Module: Nem::Util::Ed25519
- Defined in:
- lib/nem/util/ed25519.rb
Defined Under Namespace
Classes: SignatureMismatch
Constant Summary
collapse
- @@b =
256
- @@q =
2**255 - 19
- @@l =
2**252 + 27742317777372353535851937790883648493
- @@d =
-121665 * self.inv(121666) % @@q
- @@I =
2.to_bn.mod_exp((@@q - 1) / 4, @@q)
- @@By =
4 * self.inv(5)
- @@Bx =
self.xrecover(@@By)
- @@B =
[@@Bx % @@q, @@By % @@q, 1, (@@Bx * @@By) % @@q]
- @@ident =
[0, 1, 1, 0]
- @@Bpow =
[]
Class Method Summary
collapse
-
.bit(h, i) ⇒ Object
-
.checkvalid(s, m, pk) ⇒ Object
Not safe to use when any argument is secret.
-
.decodeint(s) ⇒ Object
-
.decodepoint(s) ⇒ Object
-
.decrypt(sk, pk, data) ⇒ Object
-
.edwards_add(_P, _Q) ⇒ Object
-
.edwards_double(_P) ⇒ Object
-
.encodeint(y) ⇒ Object
-
.encodepoint(_P) ⇒ Object
-
.encrypt(sk, pk, data) ⇒ Object
-
.H(m) ⇒ Object
-
.HH(m) ⇒ Object
-
.Hint(m) ⇒ Object
-
.Hint_hash(m) ⇒ Object
-
.indexbytes(buf, i) ⇒ Object
-
.int2byte(i) ⇒ Object
-
.intlist2bytes(l) ⇒ Object
-
.inv(z) ⇒ Object
-
.isoncurve(_P) ⇒ Object
-
.make_Bpow ⇒ Object
-
.pow2(x, p) ⇒ Object
-
.publickey_hash_unsafe(sk) ⇒ Object
-
.publickey_unsafe(sk) ⇒ Object
-
.scalarmult(_P, e) ⇒ Object
-
.scalarmult_B(e) ⇒ Object
Implements scalarmult(B, e) more efficiently.
-
.signature_hash_unsafe(m, sk, pk) ⇒ Object
Not safe to use with secret keys or secret data.
-
.signature_unsafe(m, sk, pk) ⇒ Object
-
.xrecover(y) ⇒ Object
Class Method Details
.bit(h, i) ⇒ Object
148
149
150
|
# File 'lib/nem/util/ed25519.rb', line 148
def bit(h, i)
(indexbytes(h, i / 8) >> (i % 8)) & 1
end
|
.checkvalid(s, m, pk) ⇒ Object
Not safe to use when any argument is secret. This function should be used only for verifying public signatures of public messages.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
# File 'lib/nem/util/ed25519.rb', line 282
def checkvalid(s, m, pk)
raise 'signature length is wrong' if s.size != @@b / 4
raise 'public-key length is wrong' if pk.size != @@b / 8
_R = decodepoint(s[0...@@b / 8])
_A = decodepoint(pk)
_S = decodeint(s[@@b / 8...@@b / 4])
h = Hint(encodepoint(_R) + pk + m)
x1, y1, z1, _t1 = _P = scalarmult_B(_S)
x2, y2, z2, _t2 = _Q = edwards_add(_R, scalarmult(_A, h))
if (!isoncurve(_P) || !isoncurve(_Q) || (x1 * z2 - x2 * z1) % q != 0 || (y1 * z2 - y2 * z1) % q != 0)
raise SignatureMismatch('signature does not pass verification')
end
end
|
.decodeint(s) ⇒ Object
263
264
265
|
# File 'lib/nem/util/ed25519.rb', line 263
def decodeint(s)
(0...@@b).inject(0) { |sum, i| sum + 2**i * bit(s, i) }
end
|
.decodepoint(s) ⇒ Object
267
268
269
270
271
272
273
274
|
# File 'lib/nem/util/ed25519.rb', line 267
def decodepoint(s)
y = (0...@@b - 1).inject(0) { |sum, i| sum + 2**i * bit(s, i) }
x = xrecover(y)
x = @@q - x if x & 1 != bit(s, @@b - 1)
_P = [x, y, 1, (x * y) % @@q]
raise 'decoding point that is not on curve' unless isoncurve(_P)
_P
end
|
.decrypt(sk, pk, data) ⇒ Object
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
# File 'lib/nem/util/ed25519.rb', line 193
def decrypt(sk, pk, data)
h = HH(sk)
a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
_A = decodepoint(pk)
bin_g = encodepoint(scalarmult(_A, a))
hex_salt = data[0, 64]
hex_iv = data[64, 32]
hex_encrypted = data[96, data.size]
ua_iv = Nem::Util::Convert.hex2ua(hex_iv)
bin_iv = ua_iv.pack('C*')
ua_salt = Nem::Util::Convert.hex2ua(hex_salt)
ua_g = Nem::Util::Convert.hex2ua(bin_g.unpack('H*').first)
c = []
ua_salt.each_with_index { |el, idx| c << (el ^ ua_g[idx]) }
