Class: OpenC3::BinaryAccessor
- Defined in:
- lib/openc3/accessors/binary_accessor.rb,
ext/openc3/ext/structure/structure.c
Overview
Provides methods for binary reading and writing
Constant Summary collapse
- PACK_8_BIT_INT =
Constants for ruby packing directives
'c'
- PACK_NATIVE_16_BIT_INT =
's'
- PACK_LITTLE_ENDIAN_16_BIT_UINT =
'v'
- PACK_BIG_ENDIAN_16_BIT_UINT =
'n'
- PACK_NATIVE_32_BIT_INT =
'l'
- PACK_NATIVE_32_BIT_UINT =
'L'
- PACK_NATIVE_64_BIT_INT =
'q'
- PACK_NATIVE_64_BIT_UINT =
'Q'
- PACK_LITTLE_ENDIAN_32_BIT_UINT =
'V'
- PACK_BIG_ENDIAN_32_BIT_UINT =
'N'
- PACK_LITTLE_ENDIAN_32_BIT_FLOAT =
'e'
- PACK_LITTLE_ENDIAN_64_BIT_FLOAT =
'E'
- PACK_BIG_ENDIAN_32_BIT_FLOAT =
'g'
- PACK_BIG_ENDIAN_64_BIT_FLOAT =
'G'
- PACK_NULL_TERMINATED_STRING =
'Z*'
- PACK_BLOCK =
'a*'
- PACK_8_BIT_INT_ARRAY =
'c*'
- PACK_8_BIT_UINT_ARRAY =
'C*'
- PACK_NATIVE_16_BIT_INT_ARRAY =
's*'
- PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY =
'n*'
- PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY =
'v*'
- PACK_NATIVE_32_BIT_INT_ARRAY =
'l*'
- PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY =
'N*'
- PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY =
'V*'
- PACK_NATIVE_64_BIT_INT_ARRAY =
'q*'
- PACK_NATIVE_64_BIT_UINT_ARRAY =
'Q*'
- PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY =
'e*'
- PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY =
'E*'
- PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY =
'g*'
- PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY =
'G*'
- MIN_INT8 =
MIN_INT8
- MAX_INT8 =
MAX_INT8
- MAX_UINT8 =
MAX_UINT8
- MIN_INT16 =
MIN_INT16
- MAX_INT16 =
MAX_INT16
- MAX_UINT16 =
MAX_UINT16
- MIN_INT32 =
MIN_INT32
- MAX_INT32 =
MAX_INT32
- MAX_UINT32 =
MAX_UINT32
- MIN_INT64 =
MIN_INT64
- MAX_INT64 =
MAX_INT64
- MAX_UINT64 =
MAX_UINT64
- ZERO_STRING =
Additional Constants
"\000"
- DATA_TYPES =
Valid data types
[:INT, :UINT, :FLOAT, :STRING, :BLOCK]
- OVERFLOW_TYPES =
Valid overflow types
[:TRUNCATE, :SATURATE, :ERROR, :ERROR_ALLOW_HEX]
- HOST_ENDIANNESS =
Store the host endianness so that it only has to be determined once
get_host_endianness()
- ENDIANNESS =
Valid endianess
[:BIG_ENDIAN, :LITTLE_ENDIAN]
Instance Attribute Summary
Attributes inherited from Accessor
Class Method Summary collapse
-
.adjust_packed_size(num_bytes, packed) ⇒ Object
Adjusts the packed array to be the given number of bytes.
-
.byte_swap_buffer(buffer, num_bytes_per_word) ⇒ String
Byte swaps every X bytes of data in a buffer into a new buffer.
-
.byte_swap_buffer!(buffer, num_bytes_per_word) ⇒ String
Byte swaps every X bytes of data in a buffer overwriting the buffer.
-
.check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow) ⇒ Integer
Checks for overflow of an integer data type.
-
.check_overflow_array(values, min_value, max_value, hex_max_value, bit_size, data_type, overflow) ⇒ Array[Integer]
Checks for overflow of an array of integer data types.
-
.read(param_bit_offset, param_bit_size, param_data_type, param_buffer, param_endianness) ⇒ Integer
Reads binary data of any data type from a buffer.
