Module: NMatrix::BLAS

Defined in:
lib/nmatrix/blas.rb

Overview

NMatrix

A linear algebra library for scientific computation in Ruby. NMatrix is part of SciRuby.

NMatrix was originally inspired by and derived from NArray, by Masahiro Tanaka: narray.rubyforge.org

Copyright Information

SciRuby is Copyright © 2010 - 2016, Ruby Science Foundation NMatrix is Copyright © 2012 - 2016, John Woods and the Ruby Science Foundation

Please see LICENSE.txt for additional copyright notices.

Contributing

By contributing source code to SciRuby, you agree to be bound by our Contributor Agreement:

blas.rb

This file contains the safer accessors for the BLAS functions supported by NMatrix. ++

Class Method Summary collapse

Class Method Details

.asum(x, incx = 1, n = nil) ⇒ Object

call-seq:

asum(x, incx, n) -> Numeric

Calculate the sum of absolute values of the entries of a

vector +x+ of size +n+
  • Arguments :

    • x -> an NMatrix (will also allow an NMatrix,

      but will treat it as if it's a vector )
      
    • incx -> the skip size (defaults to 1)

    • n -> the size of x (defaults to x.size / incx)

  • Returns :

    • The sum

  • Raises :

    • ArgumentError -> Expected dense NMatrix for arg 0

    • RangeError -> n out of range

Raises:

  • (ArgumentError)


299
300
301
302
303
304
305
306
307
# File 'lib/nmatrix/blas.rb', line 299

def asum(x, incx = 1, n = nil)
  n ||= x.size / incx
  raise(ArgumentError, "Expected dense NMatrix for arg 0") \
   unless x.is_a?(NMatrix)

  raise(RangeError, "n out of range") \
   if n*incx > x.size || n*incx <= 0 || n <= 0
   ::NMatrix::BLAS.cblas_asum(n, x, incx)
end

.cblas_herk(order, uplo, trans, n, k, alpha, a, lda, beta, c, ldc) ⇒ Object

Raises:

  • (NotImplementedError)


373
374
375
376
# File 'lib/nmatrix/blas.rb', line 373

def cblas_herk(order, uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
  raise(NotImplementedError,"cblas_herk requires either the
   nmatrix-lapacke or nmatrix-atlas gem")
end

.cblas_syrk(order, uplo, trans, n, k, alpha, a, lda, beta, c, ldc) ⇒ Object

Raises:

  • (NotImplementedError)


368
369
370
371
# File 'lib/nmatrix/blas.rb', line 368

def cblas_syrk(order, uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
  raise(NotImplementedError,"cblas_syrk requires either the
   nmatrix-lapacke or nmatrix-atlas gem")
end

.cblas_trmm(order, side, uplo, trans_a, diag, m, n, alpha, a, lda, b, ldb) ⇒ Object

The following are functions that used to be implemented in C, but now require nmatrix-atlas or nmatrix-lapcke to run properly, so we can just implemented their stubs in Ruby.

Raises:

  • (NotImplementedError)


363
364
365
366
# File 'lib/nmatrix/blas.rb', line 363

def cblas_trmm(order, side, uplo, trans_a, diag, m, n, alpha, a, lda, b, ldb)
  raise(NotImplementedError,"cblas_trmm requires either the
   nmatrix-lapacke or nmatrix-atlas gem")
end

.gemm(a, b, c = nil, alpha = 1.0, beta = 0.0, transpose_a = false, transpose_b = false, m = nil, n = nil, k = nil, lda = nil, ldb = nil, ldc = nil) ⇒ Object

call-seq:

gemm(a, b) -> NMatrix
gemm(a, b, c) -> NMatrix
gemm(a, b, c, alpha, beta) -> NMatrix

Updates the value of C via the matrix multiplication

C = (alpha * A * B) + (beta * C)

where alpha and beta are scalar values.

  • Arguments :

    • a -> Matrix A.

    • b -> Matrix B.

    • c -> Matrix C.

    • alpha -> A scalar value that multiplies A * B.

    • beta -> A scalar value that multiplies C.

    • transpose_a ->

    • transpose_b ->

    • m ->

    • n ->

    • k ->

    • lda ->

    • ldb ->

    • ldc ->

  • Returns :

    • A NMatrix equal to (alpha * A * B) + (beta * C).

  • Raises :

    • ArgumentError -> a and b must be dense matrices.

    • ArgumentError -> c must be nil or a dense matrix.

    • ArgumentError -> The dtype of the matrices must be equal.