bin_key = Digest::SHA3.digest(c.pack('C*'), 256)
bin_encrypted = Nem::Util::Convert.hex2ua(hex_encrypted).pack('C*')
cipher = OpenSSL::Cipher.new('AES-256-CBC')
cipher.decrypt
cipher.key = bin_key
cipher.iv = bin_iv
cipher.update(bin_encrypted) + cipher.final
end
|
.edwards_add(_P, _Q) ⇒ Object
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
# File 'lib/nem/util/ed25519.rb', line 63
def edwards_add(_P, _Q)
x1, y1, z1, t1 = _P
x2, y2, z2, t2 = _Q
a = (y1 - x1) * (y2 - x2) % @@q
b = (y1 + x1) * (y2 + x2) % @@q
c = t1 * 2 * @@d * t2 % @@q
dd = z1 * 2 * z2 % @@q
e = b - a
f = dd - c
g = dd + c
h = b + a
x3 = e * f
y3 = g * h
t3 = e * h
z3 = f * g
[x3 % @@q, y3 % @@q, z3 % @@q, t3 % @@q]
end
|
.edwards_double(_P) ⇒ Object
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
# File 'lib/nem/util/ed25519.rb', line 85
def edwards_double(_P)
x1, y1, z1, _t1 = _P
a = x1 * x1 % @@q
b = y1 * y1 % @@q
c = 2 * z1 * z1 % @@q
e = ((x1 + y1) * (x1 + y1) - a - b) % @@q
g = -a + b f = g - c
h = -a - b x3 = e * f
y3 = g * h
t3 = e * h
z3 = f * g
[x3 % @@q, y3 % @@q, z3 % @@q, t3 % @@q]
end
|
.encodeint(y) ⇒ Object
134
135
136
137
|
# File 'lib/nem/util/ed25519.rb', line 134
def encodeint(y)
bits = (0...@@b).map { |i| (y >> i) & 1 }
(0...@@b / 8).inject('') { |memo, i| memo << int2byte((0...8).inject(0) { |sum, j| sum + (bits[i * 8 + j] << j) }) }
end
|
.encodepoint(_P) ⇒ Object
139
140
141
142
143
144
145
146
|
# File 'lib/nem/util/ed25519.rb', line 139
def encodepoint(_P)
x, y, z, _t = _P
zi = inv(z)
x = (x * zi) % @@q
y = (y * zi) % @@q
bits = (0...@@b - 1).map { |i| (y >> i) & 1 } + [x & 1]
(0...@@b / 8).inject('') { |memo, i| memo << int2byte((0...8).inject(0) { |sum, j| sum + (bits[i * 8 + j] << j) }) }
end
|
.encrypt(sk, pk, data) ⇒ Object
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
# File 'lib/nem/util/ed25519.rb', line 166
def encrypt(sk, pk, data)
h = HH(sk)
a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
_A = decodepoint(pk)
bin_g = encodepoint(scalarmult(_A, a))
bin_iv = SecureRandom.random_bytes(16)
hex_iv = bin_iv.unpack('H*').first
bin_salt = SecureRandom.random_bytes(32)
hex_salt = bin_salt.unpack('H*').first
ua_salt = Nem::Util::Convert.hex2ua(hex_salt)
ua_g = Nem::Util::Convert.hex2ua(bin_g.unpack('H*').first)
c = []
ua_salt.each_with_index { |el, idx| c << (el ^ ua_g[idx]) }
bin_key = Digest::SHA3.digest(c.pack('C*'), 256)
cipher = OpenSSL::Cipher.new('AES-256-CBC')
cipher.encrypt
cipher.key = bin_key
cipher.iv = bin_iv
encrypted_data = cipher.update(data.bytes.pack('C*')) + cipher.final
hex_salt + hex_iv + encrypted_data.unpack('H*').first
end
|
.H(m) ⇒ Object
23
24
25
|
# File 'lib/nem/util/ed25519.rb', line 23
def H(m)
OpenSSL::Digest::SHA512.digest(m)
end
|
.HH(m) ⇒ Object
27
28
29
|
# File 'lib/nem/util/ed25519.rb', line 27
def HH(m)
Digest::SHA3.digest(m)
end
|
.Hint(m) ⇒ Object
222
223
224
225
|
# File 'lib/nem/util/ed25519.rb', line 222
def Hint(m)
h = H(m)
(0...2 * @@b).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
end
|
.Hint_hash(m) ⇒ Object
227
228
229
230
|
# File 'lib/nem/util/ed25519.rb', line 227
def Hint_hash(m)
h = HH(m)
(0...2 * @@b).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
end
|
.indexbytes(buf, i) ⇒ Object
14
15
16
|
# File 'lib/nem/util/ed25519.rb', line 14
def indexbytes(buf, i)
buf[i].ord
end
|
.int2byte(i) ⇒ Object
10
11
12
|
# File 'lib/nem/util/ed25519.rb', line 10
def int2byte(i)
i.chr
end
|
.intlist2bytes(l) ⇒ Object
18
19
20
|