-
.read_array(bit_offset, bit_size, data_type, array_size, buffer, endianness) ⇒ Array
Reads an array of binary data of any data type from a buffer.
- .read_item(item, buffer) ⇒ Object
-
.write(value, param_bit_offset, param_bit_size, param_data_type, param_buffer, param_endianness, param_overflow) ⇒ Integer
Writes binary data of any data type to a buffer.
-
.write_array(values, bit_offset, bit_size, data_type, array_size, buffer, endianness, overflow) ⇒ Array
Writes an array of binary data of any data type to a buffer.
- .write_item(item, value, buffer) ⇒ Object
Instance Method Summary collapse
-
#enforce_derived_write_conversion(_item) ⇒ Object
If this is true it will enfore that COSMOS DERIVED items must have a write_conversion to be written.
-
#enforce_encoding ⇒ Object
If this is set it will enforce that buffer data is encoded in a specific encoding.
-
#enforce_length ⇒ Object
This affects whether the Packet class enforces the buffer length at all.
-
#enforce_short_buffer_allowed ⇒ Object
This sets the short_buffer_allowed flag in the Packet class which allows packets that have a buffer shorter than the defined size.
Methods inherited from Accessor
#args, convert_to_type, #initialize, #read_item, #read_items, read_items, #write_item, write_items, #write_items
Constructor Details
This class inherits a constructor from OpenC3::Accessor
Class Method Details
.adjust_packed_size(num_bytes, packed) ⇒ Object
Adjusts the packed array to be the given number of bytes
1143 1144 1145 1146 1147 1148 1149 1150 1151 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1143 def self.adjust_packed_size(num_bytes, packed) difference = num_bytes - packed.length if difference > 0 packed << (ZERO_STRING * difference) elsif difference < 0 packed = packed[0..(packed.length - 1 + difference)] end packed end |
.byte_swap_buffer(buffer, num_bytes_per_word) ⇒ String
Byte swaps every X bytes of data in a buffer into a new buffer
1174 1175 1176 1177 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1174 def self.byte_swap_buffer(buffer, num_bytes_per_word) buffer = buffer.clone self.byte_swap_buffer!(buffer, num_bytes_per_word) end |
.byte_swap_buffer!(buffer, num_bytes_per_word) ⇒ String
Byte swaps every X bytes of data in a buffer overwriting the buffer
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1158 def self.byte_swap_buffer!(buffer, num_bytes_per_word) num_swaps = buffer.length / num_bytes_per_word index = 0 num_swaps.times do range = index..(index + num_bytes_per_word - 1) buffer[range] = buffer[range].reverse index += num_bytes_per_word end buffer end |
.check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow) ⇒ Integer
Checks for overflow of an integer data type
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1189 def self.check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow) if overflow == :TRUNCATE # Note this will always convert to unsigned equivalent for signed integers value = value % (hex_max_value + 1) else if value > max_value if overflow == :SATURATE value = max_value else if overflow == :ERROR or value > hex_max_value raise ArgumentError, "value of #{value} invalid for #{bit_size}-bit #{data_type}" end end elsif value < min_value if overflow == :SATURATE value = min_value else raise ArgumentError, "value of #{value} invalid for #{bit_size}-bit #{data_type}" end end end value end |
.check_overflow_array(values, min_value, max_value, hex_max_value, bit_size, data_type, overflow) ⇒ Array[Integer]
Checks for overflow of an array of integer data types
1223 1224 1225 1226 1227 1228 1229 1230 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1223 def self.check_overflow_array(values, min_value, max_value, hex_max_value, bit_size, data_type, overflow) if overflow != :TRUNCATE values.each_with_index do |value, index| values[index] = check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow) end end values end |
.read(param_bit_offset, param_bit_size, param_data_type, param_buffer, param_endianness) ⇒ Integer
Reads binary data of any data type from a buffer
