Class: Classifier::Bayes
Instance Method Summary collapse
-
#add_category(category) ⇒ Object
(also: #append_category)
Allows you to add categories to the classifier.
-
#categories ⇒ Object
Provides a list of category names For example: b.categories => [‘This’, ‘That’, ‘the_other’].
-
#classifications(text) ⇒ Object
Returns the scores in each category the provided
text
. -
#classify(text) ⇒ Object
Returns the classification of the provided
text
, which is one of the categories given in the initializer. -
#initialize(options = {}) ⇒ Bayes
constructor
The class can be created with one or more categories, each of which will be initialized and given a training method.
-
#method_missing(name, *args) ⇒ Object
Provides training and untraining methods for the categories specified in Bayes#new For example: b = Classifier::Bayes.new ‘This’, ‘That’, ‘the_other’ b.train_this “This text” b.train_that “That text” b.untrain_that “That text” b.train_the_other “The other text”.
-
#train(category, text) ⇒ Object
Provides a general training method for all categories specified in Bayes#new For example: b = Classifier::Bayes.new ‘This’, ‘That’, ‘the_other’ b.train :this, “This text” b.train “that”, “That text” b.train “The other”, “The other text”.
-
#untrain(category, text) ⇒ Object
Provides a untraining method for all categories specified in Bayes#new Be very careful with this method.
Methods inherited from Base
#clean_word_hash, #prepare_category_name, #without_punctuation, #word_hash
Constructor Details
#initialize(options = {}) ⇒ Bayes
The class can be created with one or more categories, each of which will be initialized and given a training method. E.g.,
b = Classifier::Bayes.new :categories => ['Interesting', 'Uninteresting', 'Spam']
you can specify language and encoding parameters for stemmer
(default values - :language => ‘en’, :encoding => ‘UTF_8’)
b = Classifier::Bayes.new :categories => ['Interesting', 'Uninteresting', 'Spam'], :language => 'ru'
15 16 17 18 19 20 21 |
# File 'lib/classifier/bayes.rb', line 15 def initialize( = {}) @categories = Hash.new .reverse_merge!(:categories => []) [:categories].each { |category| @categories[prepare_category_name(category)] = Hash.new } @total_words = 0 super end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args) ⇒ Object
Provides training and untraining methods for the categories specified in Bayes#new For example:
b = Classifier::Bayes.new 'This', 'That', 'the_other'
b.train_this "This text"
b.train_that "That text"
b.untrain_that "That text"
b.train_the_other "The other text"
98 99 100 101 102 103 104 105 106 107 |
# File 'lib/classifier/bayes.rb', line 98 def method_missing(name, *args) category = prepare_category_name(name.to_s.gsub(/(un)?train_([\w]+)/, '\2')) if @categories.has_key? category args.each { |text| eval("#{$1}train(category, text)") } elsif name.to_s =~ /(un)?train_([\w]+)/ raise StandardError, "No such category: #{category}" else super #raise StandardError, "No such method: #{name}" end end |
Instance Method Details
#add_category(category) ⇒ Object Also known as: append_category
Allows you to add categories to the classifier. For example:
b.add_category "Not spam"
WARNING: Adding categories to a trained classifier will result in an undertrained category that will tend to match more criteria than the trained selective categories. In short, try to initialize your categories at initialization.
127 128 129 |
# File 'lib/classifier/bayes.rb', line 127 def add_category(category) @categories[prepare_category_name(category)] = Hash.new end |
#categories ⇒ Object
Provides a list of category names For example:
b.categories
=> ['This', 'That', 'the_other']
114 115 116 |
# File 'lib/classifier/bayes.rb', line 114 def categories # :nodoc: @categories.keys.collect {|c| c.to_s} end |
#classifications(text) ⇒ Object
Returns the scores in each category the provided text
. E.g.,
b.classifications "I hate bad words and you"
=> {"Uninteresting"=>-12.6997928013932, "Interesting"=>-18.4206807439524}
The largest of these scores (the one closest to 0) is the one picked out by #classify
68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/classifier/bayes.rb', line 68 def classifications(text) score = Hash.new @categories.each do |category, category_words| score[category.to_s] = 0 total = category_words.values.sum word_hash(text).each do |word, count| s = category_words.has_key?(word) ? category_words[word] : 0.1 score[category.to_s] += Math.log(s/total.to_f) end end return score end |
#classify(text) ⇒ Object
Returns the classification of the provided text
, which is one of the categories given in the initializer. E.g.,
b.classify "I hate bad words and you"
=> 'Uninteresting'
86 87 88 |
# File 'lib/classifier/bayes.rb', line 86 def classify(text) (classifications(text).sort_by { |a| -a[1] })[0][0] end |
#train(category, text) ⇒ Object
Provides a general training method for all categories specified in Bayes#new For example:
b = Classifier::Bayes.new 'This', 'That', 'the_other'
b.train :this, "This text"
b.train "that", "That text"
b.train "The other", "The other text"
30 31 32 33 34 35 36 37 |
# File 'lib/classifier/bayes.rb', line 30 def train(category, text) category = prepare_category_name(category) word_hash(text).each do |word, count| @categories[category][word] ||= 0 @categories[category][word] += count @total_words += count end end |
#untrain(category, text) ⇒ Object
Provides a untraining method for all categories specified in Bayes#new Be very careful with this method.
For example:
b = Classifier::Bayes.new 'This', 'That', 'the_other'
b.train :this, "This text"
b.untrain :this, "This text"
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/classifier/bayes.rb', line 47 def untrain(category, text) category = prepare_category_name(category) word_hash(text).each do |word, count| if @total_words >= 0 orig = @categories[category][word] || 0 @categories[category][word] ||= 0 @categories[category][word] -= count if @categories[category][word] <= 0 @categories[category].delete(word) count = orig end @total_words -= count end end end |