Module: MS::Weka
- Defined in:
- lib/ms/rt/weka.rb
Class Method Summary collapse
-
.make_int_arff(sourcefile, training) ⇒ Object
James Dalg.
-
.make_rt_arff(sourcefile, training) ⇒ Object
James Dalg.
- .predict_ints(db) ⇒ Object
- .predict_rts(db) ⇒ Object
Class Method Details
.make_int_arff(sourcefile, training) ⇒ Object
James Dalg
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/ms/rt/weka.rb', line 115 def make_int_arff(sourcefile, training) sourcefile<<".arff" File.open(sourcefile, "wb") do |f| # need to cite f.puts (not %Q)? if so http://www.devdaily.com/blog/post/ruby/how-write-text-to-file-ruby-example f.puts %Q{% % @RELATION molecularinfo @ATTRIBUTE mz NUMERIC @ATTRIBUTE charge NUMERIC @ATTRIBUTE mass NUMERIC @ATTRIBUTE rt NUMERIC @ATTRIBUTE A NUMERIC @ATTRIBUTE R NUMERIC @ATTRIBUTE N NUMERIC @ATTRIBUTE D NUMERIC @ATTRIBUTE B NUMERIC @ATTRIBUTE C NUMERIC @ATTRIBUTE E NUMERIC @ATTRIBUTE Q NUMERIC @ATTRIBUTE Z NUMERIC @ATTRIBUTE G NUMERIC @ATTRIBUTE H NUMERIC @ATTRIBUTE I NUMERIC @ATTRIBUTE L NUMERIC @ATTRIBUTE K NUMERIC @ATTRIBUTE M NUMERIC @ATTRIBUTE F NUMERIC @ATTRIBUTE P NUMERIC @ATTRIBUTE S NUMERIC @ATTRIBUTE T NUMERIC @ATTRIBUTE W NUMERIC @ATTRIBUTE Y NUMERIC @ATTRIBUTE V NUMERIC @ATTRIBUTE intensity NUMERIC @DATA % % } end training.each do |innerarray| CSV.open(sourcefile, "a") do |csv| #derived from sample code http://www.ruby-doc.org/stdlib-1.9.3/libdoc/csv/rdoc/CSV.html csv << innerarray #idea may be slightly attributable to http://www.ruby-forum.com/topic/299571 end end return sourcefile end |
.make_rt_arff(sourcefile, training) ⇒ Object
James Dalg
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# File 'lib/ms/rt/weka.rb', line 71 def make_rt_arff(sourcefile, training) sourcefile<<".arff" File.open(sourcefile, "wb") do |f| # need to cite f.puts (not %Q)? if so http://www.devdaily.com/blog/post/ruby/how-write-text-to-file-ruby-example f.puts %Q{% % @RELATION molecularinfo @ATTRIBUTE A NUMERIC @ATTRIBUTE R NUMERIC @ATTRIBUTE N NUMERIC @ATTRIBUTE D NUMERIC @ATTRIBUTE B NUMERIC @ATTRIBUTE C NUMERIC @ATTRIBUTE E NUMERIC @ATTRIBUTE Q NUMERIC @ATTRIBUTE Z NUMERIC @ATTRIBUTE G NUMERIC @ATTRIBUTE H NUMERIC @ATTRIBUTE I NUMERIC @ATTRIBUTE L NUMERIC @ATTRIBUTE K NUMERIC @ATTRIBUTE M NUMERIC @ATTRIBUTE F NUMERIC @ATTRIBUTE P NUMERIC @ATTRIBUTE S NUMERIC @ATTRIBUTE T NUMERIC @ATTRIBUTE W NUMERIC @ATTRIBUTE Y NUMERIC @ATTRIBUTE V NUMERIC @ATTRIBUTE J NUMERIC @ATTRIBUTE rt NUMERIC @DATA % % } end training.each do |innerarray| CSV.open(sourcefile, "a") do |csv| #derived from sample code http://www.ruby-doc.org/stdlib-1.9.3/libdoc/csv/rdoc/CSV.html csv << innerarray #idea may be slightly attributable to http://www.ruby-forum.com/topic/299571 end end return sourcefile end |
.predict_ints(db) ⇒ Object
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# File 'lib/ms/rt/weka.rb', line 40 def predict_ints(db) data = [] aas = "A,R,N,D,B,C,E,Q,Z,G,H,I,L,K,M,F,P,S,T,W,Y,V,J,place_holder" rs = db.execute "SELECT mono_mz, charge, mass, p_rt,#{aas} FROM peptides NATURAL JOIN aac" #JOIN aac rs.each do |row| data<<row end arff = make_int_arff(Time.now.nsec.to_s,data) path = Gem.bin_path('mspire-simulator', 'mspire-simulator').split(/\//) dir = path[0..path.size-3].join("/") system("java weka.classifiers.trees.M5P -T #{arff} -l #{dir}/lib/weka/M5P.model -p 27 > #{arff}.out") system("rm #{arff}") #extract what was predicted by weka model file = File.open("#{arff}.out","r") count = 0 while line = file.gets if line =~ /(\d*\.\d{0,3}){1}/ p_int = line.match(/(\d*\.\d{0,3}){1}/)[0].to_f db.execute "UPDATE peptides SET p_int=#{p_int} WHERE Id='#{count}'" count += 1 end end system("rm #{arff}.out") end |
.predict_rts(db) ⇒ Object
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# File 'lib/ms/rt/weka.rb', line 8 def predict_rts(db) #mz,charge,intensity,rt,A,R,N,D,B,C,E,Q,Z,G,H,I,L,K,M,F,P,S,T,W,Y,V,J,mass,hydro,pi #make arrf file to feed weka model data = [] rs = db.execute "SELECT * FROM aac" rs.each do |row| row.delete_at(0) data<<row end arff = make_rt_arff(Time.now.nsec.to_s,data) path = Gem.bin_path('mspire-simulator', 'mspire-simulator').split(/\//) dir = path[0..path.size-3].join("/") system("java weka.classifiers.functions.MultilayerPerceptron -T #{arff} -l #{dir}/lib/weka/M5Rules.model -p 24 > #{arff}.out") system("rm #{arff}") #extract what was predicted by weka model file = File.open("#{arff}.out","r") count = 0 while line = file.gets if line =~ /(\d*\.\d{0,3}){1}/ p_rt = line.match(/(\d*\.\d{0,3}){1}/)[0].to_f db.execute "UPDATE peptides SET p_rt=#{p_rt} WHERE Id='#{count}'" count += 1 end end system("rm #{arff}.out") end |