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 146 def self.read(bit_offset, bit_size, data_type, buffer, endianness) given_bit_offset = bit_offset given_bit_size = bit_size bit_offset = check_bit_offset_and_size(:read, given_bit_offset, given_bit_size, data_type, buffer) # If passed a negative bit size with strings or blocks # recalculate based on the buffer length if (bit_size <= 0) && ((data_type == :STRING) || (data_type == :BLOCK)) bit_size = (buffer.length * 8) - bit_offset + bit_size if bit_size == 0 return "" elsif bit_size < 0 raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) end end result, lower_bound, upper_bound = check_bounds_and_buffer_size(bit_offset, bit_size, buffer.length, endianness, data_type) raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) unless result if (data_type == :STRING) || (data_type == :BLOCK) ####################################### # Handle :STRING and :BLOCK data types ####################################### if byte_aligned(bit_offset) if data_type == :STRING return buffer[lower_bound..upper_bound].unpack('Z*')[0] else return buffer[lower_bound..upper_bound].unpack('a*')[0] end else raise(ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}") end elsif (data_type == :INT) || (data_type == :UINT) ################################### # Handle :INT and :UINT data types ################################### if byte_aligned(bit_offset) && even_bit_size(bit_size) if data_type == :INT ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :INT ########################################################### case bit_size when 8 return buffer[lower_bound].unpack(PACK_8_BIT_INT)[0] when 16 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_16_BIT_INT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_16_BIT_INT)[0] end when 32 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_32_BIT_INT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_32_BIT_INT)[0] end when 64 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_INT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_64_BIT_INT)[0] end end else # data_type == :UINT ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :UINT ########################################################### case bit_size when 8 return buffer.getbyte(lower_bound) when 16 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_16_BIT_UINT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_16_BIT_UINT)[0] end when 32 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_UINT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_UINT)[0] end when 64 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_UINT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_64_BIT_UINT)[0] end end end else ########################## # Handle :INT and :UINT Bitfields ########################## # Extract Data for Bitfield if endianness == :LITTLE_ENDIAN # Bitoffset always refers to the most significant bit of a bitfield num_bytes = (((bit_offset % 8) + bit_size - 1) / 8) + 1 upper_bound = bit_offset / 8 lower_bound = upper_bound - num_bytes + 1 if lower_bound < 0 raise(ArgumentError, "LITTLE_ENDIAN bitfield with bit_offset #{given_bit_offset} and bit_size #{given_bit_size} is invalid") end temp_data = buffer[lower_bound..upper_bound].reverse else temp_data = buffer[lower_bound..upper_bound] end # Determine temp upper bound temp_upper = upper_bound - lower_bound # Handle Bitfield start_bits = bit_offset % 8 start_mask = ~(0xFF << (8 - start_bits)) total_bits = (temp_upper + 1) * 8 right_shift = total_bits - start_bits - bit_size # Mask off unwanted bits at beginning temp = temp_data.getbyte(0) & start_mask if upper_bound > lower_bound # Combine bytes into a FixNum temp_data[1..temp_upper].each_byte do |temp_value| temp = temp << 8 temp = temp + temp_value end end # Shift off unwanted bits at end temp = temp >> right_shift if data_type == :INT # Convert to negative if necessary if (bit_size > 1) && (temp[bit_size - 1] == 1) temp = -((1 << bit_size) - temp) end end return temp end elsif data_type == :FLOAT ########################## # Handle :FLOAT data type ########################## if byte_aligned(bit_offset) case bit_size when 32 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_FLOAT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT)[0] end when 64 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_64_BIT_FLOAT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT)[0] end else raise(ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}") end else raise(ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}") end else ############################ # Handle Unknown data types ############################ raise(ArgumentError, "data_type #{data_type} is not recognized") end return return_value end |
.read_array(bit_offset, bit_size, data_type, array_size, buffer, endianness) ⇒ Array
Reads an array of binary data of any data type from a buffer