Raises:

  • (ArgumentError)


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# File 'lib/nmatrix/blas.rb', line 75

def gemm(a, b, c = nil, alpha = 1.0, beta = 0.0,
         transpose_a = false, transpose_b = false, m = nil,
         n = nil, k = nil, lda = nil, ldb = nil, ldc = nil)

  raise(ArgumentError, 'Expected dense NMatrices as first two arguments.') \
        unless a.is_a?(NMatrix) and b.is_a? \
        (NMatrix) and a.stype == :dense and b.stype == :dense

  raise(ArgumentError, 'Expected nil or dense NMatrix as third argument.') \
        unless c.nil? or (c.is_a?(NMatrix)  \
        and c.stype == :dense)
  raise(ArgumentError, 'NMatrix dtype mismatch.') \
        unless a.dtype == b.dtype and (c ? a.dtype == c.dtype : true)

  # First, set m, n, and k, which depend on whether we're taking the
  # transpose of a and b.
  if c
    m ||= c.shape[0]
    n ||= c.shape[1]
    k ||= transpose_a ? a.shape[0] : a.shape[1]

  else
    if transpose_a
      # Either :transpose or :complex_conjugate.
      m ||= a.shape[1]
      k ||= a.shape[0]

    else
      # No transpose.
      m ||= a.shape[0]
      k ||= a.shape[1]
    end

    n ||= transpose_b ? b.shape[0] : b.shape[1]
    c  = NMatrix.new([m, n], dtype: a.dtype)
  end

  # I think these are independent of whether or not a transpose occurs.
  lda ||= a.shape[1]
  ldb ||= b.shape[1]
  ldc ||= c.shape[1]

  # NM_COMPLEX64 and NM_COMPLEX128 both require complex alpha and beta.
  if a.dtype == :complex64 or a.dtype == :complex128
    alpha = Complex(1.0, 0.0) if alpha == 1.0
    beta  = Complex(0.0, 0.0) if beta  == 0.0
  end

  # For argument descriptions, see: http://www.netlib.org/blas/dgemm.f
  ::NMatrix::BLAS.cblas_gemm(:row, transpose_a, transpose_b,
   m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

  return c
end

.gemv(a, x, y = nil, alpha = 1.0, beta = 0.0, transpose_a = false, m = nil, n = nil, lda = nil, incx = nil, incy = nil) ⇒ Object

call-seq:

gemv(a, x) -> NMatrix
gemv(a, x, y) -> NMatrix
gemv(a, x, y, alpha, beta) -> NMatrix

Implements matrix-vector product via

y = (alpha * A * x) + (beta * y)

where alpha and beta are scalar values.

  • Arguments :

    • a -> Matrix A.

    • x -> Vector x.

    • y -> Vector y.

    • alpha -> A scalar value that multiplies A * x.

    • beta -> A scalar value that multiplies y.

    • transpose_a ->

    • m ->

    • n ->

    • lda ->

    • incx ->

    • incy ->

  • Returns : -

  • Raises :

    • ++ ->

Raises:

  • (ArgumentError)


157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# File 'lib/nmatrix/blas.rb', line 157

def gemv(a, x, y = nil, alpha = 1.0, beta = 0.0,
         transpose_a = false, m = nil, n = nil, lda = nil,
         incx = nil, incy = nil)
  raise(ArgumentError, 'Expected dense NMatrices as first two arguments.') \
   unless a.is_a?(NMatrix) and x.is_a?(NMatrix) and \
   a.stype == :dense and x.stype == :dense

  raise(ArgumentError, 'Expected nil or dense NMatrix as third argument.') \
   unless y.nil? or (y.is_a?(NMatrix) and y.stype == :dense)

  raise(ArgumentError, 'NMatrix dtype mismatch.') \
   unless a.dtype == x.dtype and (y ? a.dtype == y.dtype : true)

  m ||= transpose_a == :transpose ? a.shape[1] : a.shape[0]
  n ||= transpose_a == :transpose ? a.shape[0] : a.shape[1]
  raise(ArgumentError, "dimensions don't match") \
   unless x.shape[0] == n && x.shape[1] == 1

  if y
    raise(ArgumentError, "dimensions don't match") \
     unless y.shape[0] == m && y.shape[1] == 1
  else
    y = NMatrix.new([m,1], dtype: a.dtype)
  end

  lda  ||= a.shape[1]
  incx ||= 1
  incy ||= 1

  ::NMatrix::BLAS.cblas_gemv(transpose_a, m, n,
   alpha, a, lda, x, incx, beta, y, incy)

  return y
end

.nrm2(x, incx = 1, n = nil) ⇒ Object

call-seq:

nrm2(x, incx, n)

Calculate the 2-norm of a vector x of size n

  • Arguments :

    • x -> an NMatrix (will also allow an

      NMatrix, but will treat it as if it's a vector )
      
    • incx -> the skip size (defaults to 1)

    • n -> the size of x (defaults to x.size / incx)

  • Returns :

    • The 2-norm

  • Raises :

    • ArgumentError -> Expected dense NMatrix for arg 0

    • RangeError -> n out of range

Raises:

  • (ArgumentError)


326
327
328
329
330
331
332
333
334
# File 'lib/nmatrix/blas.rb', line 326

def nrm2(x, incx = 1, n = nil)
  n ||= x.size / incx
  raise(ArgumentError, "Expected dense NMatrix for arg 0") \
   unless x.is_a?(NMatrix)

  raise(RangeError, "n out of range") \
   if n*incx > x.size || n*incx <= 0 || n <= 0
   ::NMatrix::BLAS.cblas_nrm2(n, x, incx)
end

.rot(x, y, c, s, incx = 1, incy = 1, n = nil, in_place = false) ⇒ Object

call-seq:

rot(x, y, c, s) -> [NMatrix, NMatrix]

Apply plane rotation.

