Module: Nis::Util::Ed25519

Defined in:
lib/nis/util/ed25519.rb

Defined Under Namespace

Classes: SignatureMismatch

Constant Summary collapse

@@b =
256
@@q =
2**255 - 19
@@l =
2**252 + 27742317777372353535851937790883648493
@@d =
-121665 * self.inv(121666) % @@q
@@I =
2.to_bn.mod_exp((@@q - 1) / 4, @@q)
@@By =
4 * self.inv(5)
@@Bx =
self.xrecover(@@By)
@@B =
[@@Bx % @@q, @@By % @@q, 1, (@@Bx * @@By) % @@q]
@@ident =
[0, 1, 1, 0]
@@Bpow =
[]

Class Method Summary collapse

Class Method Details

.bit(h, i) ⇒ Object



147
148
149
# File 'lib/nis/util/ed25519.rb', line 147

def bit(h, i)
  (indexbytes(h, i / 8) >> (i % 8)) & 1
end

.checkvalid(s, m, pk) ⇒ Object

Not safe to use when any argument is secret. This function should be used only for verifying public signatures of public messages.



281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# File 'lib/nis/util/ed25519.rb', line 281

def checkvalid(s, m, pk)
  raise 'signature length is wrong' if s.size != @@b / 4
  raise 'public-key length is wrong' if pk.size != @@b / 8

  _R = decodepoint(s[0...@@b / 8])
  _A = decodepoint(pk)
  _S = decodeint(s[@@b / 8...@@b / 4])
  h = Hint(encodepoint(_R) + pk + m)

  x1, y1, z1, _t1 = _P = scalarmult_B(_S)
  x2, y2, z2, _t2 = _Q = edwards_add(_R, scalarmult(_A, h))

  if (!isoncurve(_P) || !isoncurve(_Q) || (x1 * z2 - x2 * z1) % q != 0 || (y1 * z2 - y2 * z1) % q != 0)
    raise SignatureMismatch('signature does not pass verification')
  end
end

.decodeint(s) ⇒ Object



262
263
264
# File 'lib/nis/util/ed25519.rb', line 262

def decodeint(s)
  (0...@@b).inject(0) { |sum, i| sum + 2**i * bit(s, i) }
end

.decodepoint(s) ⇒ Object



266
267
268
269
270
271
272
273
# File 'lib/nis/util/ed25519.rb', line 266

def decodepoint(s)
  y = (0...@@b - 1).inject(0) { |sum, i| sum + 2**i * bit(s, i) }
  x = xrecover(y)
  x = @@q - x if x & 1 != bit(s, @@b - 1)
  _P = [x, y, 1, (x * y) % @@q]
  raise 'decoding point that is not on curve' unless isoncurve(_P)
  _P
end

.decrypt(sk, pk, data) ⇒ Object



192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# File 'lib/nis/util/ed25519.rb', line 192

def decrypt(sk, pk, data)
  h = HH(sk)
  a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
  _A = decodepoint(pk)
  bin_g = encodepoint(scalarmult(_A, a))

  hex_salt = data[0, 64]
  hex_iv = data[64, 32]
  hex_encrypted = data[96, data.size]

  ua_iv = Nis::Util::Convert.hex2ua(hex_iv)
  bin_iv = ua_iv.pack('C*')

  ua_salt = Nis::Util::Convert.hex2ua(hex_salt)
  ua_g = Nis::Util::Convert.hex2ua(bin_g.unpack('H*').first)

  c = []
  ua_salt.each_with_index { |el, idx| c << (el ^ ua_g[idx]) }
  bin_key = Digest::SHA3.digest(c.pack('C*'), 256)

  bin_encrypted = Nis::Util::Convert.hex2ua(hex_encrypted).pack('C*')

  cipher = OpenSSL::Cipher.new('AES-256-CBC')
  cipher.decrypt
  cipher.key = bin_key
  cipher.iv = bin_iv
  cipher.update(bin_encrypted) + cipher.final
end

.edwards_add(_P, _Q) ⇒ Object



62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# File 'lib/nis/util/ed25519.rb', line 62

def edwards_add(_P, _Q)
  # This is formula sequence 'addition-add-2008-hwcd-3' from
  # http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
  x1, y1, z1, t1 = _P
  x2, y2, z2, t2 = _Q

  a = (y1 - x1) * (y2 - x2) % @@q
  b = (y1 + x1) * (y2 + x2) % @@q
  c = t1 * 2 * @@d * t2 % @@q
  dd = z1 * 2 * z2 % @@q
  e = b - a
  f = dd - c
  g = dd + c
  h = b + a
  x3 = e * f
  y3 = g * h
  t3 = e * h
  z3 = f * g

