax = ymax * aspect self.make_frustum(xmin, xmax, ymin, ymax, near, far) end |
#make_rotation_axis(axis, angle) ⇒ Object
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# File 'lib/mittsu/math/matrix4.rb', line 448 def make_rotation_axis(axis, angle) # Based on http:#www.gamedev.net/reference/articles/article1199.asp c = ::Math.cos(angle) s = ::Math.sin(angle) t = 1.0 - c x, y, z = axis.x, axis.y, axis.z tx, ty = t * x, t * y self.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0.0, tx * y + s * z, ty * y + c, ty * z - s * x, 0.0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_rotation_from_euler(euler) ⇒ Object
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# File 'lib/mittsu/math/matrix4.rb', line 86 def make_rotation_from_euler(euler) te = self.elements x, y, z = euler.x, euler.y, euler.z a, b = ::Math.cos(x), ::Math.sin(x) c, d = ::Math.cos(y), ::Math.sin(y) e, f = ::Math.cos(z), ::Math.sin(z) if euler.order == 'XYZ' ae = a * e; af = a * f; be = b * e; bf = b * f te[0] = c * e te[4] = - c * f te[8] = d te[1] = af + be * d te[5] = ae - bf * d te[9] = - b * c te[2] = bf - ae * d te[6] = be + af * d te[10] = a * c elsif euler.order == 'YXZ' ce = c * e; cf = c * f; de = d * e; df = d * f te[0] = ce + df * b te[4] = de * b - cf te[8] = a * d te[1] = a * f te[5] = a * e te[9] = - b te[2] = cf * b - de te[6] = df + ce * b te[10] = a * c elsif euler.order == 'ZXY' ce = c * e; cf = c * f; de = d * e; df = d * f te[0] = ce - df * b te[4] = - a * f te[8] = de + cf * b te[1] = cf + de * b te[5] = a * e te[9] = df - ce * b te[2] = - a * d te[6] = b te[10] = a * c elsif euler.order == 'ZYX' ae = a * e; af = a * f; be = b * e; bf = b * f te[0] = c * e te[4] = be * d - af te[8] = ae * d + bf te[1] = c * f te[5] = bf * d + ae te[9] = af * d - be te[2] = - d te[6] = b * c te[10] = a * c elsif euler.order == 'YZX' ac = a * c; ad = a * d; bc = b * c; bd = b * d te[0] = c * e te[4] = bd - ac * f te[8] = bc * f + ad te[1] = f te[5] = a * e te[9] = - b * e te[2] = - d * e te[6] = ad * f + bc te[10] = ac - bd * f elsif euler.order == 'XZY' ac = a * c; ad = a * d; bc = b * c; bd = b * d te[0] = c * e te[4] = - f te[8] = d * e te[1] = ac * f + bd te[5] = a * e te[9] = ad * f - bc te[2] = bc * f - ad te[6] = b * e te[10] = bd * f + ac end # last column te[3] = 0.0 te[7] = 0.0 te[11] = 0.0 # bottom row te[12] = 0.0 te[13] = 0.0 te[14] = 0.0 te[15] = 1.0 self end |
#make_rotation_from_quaternion(q) ⇒ Object
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# File 'lib/mittsu/math/matrix4.rb', line 171 def make_rotation_from_quaternion(q) te = self.elements x, y, z, w = q.x, q.y, q.z, q.w x2, y2, z2 = x + x, y + y, z + z xx, xy, xz = x * x2, x * y2, x * z2 yy, yz, zz = y * y2, y * z2, z * z2 wx, wy, wz = w * x2, w * y2, w * z2 te[0] = 1.0 - (yy + zz) te[4] = xy - wz te[8] = xz + wy te[1] = xy + wz te[5] = 1.0 - (xx + zz) te[9] = yz - wx te[2] = xz - wy te[6] = yz + wx te[10] = 1.0 - (xx + yy) # last column te[3] = 0.0 te[7] = 0.0 te[11] = 0.0 # bottom row te[12] = 0.0 te[13] = 0.0 te[14] = 0.0 te[15] = 1.0 self end |
#make_rotation_x(theta) ⇒ Object
415 416 417 418 419 420 421 422 423 424 |
# File 'lib/mittsu/math/matrix4.rb', line 415 def make_rotation_x(theta) c, s = ::Math.cos(theta), ::Math.sin(theta) self.set( 1.0, 0.0, 0.0, 0.0, 0.0, c, -s, 0.0, 0.0, s, c, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_rotation_y(theta) ⇒ Object
426 427 428 429 430 431 432 433 434 435 |
# File 'lib/mittsu/math/matrix4.rb', line 426 def make_rotation_y(theta) c, s = ::Math.cos(theta), ::Math.sin(theta) self.set( c, 0.0, s, 0.0, 0.0, 1.0, 0.0, 0.0, -s, 0.0, c, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_rotation_z(theta) ⇒ Object
437 438 439 440 441 442 443 444 445 446 |
# File 'lib/mittsu/math/matrix4.rb', line 437 def make_rotation_z(theta) c, s = ::Math.cos(theta), ::Math.sin(theta) self.set( c, -s, 0.0, 0.0, s, c, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_scale(x, y, z) ⇒ Object
464 465 466 467 468 469 470 471 472 |
# File 'lib/mittsu/math/matrix4.rb', line 464 def make_scale(x, y, z) self.set( x.to_f, 0.0, 0.0, 0.0, 0.0, y.to_f, 0.0, 0.0, 0.0, 0.0, z.to_f, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_translation(x, y, z) ⇒ Object
405 406 407 408 409 410 411 412 413 |
# File 'lib/mittsu/math/matrix4.rb', line 405 def make_translation(x, y, z) self.set( 1.0, 0.0, 0.0, x.to_f, 0.0, 1.0, 0.0, y.to_f, 0.0, 0.0, 1.0, z.to_f, 0.0, 0.0, 0.0, 1.0 ) self end |
#max_scale_on_axis ⇒ Object
397 398 399 400 401 402 403 |