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 724 def self.read_array(bit_offset, bit_size, data_type, array_size, buffer, endianness) # Save given values of bit offset, bit size, and array_size given_bit_offset = bit_offset given_bit_size = bit_size given_array_size = array_size # Handle negative and zero bit sizes raise ArgumentError, "bit_size #{given_bit_size} must be positive for arrays" if bit_size <= 0 # Handle negative bit offsets if bit_offset < 0 bit_offset = ((buffer.length * 8) + bit_offset) raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) if bit_offset < 0 end # Handle negative and zero array sizes if array_size <= 0 if given_bit_offset < 0 raise ArgumentError, "negative or zero array_size (#{given_array_size}) cannot be given with negative bit_offset (#{given_bit_offset})" else array_size = ((buffer.length * 8) - bit_offset + array_size) if array_size == 0 return [] elsif array_size < 0 raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) end end end # Calculate number of items in the array # If there is a remainder then we have a problem raise ArgumentError, "array_size #{given_array_size} not a multiple of bit_size #{given_bit_size}" if array_size % bit_size != 0 num_items = array_size / bit_size # Define bounds of string to access this item lower_bound = bit_offset / 8 upper_bound = (bit_offset + array_size - 1) / 8 # Check for byte alignment byte_aligned = ((bit_offset % 8) == 0) case data_type when :STRING, :BLOCK ####################################### # Handle :STRING and :BLOCK data types ####################################### if byte_aligned value = [] num_items.times do value << self.read(bit_offset, bit_size, data_type, buffer, endianness) bit_offset += bit_size end else raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}" end when :INT, :UINT ################################### # Handle :INT and :UINT data types ################################### if byte_aligned and (bit_size == 8 or bit_size == 16 or bit_size == 32 or bit_size == 64) ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :INT and :UINT ########################################################### case bit_size when 8 if data_type == :INT value = buffer[lower_bound..upper_bound].unpack(PACK_8_BIT_INT_ARRAY) else # data_type == :UINT value = buffer[lower_bound..upper_bound].unpack(PACK_8_BIT_UINT_ARRAY) end when 16 if data_type == :INT if endianness == HOST_ENDIANNESS value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_16_BIT_INT_ARRAY) else # endianness != HOST_ENDIANNESS temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 2) value = temp.to_s.unpack(PACK_NATIVE_16_BIT_INT_ARRAY) end else # data_type == :UINT if endianness == :BIG_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY) else # endianness == :LITTLE_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY) end end when 32 if data_type == :INT if endianness == HOST_ENDIANNESS value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_32_BIT_INT_ARRAY) else # endianness != HOST_ENDIANNESS temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 4) value = temp.to_s.unpack(PACK_NATIVE_32_BIT_INT_ARRAY) end else # data_type == :UINT if endianness == :BIG_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY) else # endianness == :LITTLE_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY) end end when 64 if data_type == :INT if endianness == HOST_ENDIANNESS value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_INT_ARRAY) else # endianness != HOST_ENDIANNESS temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 8) value = temp.to_s.unpack(PACK_NATIVE_64_BIT_INT_ARRAY) end else # data_type == :UINT if endianness == HOST_ENDIANNESS value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_UINT_ARRAY) else # endianness != HOST_ENDIANNESS temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 8) value = temp.to_s.unpack(PACK_NATIVE_64_BIT_UINT_ARRAY) end end end else ################################## # Handle :INT and :UINT Bitfields ################################## raise ArgumentError, "read_array does not support little endian bit fields with bit_size greater than 1-bit" if endianness == :LITTLE_ENDIAN and bit_size > 1 value = [] num_items.times do value << self.read(bit_offset, bit_size, data_type, buffer, endianness) bit_offset += bit_size end end when :FLOAT ########################## # Handle :FLOAT data type ########################## if byte_aligned case bit_size when 32 if endianness == :BIG_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY) else # endianness == :LITTLE_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY) end when 64 if endianness == :BIG_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY) else # endianness == :LITTLE_ENDIAN value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY) end else raise ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}" end else raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}" end else ############################ # Handle Unknown data types ############################ raise ArgumentError, "data_type #{data_type} is not recognized" end value end |
.read_item(item, buffer) ⇒ Object
