Class: NekonekoGen::TextClassifierGenerator
- Inherits:
-
Object
- Object
- NekonekoGen::TextClassifierGenerator
- Defined in:
- lib/nekoneko_gen/text_classifier_generator.rb
Instance Attribute Summary collapse
-
#quiet ⇒ Object
Returns the value of attribute quiet.
Instance Method Summary collapse
- #generate(lang = :ruby) ⇒ Object
- #generate_ruby_code ⇒ Object
-
#initialize(filename, files, options = {}) ⇒ TextClassifierGenerator
constructor
A new instance of TextClassifierGenerator.
- #train(iteration = nil) ⇒ Object
Constructor Details
#initialize(filename, files, options = {}) ⇒ TextClassifierGenerator
Returns a new instance of TextClassifierGenerator.
11 12 13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/nekoneko_gen/text_classifier_generator.rb', line 11 def initialize(filename, files, = {}) @quiet = false @options = @filename = filename @files = files @word2id = {} @id2word = {} @classifier = nil @k = files.size @name = safe_name(@filename).split("_").map(&:capitalize).join @labels = files.map {|file| "#{safe_name(file).upcase}"} @idf = {} end |
Instance Attribute Details
#quiet ⇒ Object
Returns the value of attribute quiet.
10 11 12 |
# File 'lib/nekoneko_gen/text_classifier_generator.rb', line 10 def quiet @quiet end |
Instance Method Details
#generate(lang = :ruby) ⇒ Object
99 100 101 102 103 104 105 106 107 108 |
# File 'lib/nekoneko_gen/text_classifier_generator.rb', line 99 def generate(lang = :ruby) lang ||= :ruby case lang when :ruby generate_ruby_code else raise NotImplementedError end @name end |
#generate_ruby_code ⇒ Object
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# File 'lib/nekoneko_gen/text_classifier_generator.rb', line 109 def generate_ruby_code labels = @labels.each_with_index.map{|v, i| " #{v} = #{i}"}.join("\n") File.open(@filename, "w") do |f| f.write <<MODEL # -*- coding: utf-8 -*- require 'rubygems' require 'json' require 'nkf' require 'bimyou_segmenter' class #{@name} def self.k K end def self.predict(text) classify(fv(NKF::nkf('-wZX', text).downcase)) end #{labels} LABELS = #{@labels.inspect} K = #{@classifier.k} private MATH_LOG2_INV = 1.0 / Math.log(2.0) def self.fv(text) prev = nil svec = BimyouSegmenter.segment(text, :white_space => true, :symbol => true).map do |word| if (prev) if (NGRAM_TARGET =~ word) nword = [prev + word, word] prev = word nword else prev = nil word end else if (NGRAM_TARGET =~ word) prev = word end word end end.flatten.map{|word| WORD_INDEX[word]}.compact.reduce(Hash.new(0)) {|h,k| h[k] += 1; h } unless (svec.empty?) if (svec.size >= 2) r = 1.0 / (Math.log(svec.size) * MATH_LOG2_INV) else r = 1.0 end svec.each do |k, freq| if (idf = IDF[k]) svec[k] = Math.log(freq + 1.0) * MATH_LOG2_INV * r * idf else svec[k] = 0.0 end end normalize(svec) else svec end end def self.normalize(svec) norm = Math.sqrt(svec.values.map{|v| v * v }.reduce(0.0, :+)) if (norm > 0.0) s = 1.0 / norm svec.each do |k, v| svec[k] = v * s end end svec end #{@classifier.classify_method_code(:ruby)} NGRAM_TARGET = Regexp.new('(^[ァ-ヾ]+$)|(^[a-zA-Z\\-_a-zA-Z‐_0-90-9]+$)|' + '(^[々〇ヵヶ' + [0x3400].pack('U') + '-' + [0x9FFF].pack('U') + [0xF900].pack('U') + '-' + [0xFAFF].pack('U') + [0x20000].pack('U') + '-' + [0x2FFFF].pack('U') + ']+$)') IDF = JSON.load(#{@idf.to_json.inspect}) WORD_INDEX = JSON.load(#{@word2id.to_json.inspect}) #{@classifier.parameter_code(:ruby)} end MODEL end end |
#train(iteration = nil) ⇒ Object
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# File 'lib/nekoneko_gen/text_classifier_generator.rb', line 24 def train(iteration = nil) data = [] word_count = Hash.new(0) @k.times do |i| t = Time.now data[i] = [] print "loading #{@files[i]}... " content = nil File.open(@files[i]) do |f| content = f.read end content = NKF.nkf('-wZX', content).downcase content.lines do |line| vec = fv(line.chomp) if (vec.size > 0) data[i] << normalize(vec) end end puts sprintf("%.4fs", Time.now - t) end data_min = data.map{|v| v.size}.min data.each do |cd| w = data_min / cd.size.to_f cd.each do |vec| vec.keys.each do |k| word_count[k] += w end end end document_count = data_min * data.size @idf = Array.new(0, 0) word_count.each{|k, freq| @idf[k] = Math.log(document_count / freq) * MATH_LOG2_INV + 1.0 } data.each do |cdata| cdata.each do |vec| if (vec.size >= 2) r = 1.0 / (Math.log(vec.size) * MATH_LOG2_INV) else r = 1.0 end vec.each do |k, freq| vec[k] = Math.log(freq + 1.0) * MATH_LOG2_INV * r * @idf[k] end normalize(vec) end end @classifier = ClassifierFactory.create(@k, @word2id.size, @options) iteration ||= @classifier.default_iteration iteration.times do |step| loss = 0.0 c = 0 t = Time.now print sprintf("step %3d...", step) @classifier.k.times.map do |i| sampling(data[i], data_min).map {|vec| [vec, i] } end.flatten(1).shuffle!.each do |v| loss += @classifier.update(v[0], v[1]) c += 1 end print sprintf(" %.6f, %.4fs\n", 1.0 - loss / c.to_f, Time.now - t) end if (@classifier.k > 2) @classifier.k.times do |i| puts "#{@labels[i]} : #{@classifier.features(i)} features" end else puts "#{@labels[0]}, #{@labels[1]} : #{@classifier.features(0)} features" end puts "done nyan! " end |