Class: Nio::Rtnlzr
- Inherits:
-
Object
- Object
- Nio::Rtnlzr
- Includes:
- StateEquivalent
- Defined in:
- lib/nio/rtnlzr.rb,
lib/nio/rtnlzr.rb
Overview
This class provides conversion of fractions (as approximate floating point numbers) to rational numbers.
Defined Under Namespace
Modules: Mth
Class Method Summary collapse
-
.max_denominator(f, max_den = 1000000000, num_class = nil) ⇒ Object
Best fraction given maximum denominator Algorithm Copyright © 1991 by Joseph K.
Instance Method Summary collapse
-
#initialize(tol = Flt.Tolerance(:epsilon)) ⇒ Rtnlzr
constructor
Create Rationalizator with given tolerance.
-
#rationalize(x) ⇒ Object
Rationalization method that finds the fraction with smallest denominator fraction within the tolerance distance of an approximate (floating point) number.
-
#rationalize_Horn(x) ⇒ Object
This is algorithm PDQ2 by Joe Horn.
-
#rationalize_HornHutchins(x) ⇒ Object
This is from a RPL program by Tony Hutchins (PDR6).
-
#rationalize_Knuth(x) ⇒ Object
This algorithm is derived from exercise 39 of 4.5.3 in “The Art of Computer Programming”, by Donald E.
Methods included from StateEquivalent
Constructor Details
#initialize(tol = Flt.Tolerance(:epsilon)) ⇒ Rtnlzr
Create Rationalizator with given tolerance.
153 154 155 |
# File 'lib/nio/rtnlzr.rb', line 153 def initialize(tol=Flt.Tolerance(:epsilon)) @tol = tol end |
Class Method Details
.max_denominator(f, max_den = 1000000000, num_class = nil) ⇒ Object
Best fraction given maximum denominator Algorithm Copyright © 1991 by Joseph K. Horn.
The implementation of this method uses floating point arithmetic which limits the magnitude and precision of the results, specially using Float values.
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# File 'lib/nio/rtnlzr.rb', line 343 def Rtnlzr.max_denominator(f, max_den=1000000000, num_class=nil) return nil if max_den<1 num_class ||= f.class context = num_class.context return mth.ip(f),1 if mth.fp(f)==0 cast = lambda{|x| context.Num(x)} one = cast.call(1) sign = f<0 f = -f if sign a,b,c = 0,1,f while b<max_den and c!=0 cc = one/c a,b,c = b, mth.ip(cc)*b+a, mth.fp(cc) end if b>max_den b -= a*mth.ceil(cast.call(b-max_den)/a) end f1,f2 = [a,b].collect{|x| mth.abs(cast.call(mth.rnd(x*f))/x-f)} a = f1>f2 ? b : a num,den = mth.rnd(a*f).to_i,a den = 1 if mth.abs(den)<1 num = -num if sign return num,den end |
Instance Method Details
#rationalize(x) ⇒ Object
Rationalization method that finds the fraction with smallest denominator fraction within the tolerance distance of an approximate (floating point) number.
It uses the algorithm which has been found most efficient, rationalize_Knuth.
162 163 164 |
# File 'lib/nio/rtnlzr.rb', line 162 def rationalize(x) rationalize_Knuth(x) end |
#rationalize_Horn(x) ⇒ Object
This is algorithm PDQ2 by Joe Horn.
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# File 'lib/nio/rtnlzr.rb', line 220 def rationalize_Horn(x) num_tol = @tol.kind_of?(Numeric) if !num_tol && @tol.zero?(x) # num,den = x.nio_xr.nio_num_den num,den = 0,1 else negans=false if x<0 negans = true x = -x end dx = num_tol ? @tol : @tol.value(x) z,t = x,dx # renaming a,b = t.nio_xr.nio_num_den n0,d0 = (n,d = z.nio_xr.nio_num_den) cn,x,pn,cd,y,pd,lo,hi,mid,q,r = 1,1,0,0,0,1,0,1,1,0,0 begin q,r = n.divmod(d) x = q*cn+pn y = q*cd+pd pn = cn cn = x pd = cd cd = y n,d = d,r end until b*(n0*y-d0*x).abs <= a*d0*y if q>1 hi = q begin mid = (lo+hi).div(2) x = cn-pn*mid y = cd-pd*mid if b*(n0*y-d0*x).abs <= a*d0*y lo = mid else hi = mid end end until hi-lo <= 1 x = cn - pn*lo y = cd - pd*lo end num,den = x,y # renaming num = -num if negans end return num,den end |
#rationalize_HornHutchins(x) ⇒ Object
This is from a RPL program by Tony Hutchins (PDR6).
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# File 'lib/nio/rtnlzr.rb', line 278 def rationalize_HornHutchins(x) num_tol = @tol.kind_of?(Numeric) if !num_tol && @tol.zero?(x) # num,den = x.nio_xr.nio_num_den num,den = 0,1 else negans=false if x<0 negans = true x = -x end dx = num_tol ? @tol : @tol.value(x) z,t = x,dx # renaming a,b = t.nio_xr.nio_num_den n0,d0 = (n,d = z.nio_xr.nio_num_den) cn,x,pn,cd,y,pd,lo,hi,mid,q,r = 1,1,0,0,0,1,0,1,1,0,0 begin q,r = n.divmod(d) x = q*cn+pn y = q*cd+pd pn = cn cn = x pd = cd cd = y n,d = d,r end until b*(n0*y-d0*x).abs <= a*d0*y if q>1 hi = q begin mid = (lo+hi).div(2) x = cn-pn*mid y = cd-pd*mid if b*(n0*y-d0*x).abs <= a*d0*y lo = mid else hi = mid end end until hi-lo <= 1 x = cn - pn*lo y = cd - pd*lo end num,den = x,y # renaming num = -num if negans end return num,den end |
#rationalize_Knuth(x) ⇒ Object
This algorithm is derived from exercise 39 of 4.5.3 in “The Art of Computer Programming”, by Donald E. Knuth.
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# File 'lib/nio/rtnlzr.rb', line 168 def rationalize_Knuth(x) num_tol = @tol.kind_of?(Numeric) if !num_tol && @tol.zero?(x) # num,den = x.nio_xr.nio_num_den num,den = 0,1 else negans=false if x<0 negans = true x = -x end dx = num_tol ? @tol : @tol.value(x) x = x.nio_xr dx = dx.nio_xr xp,xq = (x-dx).nio_num_den yp,yq = (x+dx).nio_num_den a = [] fin,odd = false,false while !fin && xp!=0 && yp!=0 odd = !odd xp,xq = xq,xp ax = xp.div(xq) xp -= ax*xq yp,yq = yq,yp ay = yp.div(yq) yp -= ay*yq if ax!=ay fin = true ax,xp,xq = ay,yp,yq if odd end a << ax # .to_i end a[-1] += 1 if xp!=0 && a.size>0 p,q = 1,0 (1..a.size).each{|i| p,q=q+p*a[-i],p} num,den = q,p num = -num if negans end return num,den end |