118 119 120 121 122 123 124 125 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 118 def self.read_item(item, buffer) return nil if item.data_type == :DERIVED if item.array_size return read_array(item.bit_offset, item.bit_size, item.data_type, item.array_size, buffer, item.endianness) else return read(item.bit_offset, item.bit_size, item.data_type, buffer, item.endianness) end end |
.write(value, param_bit_offset, param_bit_size, param_data_type, param_buffer, param_endianness, param_overflow) ⇒ Integer
Writes binary data of any data type to a buffer
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 350 def self.write(value, bit_offset, bit_size, data_type, buffer, endianness, overflow) given_bit_offset = bit_offset given_bit_size = bit_size bit_offset = check_bit_offset_and_size(:write, given_bit_offset, given_bit_size, data_type, buffer) # If passed a negative bit size with strings or blocks # recalculate based on the value length in bytes if (bit_size <= 0) && ((data_type == :STRING) || (data_type == :BLOCK)) value = value.to_s bit_size = value.length * 8 end result, lower_bound, upper_bound = check_bounds_and_buffer_size(bit_offset, bit_size, buffer.length, endianness, data_type) raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size) if !result && (given_bit_size > 0) # Check overflow type if (overflow != :TRUNCATE) && (overflow != :SATURATE) && (overflow != :ERROR) && (overflow != :ERROR_ALLOW_HEX) raise(ArgumentError, "unknown overflow type #{overflow}") end if (data_type == :STRING) || (data_type == :BLOCK) ####################################### # Handle :STRING and :BLOCK data types ####################################### value = value.to_s if byte_aligned(bit_offset) temp = value if given_bit_size <= 0 end_bytes = -(given_bit_size / 8) old_upper_bound = buffer.length - 1 - end_bytes # Lower bound + end_bytes can never be more than 1 byte outside of the given buffer if (lower_bound + end_bytes) > buffer.length raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size) end if old_upper_bound < lower_bound # String was completely empty if end_bytes > 0 # Preserve bytes at end of buffer buffer << "\000" * value.length buffer[lower_bound + value.length, end_bytes] = buffer[lower_bound, end_bytes] end elsif bit_size == 0 # Remove entire string buffer[lower_bound, old_upper_bound - lower_bound + 1] = '' elsif upper_bound < old_upper_bound # Remove extra bytes from old string buffer[upper_bound + 1, old_upper_bound - upper_bound] = '' elsif (upper_bound > old_upper_bound) && (end_bytes > 0) # Preserve bytes at end of buffer diff = upper_bound - old_upper_bound buffer << "\000" * diff buffer[upper_bound + 1, end_bytes] = buffer[old_upper_bound + 1, end_bytes] end else # given_bit_size > 0 byte_size = bit_size / 8 if value.length < byte_size # Pad the requested size with zeros temp = value.ljust(byte_size, "\000") elsif value.length > byte_size if overflow == :TRUNCATE # Resize the value to fit the field value[byte_size, value.length - byte_size] = '' else raise(ArgumentError, "value of #{value.length} bytes does not fit into #{byte_size} bytes for data_type #{data_type}") end end end if bit_size != 0 buffer[lower_bound, temp.length] = temp end else raise(ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}") end elsif (data_type == :INT) || (data_type == :UINT) ################################### # Handle :INT data type ################################### value = Integer(value) min_value, max_value, hex_max_value = get_check_overflow_ranges(bit_size, data_type) value = check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow) if byte_aligned(bit_offset) && even_bit_size(bit_size) ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit ########################################################### if data_type == :INT ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :INT ########################################################### case bit_size when 8 buffer.setbyte(lower_bound, value) when 16 if endianness == HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_16_BIT_INT) else # endianness != HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_16_BIT_INT).reverse end when 32 if endianness == HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_32_BIT_INT) else # endianness != HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_32_BIT_INT).reverse end when 64 if endianness == HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_64_BIT_INT) else # endianness != HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_64_BIT_INT).reverse end end else # data_type == :UINT ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :UINT ########################################################### case