  [x3 % @@q, y3 % @@q, z3 % @@q, t3 % @@q]
end

.edwards_double(_P) ⇒ Object



84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# File 'lib/nis/util/ed25519.rb', line 84

def edwards_double(_P)
  # This is formula sequence 'dbl-2008-hwcd' from
  # http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
  x1, y1, z1, _t1 = _P

  a = x1 * x1 % @@q
  b = y1 * y1 % @@q
  c = 2 * z1 * z1 % @@q
  # dd = -a
  e = ((x1 + y1) * (x1 + y1) - a - b) % @@q
  g = -a + b  # dd + b
  f = g - c
  h = -a - b  # dd - b
  x3 = e * f
  y3 = g * h
  t3 = e * h
  z3 = f * g

  [x3 % @@q, y3 % @@q, z3 % @@q, t3 % @@q]
end

.encodeint(y) ⇒ Object



133
134
135
136
# File 'lib/nis/util/ed25519.rb', line 133

def encodeint(y)
  bits = (0...@@b).map { |i| (y >> i) & 1 }
  (0...@@b / 8).inject('') { |memo, i| memo << int2byte((0...8).inject(0) { |sum, j| sum + (bits[i * 8 + j] << j) }) }
end

.encodepoint(_P) ⇒ Object



138
139
140
141
142
143
144
145
# File 'lib/nis/util/ed25519.rb', line 138

def encodepoint(_P)
  x, y, z, _t = _P
  zi = inv(z)
  x = (x * zi) % @@q
  y = (y * zi) % @@q
  bits = (0...@@b - 1).map { |i| (y >> i) & 1 } + [x & 1]
  (0...@@b / 8).inject('') { |memo, i| memo << int2byte((0...8).inject(0) { |sum, j| sum + (bits[i * 8 + j] << j) }) }
end

.encrypt(sk, pk, data) ⇒ Object



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# File 'lib/nis/util/ed25519.rb', line 165

def encrypt(sk, pk, data)
  h = HH(sk)
  a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
  _A = decodepoint(pk)
  bin_g = encodepoint(scalarmult(_A, a))

  bin_iv = SecureRandom.random_bytes(16)
  hex_iv = bin_iv.unpack('H*').first

  bin_salt = SecureRandom.random_bytes(32)
  hex_salt = bin_salt.unpack('H*').first

  ua_salt = Nis::Util::Convert.hex2ua(hex_salt)
  ua_g = Nis::Util::Convert.hex2ua(bin_g.unpack('H*').first)

  c = []
  ua_salt.each_with_index { |el, idx| c << (el ^ ua_g[idx]) }
  bin_key = Digest::SHA3.digest(c.pack('C*'), 256)

  cipher = OpenSSL::Cipher.new('AES-256-CBC')
  cipher.encrypt
  cipher.key = bin_key
  cipher.iv = bin_iv
  encrypted_data = cipher.update(data.bytes.pack('C*')) + cipher.final
  hex_salt + hex_iv + encrypted_data.unpack('H*').first
end

.H(m) ⇒ Object

standard implement



22
23
24
# File 'lib/nis/util/ed25519.rb', line 22

def H(m)
  OpenSSL::Digest::SHA512.digest(m)
end

.HH(m) ⇒ Object



26
27
28
# File 'lib/nis/util/ed25519.rb', line 26

def HH(m)
  Digest::SHA3.digest(m)
end

.Hint(m) ⇒ Object



221
222
223
224
# File 'lib/nis/util/ed25519.rb', line 221

def Hint(m)
  h = H(m)
  (0...2 * @@b).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
end

.Hint_hash(m) ⇒ Object



226
227
228
229
# File 'lib/nis/util/ed25519.rb', line 226

def Hint_hash(m)
  h = HH(m)
  (0...2 * @@b).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
end

.indexbytes(buf, i) ⇒ Object



13
14
15
# File 'lib/nis/util/ed25519.rb', line 13

def indexbytes(buf, i)
  buf[i].ord
end

.int2byte(i) ⇒ Object



9
10
11
# File 'lib/nis/util/ed25519.rb', line 9

def int2byte(i)
  i.chr
end

.intlist2bytes(l) ⇒ Object



17
18
19
# File 'lib/nis/util/ed25519.rb', line 17

def intlist2bytes(l)
  l.inject('') { |memo, c| memo << c.chr }
end

.inv(z) ⇒ Object



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# File 'lib/nis/util/ed25519.rb', line 38

def inv(z)
  # Adapted from curve25519_athlon.c in djb's Curve25519.
  z2 = z * z % @@q  # 2
  z9 = pow2(z2, 2) * z % @@q  # 9
  z11 = z9 * z2 % @@q  # 11
  z2_5_0 = (z11 * z11) % @@q * z9 % @@q  # 31 == 2^5 - 2^0
  z2_10_0 = pow2(z2_5_0, 5) * z2_5_0 % @@q  # 2^10 - 2^0
  z2_20_0 = pow2(z2_10_0, 10) * z2_10_0 % @@q  # ...
  z2_40_0 = pow2(z2_20_0, 20) * z2_20_0 % @@q
  z2_50_0 = pow2(z2_40_0, 10) * z2_10_0 % @@q
  z2_100_0 = pow2(z2_50_0, 50) * z2_50_0 % @@q
  z2_200_0 = pow2(z2_100_0, 100) * z2_100_0 % @@q
  z2_250_0 = pow2(z2_200_0, 50) * z2_50_0 % @@q  # 2^250 - 2^0
  pow2(z2_250_0, 5) * z11 % @@q  # 2^255 - 2^5 + 11 = q - 2
end