# File 'lib/mittsu/math/matrix4.rb', line 397 def max_scale_on_axis te = self.elements scale_x_sq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2] scale_y_sq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6] scale_z_sq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10] ::Math.sqrt([scale_x_sq, scale_y_sq, scale_z_sq].max) end |
#multiply(m) ⇒ Object
220 221 222 |
# File 'lib/mittsu/math/matrix4.rb', line 220 def multiply(m) self.multiply_matrices(self, m) end |
#multiply_matrices(a, b) ⇒ Object
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# File 'lib/mittsu/math/matrix4.rb', line 224 def multiply_matrices(a, b) ae = a.elements be = b.elements te = self.elements a11 = ae[0]; a12 = ae[4]; a13 = ae[8]; a14 = ae[12] a21 = ae[1]; a22 = ae[5]; a23 = ae[9]; a24 = ae[13] a31 = ae[2]; a32 = ae[6]; a33 = ae[10]; a34 = ae[14] a41 = ae[3]; a42 = ae[7]; a43 = ae[11]; a44 = ae[15] b11 = be[0]; b12 = be[4]; b13 = be[8]; b14 = be[12] b21 = be[1]; b22 = be[5]; b23 = be[9]; b24 = be[13] b31 = be[2]; b32 = be[6]; b33 = be[10]; b34 = be[14] b41 = be[3]; b42 = be[7]; b43 = be[11]; b44 = be[15] te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41 te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42 te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43 te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44 te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41 te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42 te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43 te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44 te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41 te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42 te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43 te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44 te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41 te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42 te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43 te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44 self end |
#multiply_scalar(s) ⇒ Object
265 266 267 268 269 270 271 272 273 |
# File 'lib/mittsu/math/matrix4.rb', line 265 def multiply_scalar(s) te = self.elements s = s.to_f te[0] *= s; te[4] *= s; te[8] *= s; te[12] *= s te[1] *= s; te[5] *= s; te[9] *= s; te[13] *= s te[2] *= s; te[6] *= s; te[10] *= s; te[14] *= s te[3] *= s; te[7] *= s; te[11] *= s; te[15] *= s self end |
#multiply_to_array(a, b, r) ⇒ Object
255 256 257 258 259 260 261 262 263 |
# File 'lib/mittsu/math/matrix4.rb', line 255 def multiply_to_array(a, b, r) te = self.elements self.multiply_matrices(a, b) r[0] = te[0]; r[1] = te[1]; r[2] = te[2]; r[3] = te[3] r[4] = te[4]; r[5] = te[5]; r[6] = te[6]; r[7] = te[7] r[8] = te[8]; r[9] = te[9]; r[10] = te[10]; r[11] = te[11] r[12] = te[12]; r[13] = te[13]; r[14] = te[14]; r[15] = te[15] self end |
#scale(v) ⇒ Object
387 388 389 390 391 392 393 394 395 |
# File 'lib/mittsu/math/matrix4.rb', line 387 def scale(v) te = self.elements x = v.x; y = v.y; z = v.z te[0] *= x; te[4] *= y; te[8] *= z te[1] *= x; te[5] *= y; te[9] *= z te[2] *= x; te[6] *= y; te[10] *= z te[3] *= x; te[7] *= y; te[11] *= z self end |
#set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) ⇒ Object
16 17 18 19 20 21 22 23 |
# File 'lib/mittsu/math/matrix4.rb', line 16 def set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) te = self.elements te[0] = n11.to_f; te[4] = n12.to_f; te[8] = n13.to_f; te[12] = n14.to_f te[1] = n21.to_f; te[5] = n22.to_f; te[9] = n23.to_f; te[13] = n24.to_f te[2] = n31.to_f; te[6] = n32.to_f; te[10] = n33.to_f; te[14] = n34.to_f te[3] = n41.to_f; te[7] = n42.to_f; te[11] = n43.to_f; te[15] = n44.to_f self end |
#set_position(v) ⇒ Object
339 340 341 342 343 344 345 |
# File 'lib/mittsu/math/matrix4.rb', line 339 def set_position(v) te = self.elements te[12] = v.x te[13] = v.y te[14] = v.z self end |
#to_a ⇒ Object
570 571 572 573 574 575 576 577 578 |
# File 'lib/mittsu/math/matrix4.rb', line 570 def to_a te = self.elements [ te[0], te[1], te[2], te[3], te[4], te[5], te[6], te[7], te[8], te[9], te[10], te[11], te[12], te[13], te[14], te[15] ] end |
#transpose ⇒ Object
307 308 309 310 311 312 313 314 315 316 |
# File 'lib/mittsu/math/matrix4.rb', line 307 def transpose te = self.elements tmp = te[1]; te[1] = te[4]; te[4] = tmp tmp = te[2]; te[2] = te[8]; te[8] = tmp tmp = te[6]; te[6] = te[9]; te[9] = tmp tmp = te[3]; te[3] = te[12]; te[12] = tmp tmp = te[7]; te[7] = te[13]; te[13] = tmp tmp = te[11]; te[11] = te[14]; te[14] = tmp self end |