  • Arguments :

    • x -> NMatrix

    • y -> NMatrix

    • c -> cosine of the angle of rotation

    • s -> sine of the angle of rotation

    • incx -> stride of NMatrix x

    • incy -> stride of NMatrix y

    • n -> number of elements to consider in x and y

    • in_place -> true if it’s okay to modify the supplied

              +x+ and +y+ parameters directly;
      false if not. Default is false.
      
  • Returns :

    • Array with the results, in the format [xx, yy]

  • Raises :

    • ArgumentError -> Expected dense NMatrices as first two arguments.

    • ArgumentError -> NMatrix dtype mismatch.

    • ArgumentError -> Need to supply n for non-standard incx,

      incy values.
      

Raises:

  • (ArgumentError)


217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# File 'lib/nmatrix/blas.rb', line 217

def rot(x, y, c, s, incx = 1, incy = 1, n = nil, in_place=false)
  raise(ArgumentError, 'Expected dense NMatrices as first two arguments.') \
   unless x.is_a?(NMatrix) and y.is_a?(NMatrix) \
   and x.stype == :dense and y.stype == :dense

  raise(ArgumentError, 'NMatrix dtype mismatch.') \
   unless x.dtype == y.dtype

  raise(ArgumentError, 'Need to supply n for non-standard incx, incy values') \
   if n.nil? && incx != 1 && incx != -1 && incy != 1 && incy != -1

  n ||= [x.size/incx.abs, y.size/incy.abs].min

  if in_place
    ::NMatrix::BLAS.cblas_rot(n, x, incx, y, incy, c, s)
    return [x,y]
  else
    xx = x.clone
    yy = y.clone

    ::NMatrix::BLAS.cblas_rot(n, xx, incx, yy, incy, c, s)

    return [xx,yy]
  end
end

.rot!(x, y, c, s, incx = 1, incy = 1, n = nil) ⇒ Object

call-seq:

rot!(x, y, c, s) -> [NMatrix, NMatrix]

Apply plane rotation directly to x and y.

See rot for arguments.



251
252
253
# File 'lib/nmatrix/blas.rb', line 251

def rot!(x, y, c, s, incx = 1, incy = 1, n = nil)
  rot(x,y,c,s,incx,incy,n,true)
end

.rotg(ab) ⇒ Object

call-seq:

rotg(ab) -> [Numeric, Numeric]

Apply givens plane rotation to the coordinates (a,b),

returning the cosine and sine of the angle theta.

Since the givens rotation includes a square root,

integers are disallowed.
  • Arguments :

    • ab -> NMatrix with two elements

  • Returns :

    • Array with the results, in the format [cos(theta), sin(theta)]

  • Raises :

    • ArgumentError -> Expected dense NMatrix of size 2

Raises:

  • (ArgumentError)


273
274
275
276
277
278
# File 'lib/nmatrix/blas.rb', line 273

def rotg(ab)
  raise(ArgumentError, "Expected dense NMatrix of shape [2,1] or [1,2]") \
   unless ab.is_a?(NMatrix) && ab.stype == :dense && ab.size == 2

  ::NMatrix::BLAS.cblas_rotg(ab)
end

.scal(alpha, vector, incx = 1, n = nil) ⇒ Object

call-seq:

scal(alpha, vector, incx, n)

Scale a matrix by a given scaling factor

  • Arguments :

    • alpha -> a scaling factor

    • vector -> an NMatrix

    • incx -> the skip size (defaults to 1)

    • n -> the size of x (defaults to x.size / incx)

  • Returns :

    • The scaling result

  • Raises :

    • ArgumentError -> Expected dense NMatrix for arg 0

    • RangeError -> n out of range

Raises:

  • (ArgumentError)


353
354
355
356
357
358
# File 'lib/nmatrix/blas.rb', line 353

def scal(alpha, vector, incx=1, n=nil)
  n ||= vector.size / incx
  raise(ArgumentError, "Expected dense NMatrix for arg 0") unless vector.is_a?(NMatrix)
  raise(RangeError, "n out of range") if n*incx > vector.size || n*incx <= 0 || n <= 0
  ::NMatrix::BLAS.cblas_scal(n, alpha, vector, incx)
end