Method: NN#initialize
- Defined in:
- lib/nn.rb
#initialize(num_nodes, learning_rate: 0.01, batch_size: 1, activation: %i(relu identity),, momentum: 0, weight_decay: 0, use_dropout: false, dropout_ratio: 0.5, use_batch_norm: false) ⇒ NN
Returns a new instance of NN.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# File 'lib/nn.rb', line 21 def initialize(num_nodes, learning_rate: 0.01, batch_size: 1, activation: i(relu identity), momentum: 0, weight_decay: 0, use_dropout: false, dropout_ratio: 0.5, use_batch_norm: false) SFloat.srand(rand(2 ** 64)) @num_nodes = num_nodes @learning_rate = learning_rate @batch_size = batch_size @activation = activation @momentum = momentum @weight_decay = weight_decay @use_dropout = use_dropout @dropout_ratio = dropout_ratio @use_batch_norm = use_batch_norm init_weight_and_bias init_gamma_and_beta if @use_batch_norm @training = true init_layers end |