# File 'lib/nem/util/ed25519.rb', line 18
def intlist2bytes(l)
l.inject('') { |memo, c| memo << c.chr }
end
|
.inv(z) ⇒ Object
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
# File 'lib/nem/util/ed25519.rb', line 39
def inv(z)
z2 = z * z % @@q z9 = pow2(z2, 2) * z % @@q z11 = z9 * z2 % @@q z2_5_0 = (z11 * z11) % @@q * z9 % @@q z2_10_0 = pow2(z2_5_0, 5) * z2_5_0 % @@q z2_20_0 = pow2(z2_10_0, 10) * z2_10_0 % @@q z2_40_0 = pow2(z2_20_0, 20) * z2_20_0 % @@q
z2_50_0 = pow2(z2_40_0, 10) * z2_10_0 % @@q
z2_100_0 = pow2(z2_50_0, 50) * z2_50_0 % @@q
z2_200_0 = pow2(z2_100_0, 100) * z2_100_0 % @@q
z2_250_0 = pow2(z2_200_0, 50) * z2_50_0 % @@q pow2(z2_250_0, 5) * z11 % @@q end
|
.isoncurve(_P) ⇒ Object
256
257
258
259
260
261
|
# File 'lib/nem/util/ed25519.rb', line 256
def isoncurve(_P)
x, y, z, t = _P
(z % @@q != (0) &&
x * y % @@q == (z * t % @@q) &&
(y * y - x * x - z * z - @@d * t * t) % @@q == (0))
end
|
.make_Bpow ⇒ Object
114
115
116
117
118
119
120
|
# File 'lib/nem/util/ed25519.rb', line 114
def make_Bpow
_P = @@B
253.times do
@@Bpow << _P
_P = edwards_double(_P)
end
end
|
.pow2(x, p) ⇒ Object
31
32
33
34
35
36
37
|
# File 'lib/nem/util/ed25519.rb', line 31
def pow2(x, p)
while p > 0 do
x = x.to_bn.mod_exp(2, @@q).to_i
p -= 1
end
x
end
|
.publickey_hash_unsafe(sk) ⇒ Object
159
160
161
162
163
164
|
# File 'lib/nem/util/ed25519.rb', line 159
def publickey_hash_unsafe(sk)
h = HH(sk)
a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
_A = scalarmult_B(a)
encodepoint(_A)
end
|
.publickey_unsafe(sk) ⇒ Object
152
153
154
155
156
157
|
# File 'lib/nem/util/ed25519.rb', line 152
def publickey_unsafe(sk)
h = H(sk)
a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
_A = scalarmult_B(a)
codepoint(_A)
end
|
.scalarmult(_P, e) ⇒ Object
106
107
108
109
110
111
112
|
# File 'lib/nem/util/ed25519.rb', line 106
def scalarmult(_P, e)
return @@ident if e == 0
_Q = scalarmult(_P, e / 2)
_Q = edwards_double(_Q)
_Q = edwards_add(_Q, _P) if (e & 1) == 1
_Q
end
|
.scalarmult_B(e) ⇒ Object
Implements scalarmult(B, e) more efficiently.
123
124
125
126
127
128
129
130
131
132
|
# File 'lib/nem/util/ed25519.rb', line 123
def scalarmult_B(e)
e = e % @@l
_P = @@ident
253.times do |i|
_P = edwards_add(_P, @@Bpow[i]) if e & 1 == 1
e = e / 2
end
_P
end
|
.signature_hash_unsafe(m, sk, pk) ⇒ Object
Not safe to use with secret keys or secret data. This function should be used for testing only.
245
246
247
248
249
250
251
252
253
254
|
# File 'lib/nem/util/ed25519.rb', line 245
def signature_hash_unsafe(m, sk, pk)
h = HH(sk)
a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
r = Hint_hash(
intlist2bytes((@@b / 8...@@b / 4).map { |j| indexbytes(h, j) }) + m
)
_R = scalarmult_B(r)
_S = (r + Hint_hash(encodepoint(_R) + pk + m) * a) % @@l
encodepoint(_R) + encodeint(_S)
end
|
.signature_unsafe(m, sk, pk) ⇒ Object
232
233
234
235
236
237
238
239
240
241
|
# File 'lib/nem/util/ed25519.rb', line 232
def signature_unsafe(m, sk, pk)
h = H(sk)
a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
r = Hint(
intlist2bytes((@@b / 8...@@b / 4).map { |j| indexbytes(h, j) }) + m
)
_R = scalarmult_B(r)
_S = (r + Hint(encodepoint(_R) + pk + m) * a) % @@l
encodepoint(_R) + encodeint(_S)
end
|
.xrecover(y) ⇒ Object
55
56
57
58
59
60
61
|
# File 'lib/nem/util/ed25519.rb', line 55
def xrecover(y)
xx = (y * y - 1) * inv(@@d * y * y + 1)
x = xx.to_bn.mod_exp((@@q + 3) / 8, @@q).to_i
x = (x * @@I) % @@q if (x * x - xx) % @@q != 0
x = @@q - x if x % 2 != 0
x
end
|