Class: NMatrix::IO::Matlab::Mat5Reader::MatrixData
- Inherits:
-
MatrixDataStruct
- Object
- Struct
- MatrixDataStruct
- NMatrix::IO::Matlab::Mat5Reader::MatrixData
- Includes:
- Packable
- Defined in:
- lib/nmatrix/io/mat5_reader.rb
Overview
:nodoc:
Instance Attribute Summary
Attributes inherited from MatrixDataStruct
#cells, #column_index, #complex, #dimensions, #global, #imaginary_part, #logical, #matlab_class, #matlab_name, #nonzero_max, #real_part, #row_index
Instance Method Summary collapse
-
#guess_dtype_from_mdtype ⇒ Object
call-seq: guess_dtype_from_mdtype -> Symbol.
- #ignore_padding(packedio, bytes) ⇒ Object
- #read_packed(packedio, options) ⇒ Object
-
#repacked_data(to_dtype = nil) ⇒ Object
Unpacks and repacks data into the appropriate format for NMatrix.
-
#repacked_indices ⇒ Object
Unpacks and repacks index data into the appropriate format for NMatrix.
-
#to_nm(dtype = nil) ⇒ Object
call-seq: to_nm(dtype = nil) -> NMatrix.
-
#to_ruby ⇒ Object
call-seq: to_ruby -> NMatrix to_ruby -> Array.
-
#unpacked_data(real_mdtype = nil, imag_mdtype = nil) ⇒ Object
call-seq: unpacked_data(real_mdtype = nil, imag_mdtype = nil) ->.
- #write_packed(packedio, options) ⇒ Object
Instance Method Details
#guess_dtype_from_mdtype ⇒ Object
call-seq:
guess_dtype_from_mdtype -> Symbol
Try to determine what dtype and such to use.
TODO: Needs to be verified that unsigned MATLAB types are being converted to the correct NMatrix signed dtypes.
136 137 138 139 140 141 142 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 136 def guess_dtype_from_mdtype dtype = MatReader::MDTYPE_TO_DTYPE[self.real_part.tag.data_type] return dtype unless self.complex dtype == :float32 ? :complex64 : :complex128 end |
#ignore_padding(packedio, bytes) ⇒ Object
347 348 349 350 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 347 def ignore_padding(packedio, bytes) packedio.read([Integer, {:unsigned => true, \ :bytes => bytes}]) if bytes > 0 end |
#read_packed(packedio, options) ⇒ Object
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 297 def read_packed(packedio, ) flags_class, self.nonzero_max = packedio.read([Element, ]).data self.matlab_class = MatReader::MCLASSES[flags_class % 16] self.logical = (flags_class >> 8) % 2 == 1 ? true : false self.global = (flags_class >> 9) % 2 == 1 ? true : false self.complex = (flags_class >> 10) % 2 == 1 ? true : false dimensions_tag_data = packedio.read([Element, ]) self.dimensions = dimensions_tag_data.data begin name_tag_data = packedio.read([Element, ]) self.matlab_name = name_tag_data.data.is_a?(Array) ? \ name_tag_data.data.collect { |i| i.chr }.join('') : \ name_tag_data.data.chr rescue ElementDataIOError => e STDERR.puts "ERROR: Failure while trying to read Matlab variable name: #{name_tag_data.inspect}" STDERR.puts 'Element Tag:' STDERR.puts " #{e.tag}" STDERR.puts 'Previously, I read these dimensions:' STDERR.puts " #{dimensions_tag_data.inspect}" STDERR.puts "Unpack options were: #{.inspect}" raise(e) end if self.matlab_class == :mxCELL # Read what may be a series of matrices self.cells = [] STDERR.puts("Warning: Cell array does not yet support reading multiple dimensions") if dimensions.size > 2 || (dimensions[0] > 1 && dimensions[1] > 1) number_of_cells = dimensions.inject(1) { |prod,i| prod * i } number_of_cells.times { self.cells << \ packedio.read([Element, ]) } else read_opts = [RawElement, {:bytes => [:bytes], \ :endian => :native}] if self.matlab_class == :mxSPARSE self.column_index = packedio.read(read_opts) self.row_index = packedio.read(read_opts) end self.real_part = packedio.read(read_opts) self.imaginary_part = packedio.read(read_opts) if self.complex end end |
#repacked_data(to_dtype = nil) ⇒ Object
Unpacks and repacks data into the appropriate format for NMatrix.
If data is already in the appropriate format, does not unpack or repack, just returns directly.
Complex is always unpacked and repacked, as the real and imaginary components must be merged together (MATLAB stores them separately for some crazy reason).
Used only for Yale storage creation. For dense, see unpacked_data.
This function calls repack and complex_merge, which are both defined in io.cpp.