bit_size when 8 buffer.setbyte(lower_bound, value) when 16 if endianness == :BIG_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_BIG_ENDIAN_16_BIT_UINT) else # endianness == :LITTLE_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_LITTLE_ENDIAN_16_BIT_UINT) end when 32 if endianness == :BIG_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_BIG_ENDIAN_32_BIT_UINT) else # endianness == :LITTLE_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_LITTLE_ENDIAN_32_BIT_UINT) end when 64 if endianness == HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_64_BIT_UINT) else # endianness != HOST_ENDIANNESS buffer[lower_bound..upper_bound] = [value].pack(PACK_NATIVE_64_BIT_UINT).reverse end end end else ########################################################### # Handle bit fields ########################################################### # Extract Existing Data if endianness == :LITTLE_ENDIAN # Bitoffset always refers to the most significant bit of a bitfield num_bytes = (((bit_offset % 8) + bit_size - 1) / 8) + 1 upper_bound = bit_offset / 8 lower_bound = upper_bound - num_bytes + 1 if lower_bound < 0 raise(ArgumentError, "LITTLE_ENDIAN bitfield with bit_offset #{given_bit_offset} and bit_size #{given_bit_size} is invalid") end temp_data = buffer[lower_bound..upper_bound].reverse else temp_data = buffer[lower_bound..upper_bound] end # Determine temp upper bound temp_upper = upper_bound - lower_bound # Determine Values needed to Handle Bitfield start_bits = bit_offset % 8 start_mask = (0xFF << (8 - start_bits)) total_bits = (temp_upper + 1) * 8 end_bits = total_bits - start_bits - bit_size end_mask = ~(0xFF << end_bits) # Add in Start Bits temp = temp_data.getbyte(0) & start_mask # Adjust value to correct number of bits temp_mask = (2**bit_size) - 1 temp_value = value & temp_mask # Add in New Data temp = (temp << (bit_size - (8 - start_bits))) + temp_value # Add in Remainder of Existing Data temp = (temp << end_bits) + (temp_data.getbyte(temp_upper) & end_mask) # Extract into an array of bytes temp_array = [] (0..temp_upper).each { temp_array.insert(0, (temp & 0xFF)); temp = temp >> 8 } # Store into data if endianness == :LITTLE_ENDIAN buffer[lower_bound..upper_bound] = temp_array.pack(PACK_8_BIT_UINT_ARRAY).reverse else buffer[lower_bound..upper_bound] = temp_array.pack(PACK_8_BIT_UINT_ARRAY) end end elsif data_type == :FLOAT ########################## # Handle :FLOAT data type ########################## value = Float(value) if byte_aligned(bit_offset) case bit_size when 32 if endianness == :BIG_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_BIG_ENDIAN_32_BIT_FLOAT) else # endianness == :LITTLE_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT) end when 64 if endianness == :BIG_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_BIG_ENDIAN_64_BIT_FLOAT) else # endianness == :LITTLE_ENDIAN buffer[lower_bound..upper_bound] = [value].pack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT) end else raise(ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}") end else raise(ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}") end else ############################ # Handle Unknown data types ############################ raise(ArgumentError, "data_type #{data_type} is not recognized") end return value end |
.write_array(values, bit_offset, bit_size, data_type, array_size, buffer, endianness, overflow) ⇒ Array
Writes an array of binary data of any data type to a buffer
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 916 def self.write_array(values, bit_offset, bit_size, data_type, array_size, buffer, endianness, overflow) # Save given values of bit offset, bit size, and array_size given_bit_offset = bit_offset given_bit_size = bit_size given_array_size = array_size # Verify an array was given raise ArgumentError, "values must be an Array type class is #{values.class}" unless values.kind_of? Array # Handle negative and zero bit sizes raise ArgumentError, "bit_size #{given_bit_size} must be positive for arrays" if bit_size <= 0 # Handle negative bit offsets if bit_offset < 0 bit_offset = ((buffer.length * 8) + bit_offset) raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size) if bit_offset < 0 end # Handle negative and zero array sizes if array_size <= 0 if given_bit_offset < 0 raise ArgumentError, "negative or zero array_size (#{given_array_size}) cannot be given with negative bit_offset (#{given_bit_offset})" else end_bytes = -(given_array_size / 8) lower_bound = bit_offset / 8 upper_bound = (bit_offset + (bit_size * values.length) - 1) / 8 old_upper_bound = buffer.length - 1 - end_bytes if upper_bound < old_upper_bound # Remove extra bytes from old buffer buffer[(upper_bound + 1)..old_upper_bound] = '' elsif upper_bound > old_upper_bound # Grow buffer and preserve bytes at end of buffer if necesssary buffer_length = buffer.length diff = upper_bound - old_upper_bound buffer << ZERO_STRING * diff if end_bytes > 0 buffer[(upper_bound + 1)..