Class: NekonekoGen::MLP
- Inherits:
-
Classifier
- Object
- Classifier
- NekonekoGen::MLP
- Defined in:
- lib/nekoneko_gen/mlp.rb
Overview
Multi Layer Perceptron
Constant Summary collapse
- IR =
0.4
- HR =
0.1
- NOISE_VAR =
0.3
- MARGIN =
0.2
- DEFAULT_ITERATION =
40
Instance Attribute Summary
Attributes inherited from Classifier
Instance Method Summary collapse
- #classify_method_code(lang) ⇒ Object
- #default_hidden_unit ⇒ Object
- #default_iteration ⇒ Object
- #features(i = -1)) ⇒ Object
-
#initialize(k, n, options) ⇒ MLP
constructor
A new instance of MLP.
- #noise ⇒ Object
- #parameter_code(lang = :ruby) ⇒ Object
- #rand_value ⇒ Object
- #sigmoid(a) ⇒ Object
- #update(vec, label) ⇒ Object
Constructor Details
#initialize(k, n, options) ⇒ MLP
Returns a new instance of MLP.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# File 'lib/nekoneko_gen/mlp.rb', line 16 def initialize(k, n, ) @k = k @output_units = @k == 2 ? 1 : @k @hidden_units = ([:c] || default_hidden_unit).to_i @input = [] @hidden = [] @input_bias = [] @hidden_bias = [] @hidden_units.times do |i| input = @input[i] = [] n.times do |j| input[j] = rand_value end @input_bias[i] = rand_value end @output_units.times do |i| hidden = @hidden[i] = [] @hidden_units.times do |j| hidden[j] = rand_value end @hidden_bias[i] = rand_value end end |
Instance Method Details
#classify_method_code(lang) ⇒ Object
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# File 'lib/nekoneko_gen/mlp.rb', line 145 def classify_method_code(lang) lang ||= :ruby case lang when :ruby else raise NotImplementedError end <<CODE def self.classify(svec) input_y = [] HIDDEN_UNITS.times do |i| w = INPUT_W[i] input_y[i] = sigmoid(INPUT_BIAS[i] + svec.map{|k,v| v * w[k]}.reduce(0.0, :+)) end if (K == 2) HIDDEN_BIAS[0] + input_y.zip(HIDDEN_W[0]).map{|a, b| a * b }.reduce(:+) > 0.0 ? 0 : 1 else K.times.map{|i| [HIDDEN_BIAS[i] + input_y.zip(HIDDEN_W[i]).map{|a, b| a * b }.reduce(:+), i] }.max.pop end end def self.sigmoid(a) 1.0 / (1.0 + Math.exp(-a)) end CODE end |
#default_hidden_unit ⇒ Object
13 14 15 |
# File 'lib/nekoneko_gen/mlp.rb', line 13 def default_hidden_unit @k end |
#default_iteration ⇒ Object
127 128 129 |
# File 'lib/nekoneko_gen/mlp.rb', line 127 def default_iteration DEFAULT_ITERATION end |
#features(i = -1)) ⇒ Object
115 116 117 |
# File 'lib/nekoneko_gen/mlp.rb', line 115 def features(i = -1) @input.map{|v| v.size }.reduce(:+) end |
#noise ⇒ Object
124 125 126 |
# File 'lib/nekoneko_gen/mlp.rb', line 124 def noise (Math.sqrt(-2.0 * Math.log(rand)) * Math.sin(2.0 * Math::PI * rand)) * NOISE_VAR end |
#parameter_code(lang = :ruby) ⇒ Object
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# File 'lib/nekoneko_gen/mlp.rb', line 130 def parameter_code(lang = :ruby) lang ||= :ruby case lang when :ruby else raise NotImplementedError end <<CODE HIDDEN_UNITS = #{@hidden_units} INPUT_BIAS = #{@input_bias.inspect} HIDDEN_BIAS = #{@hidden_bias.inspect} INPUT_W = JSON.load(#{@input.to_json.inspect}) HIDDEN_W = #{@hidden.inspect} CODE end |
#rand_value ⇒ Object
121 122 123 |
# File 'lib/nekoneko_gen/mlp.rb', line 121 def rand_value (rand - 0.5) end |
#sigmoid(a) ⇒ Object
118 119 120 |
# File 'lib/nekoneko_gen/mlp.rb', line 118 def sigmoid(a) 1.0 / (1.0 + Math.exp(-a)) end |
#update(vec, label) ⇒ Object
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'lib/nekoneko_gen/mlp.rb', line 39 def update(vec, label) input_y = [] hidden_y = [] output_y = [] input_y = @hidden_units.times.map do |i| w = @input[i] sigmoid(@input_bias[i] + vec.map{|k, v| w[k] * v}.reduce(:+) + noise) end hidden_y = @output_units.times.map do |i| @hidden_bias[i] + input_y.zip(@hidden[i]).map{|a, b| a * b }.reduce(:+) end output_y = @output_units.times.map do |i| sigmoid(hidden_y[i]) end loss = 0.0 dotrain = false if (@output_units == 1) if (output_y[0] > 0.5) l = 0 else l = 1 end if (label == 0) if (output_y[0] < 1.0 - MARGIN) dotrain = true end else if (output_y[0] > MARGIN) dotrain = true end end loss = (label == l) ? 0.0 : 1.0 else max_p, l = output_y.each_with_index.max if (l == label) if (max_p < 1.0 - MARGIN) dotrain = true end else loss = 1.0 dotrain = true end end if (dotrain) output_bp = @output_units.times.map do |i| y = hidden_y[i] yt = (label == i) ? 1.0 : 0.0 expy = Math.exp(y) -((2.0 * yt - 1.0) * expy + yt) / (Math.exp(2.0 * y) + 2.0 * expy + 1.0) end hidden_bp = @hidden_units.times.map do |j| y = 0.0 @output_units.times do |i| y += output_bp[i] * @hidden[i][j] end y * (1.0 - input_y[j]) * input_y[j] end @output_units.times do |j| hidden = @hidden[j] @hidden_units.times do |i| hidden[i] -= HR * input_y[i] * output_bp[j] end @hidden_bias[j] -= HR * output_bp[j] end @hidden_units.times do |i| input = @input[i] vec.each do |k, v| input[k] -= IR * v * hidden_bp[i] end @input_bias[i] -= IR * hidden_bp[i] end end loss end |