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 187 def repacked_data(to_dtype = nil) real_mdtype = self.real_part.tag.data_type # Figure out what dtype to use based on the MATLAB data-types # (mdtypes). They could be different for real and imaginary, so call # upcast to figure out what to use. components = [] # real and imaginary parts or just the real part if self.complex imag_mdtype = self.imaginary_part.tag.data_type # Make sure we convert both mdtypes do the same dtype to_dtype ||= NMatrix.upcast(MatReader::MDTYPE_TO_DTYPE[real_mdtype], \ MatReader::MDTYPE_TO_DTYPE[imag_mdtype]) # Let's make sure we don't try to send NMatrix complex integers. # We need complex floating points. unless [:float32, :float64].include?(to_dtype) to_dtype = NMatrix.upcast(to_dtype, :float32) end STDERR.puts "imag: Requesting dtype #{to_dtype.inspect}" # Repack the imaginary part components[1] = ::NMatrix::IO::Matlab.repack( self.imaginary_part.data, \ imag_mdtype, :dtype => to_dtype ) else to_dtype ||= MatReader::MDTYPE_TO_DTYPE[real_mdtype] # Sometimes repacking isn't necessary -- sometimes the format is already good if MatReader::NO_REPACK.include?(real_mdtype) STDERR.puts "No repack" return [self.real_part.data, to_dtype] end end # Repack the real part STDERR.puts "real: Requesting dtype #{to_dtype.inspect}" components[0] = ::NMatrix::IO::Matlab.repack( \ self.real_part.data, real_mdtype, :dtype => to_dtype ) # Merge the two parts if complex, or just return the real part. [self.complex ? ::NMatrix::IO::Matlab.complex_merge( \ components[0], components[1], to_dtype ) : components[0], to_dtype] end |
#repacked_indices ⇒ Object
Unpacks and repacks index data into the appropriate format for NMatrix.
If data is already in the appropriate format, does not unpack or repack, just returns directly.
242 243 244 245 246 247 248 249 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 242 def repacked_indices repacked_row_indices = ::NMatrix::IO::Matlab.repack( \ self.row_index.data, :miINT32, :itype ) repacked_col_indices = ::NMatrix::IO::Matlab.repack( \ self.column_index.data, :miINT32, :itype ) [repacked_row_indices, repacked_col_indices] end |
#to_nm(dtype = nil) ⇒ Object
call-seq:
to_nm(dtype = nil) -> NMatrix
Create an NMatrix from a MATLAB .mat (v5) matrix.
This function matches the storage type exactly. That is, a regular matrix in MATLAB will be a dense NMatrix, and a sparse (old Yale) one in MATLAB will be a :yale (new Yale) matrix in NMatrix.
Note that NMatrix has no old Yale type, so this uses a semi-hidden version of the NMatrix constructor to pass in — as directly as possible – the stored bytes in a MATLAB sparse matrix. This constructor should also be used for other IO formats that want to create sparse matrices from IA and JA vectors (e.g., SciPy).
This is probably not the fastest code. An ideal solution would be a C plugin of some sort for reading the MATLAB .mat file. However, .mat v5 is a really complicated format, and lends itself to an object-oriented solution.
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 272 def to_nm(dtype = nil) # Hardest part is figuring out from_dtype, from_index_dtype, and dtype. dtype ||= guess_dtype_from_mdtype from_dtype = MatReader::MDTYPE_TO_DTYPE[self.real_part.tag.data_type] # Create the same kind of matrix that MATLAB saved. case matlab_class when :mxSPARSE raise(NotImplementedError, "expected .mat row indices to be of type :miINT32") unless row_index.tag.data_type == :miINT32 raise(NotImplementedError, "expected .mat column indices to be of type :miINT32") unless column_index.tag.data_type == :miINT32 #require 'pry' #binding.pry # MATLAB always uses :miINT32 for indices according to the spec ia_ja = repacked_indices data_str, repacked_dtype = repacked_data(dtype) NMatrix.new(:yale, self.dimensions.reverse, repacked_dtype, \ ia_ja[0], ia_ja[1], data_str, repacked_dtype) else # Call regular dense constructor. NMatrix.new(:dense, self.dimensions.reverse, unpacked_data, dtype).transpose end end |
#to_ruby ⇒ Object
call-seq:
to_ruby -> NMatrix
to_ruby -> Array
Figure out the appropriate Ruby type to convert to, and do it. There are basically two possible types: NMatrix
and Array
. This method is recursive, so an Array
is going to contain other Arrays and/or NMatrix
objects.
mxCELL types (cells) will be converted to the Array type.
mxSPARSE and other types will be converted to NMatrix, with the appropriate stype (:yale or :dense, respectively).
See also to_nm, which is responsible for NMatrix instantiation.
121 122 123 124 125 126 127 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 121 def to_ruby case matlab_class when :mxSPARSE then return to_nm when :mxCELL then return self.cells.collect { |c| c.to_ruby } else return to_nm end end |
#unpacked_data(real_mdtype = nil, imag_mdtype = nil) ⇒ Object
call-seq:
unpacked_data(real_mdtype = nil, imag_mdtype = nil) ->
Unpacks data without repacking it.
Used only for dense matrix creation. Yale matrix creation uses repacked_data.
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 153 def unpacked_data(real_mdtype = nil, imag_mdtype = nil) # Get Matlab data type and unpack args real_mdtype ||= self.real_part.tag.data_type real_unpack_args = MatReader::MDTYPE_UNPACK_ARGS[real_mdtype] # zip real and complex components together, or just return real component if self.complex imag_mdtype ||= self.imaginary_part.tag.data_type imag_unpack_args = MatReader::MDTYPE_UNPACK_ARGS[imag_mdtype] unpacked_real = self.real_part.data.unpack(real_unpack_args) unpacked_imag = self.imaginary_part.data.unpack(imag_unpack_args) unpacked_real.zip(unpacked_imag).flatten else length = self.dimensions.inject(1) { |a,b| a * b } # get the product self.real_part.data.unpack(*(real_unpack_args*length)) end end |
#write_packed(packedio, options) ⇒ Object
101 102 103 104 |
# File 'lib/nmatrix/io/mat5_reader.rb', line 101 def write_packed(packedio, ) raise NotImplementedError packedio << [info, {:bytes => padded_bytes}.merge()] end |