.isoncurve(_P) ⇒ Object



255
256
257
258
259
260
# File 'lib/nis/util/ed25519.rb', line 255

def isoncurve(_P)
  x, y, z, t = _P
  (z % @@q != (0) &&
    x * y % @@q == (z * t % @@q) &&
    (y * y - x * x - z * z - @@d * t * t) % @@q == (0))
end

.make_BpowObject



113
114
115
116
117
118
119
# File 'lib/nis/util/ed25519.rb', line 113

def make_Bpow
  _P = @@B
  253.times do
    @@Bpow << _P
    _P = edwards_double(_P)
  end
end

.pow2(x, p) ⇒ Object



30
31
32
33
34
35
36
# File 'lib/nis/util/ed25519.rb', line 30

def pow2(x, p)
  while p > 0 do
    x = x.to_bn.mod_exp(2, @@q).to_i
    p -= 1
  end
  x
end

.publickey_hash_unsafe(sk) ⇒ Object



158
159
160
161
162
163
# File 'lib/nis/util/ed25519.rb', line 158

def publickey_hash_unsafe(sk)
  h = HH(sk)
  a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
  _A = scalarmult_B(a)
  encodepoint(_A)
end

.publickey_unsafe(sk) ⇒ Object



151
152
153
154
155
156
# File 'lib/nis/util/ed25519.rb', line 151

def publickey_unsafe(sk)
  h = H(sk)
  a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
  _A = scalarmult_B(a)
  codepoint(_A)
end

.scalarmult(_P, e) ⇒ Object



105
106
107
108
109
110
111
# File 'lib/nis/util/ed25519.rb', line 105

def scalarmult(_P, e)
  return @@ident if e == 0
  _Q = scalarmult(_P, e / 2)
  _Q = edwards_double(_Q)
  _Q = edwards_add(_Q, _P) if (e & 1) == 1
  _Q
end

.scalarmult_B(e) ⇒ Object

Implements scalarmult(B, e) more efficiently.



122
123
124
125
126
127
128
129
130
131
# File 'lib/nis/util/ed25519.rb', line 122

def scalarmult_B(e)
  # scalarmult(B, l) is the identity
  e = e % @@l
  _P = @@ident
  253.times do |i|
    _P = edwards_add(_P, @@Bpow[i]) if e & 1 == 1
    e = e / 2
  end
  _P
end

.signature_hash_unsafe(m, sk, pk) ⇒ Object

Not safe to use with secret keys or secret data. This function should be used for testing only.



244
245
246
247
248
249
250
251
252
253
# File 'lib/nis/util/ed25519.rb', line 244

def signature_hash_unsafe(m, sk, pk)
  h = HH(sk)
  a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
  r = Hint_hash(
    intlist2bytes((@@b / 8...@@b / 4).map { |j| indexbytes(h, j) }) + m
  )
  _R = scalarmult_B(r)
  _S = (r + Hint_hash(encodepoint(_R) + pk + m) * a) % @@l
  encodepoint(_R) + encodeint(_S)
end

.signature_unsafe(m, sk, pk) ⇒ Object



231
232
233
234
235
236
237
238
239
240
# File 'lib/nis/util/ed25519.rb', line 231

def signature_unsafe(m, sk, pk)
  h = H(sk)
  a = 2**(@@b - 2) + (3...@@b - 2).inject(0) { |sum, i| sum + 2**i * bit(h, i) }
  r = Hint(
    intlist2bytes((@@b / 8...@@b / 4).map { |j| indexbytes(h, j) }) + m
  )
  _R = scalarmult_B(r)
  _S = (r + Hint(encodepoint(_R) + pk + m) * a) % @@l
  encodepoint(_R) + encodeint(_S)
end

.xrecover(y) ⇒ Object



54
55
56
57
58
59
60
# File 'lib/nis/util/ed25519.rb', line 54

def xrecover(y)
  xx = (y * y - 1) * inv(@@d * y * y + 1)
  x = xx.to_bn.mod_exp((@@q + 3) / 8, @@q).to_i
  x = (x * @@I) % @@q if (x * x - xx) % @@q != 0
  x = @@q - x if x % 2 != 0
  x
end