(buffer.length - 1)] = buffer[(old_upper_bound + 1)..(buffer_length - 1)] end end array_size = ((buffer.length * 8) - bit_offset + array_size) end end # Get data bounds for this array lower_bound = bit_offset / 8 upper_bound = (bit_offset + array_size - 1) / 8 num_bytes = upper_bound - lower_bound + 1 # Check for byte alignment byte_aligned = ((bit_offset % 8) == 0) # Calculate the number of writes num_writes = array_size / bit_size # Check for a negative array_size and adjust the number of writes # to simply be the number of values in the passed in array if given_array_size <= 0 num_writes = values.length end # Ensure the buffer has enough room if bit_offset + num_writes * bit_size > buffer.length * 8 raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size) end # Ensure the given_array_size is an even multiple of bit_size raise ArgumentError, "array_size #{given_array_size} not a multiple of bit_size #{given_bit_size}" if array_size % bit_size != 0 raise ArgumentError, "too many values #{values.length} for given array_size #{given_array_size} and bit_size #{given_bit_size}" if num_writes < values.length # Check overflow type raise "unknown overflow type #{overflow}" unless OVERFLOW_TYPES.include?(overflow) case data_type when :STRING, :BLOCK ####################################### # Handle :STRING and :BLOCK data types ####################################### if byte_aligned num_writes.times do |index| self.write(values[index], bit_offset, bit_size, data_type, buffer, endianness, overflow) bit_offset += bit_size end else raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}" end when :INT, :UINT ################################### # Handle :INT and :UINT data types ################################### if byte_aligned and (bit_size == 8 or bit_size == 16 or bit_size == 32 or bit_size == 64) ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :INT and :UINT ########################################################### case bit_size when 8 if data_type == :INT values = self.check_overflow_array(values, MIN_INT8, MAX_INT8, MAX_UINT8, bit_size, data_type, overflow) packed = values.pack(PACK_8_BIT_INT_ARRAY) else # data_type == :UINT values = self.check_overflow_array(values, 0, MAX_UINT8, MAX_UINT8, bit_size, data_type, overflow) packed = values.pack(PACK_8_BIT_UINT_ARRAY) end when 16 if data_type == :INT values = self.check_overflow_array(values, MIN_INT16, MAX_INT16, MAX_UINT16, bit_size, data_type, overflow) if endianness == HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_16_BIT_INT_ARRAY) else # endianness != HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_16_BIT_INT_ARRAY) self.byte_swap_buffer!(packed, 2) end else # data_type == :UINT values = self.check_overflow_array(values, 0, MAX_UINT16, MAX_UINT16, bit_size, data_type, overflow) if endianness == :BIG_ENDIAN packed = values.pack(PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY) else # endianness == :LITTLE_ENDIAN packed = values.pack(PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY) end end when 32 if data_type == :INT values = self.check_overflow_array(values, MIN_INT32, MAX_INT32, MAX_UINT32, bit_size, data_type, overflow) if endianness == HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_32_BIT_INT_ARRAY) else # endianness != HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_32_BIT_INT_ARRAY) self.byte_swap_buffer!(packed, 4) end else # data_type == :UINT values = self.check_overflow_array(values, 0, MAX_UINT32, MAX_UINT32, bit_size, data_type, overflow) if endianness == :BIG_ENDIAN packed = values.pack(PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY) else # endianness == :LITTLE_ENDIAN packed = values.pack(PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY) end end when 64 if data_type == :INT values = self.check_overflow_array(values, MIN_INT64, MAX_INT64, MAX_UINT64, bit_size, data_type, overflow) if endianness == HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_64_BIT_INT_ARRAY) else # endianness != HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_64_BIT_INT_ARRAY) self.byte_swap_buffer!(packed, 8) end else # data_type == :UINT values = self.check_overflow_array(values, 0, MAX_UINT64, MAX_UINT64, bit_size, data_type, overflow) if endianness == HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_64_BIT_UINT_ARRAY) else # endianness != HOST_ENDIANNESS packed = values.pack(PACK_NATIVE_64_BIT_UINT_ARRAY) self.byte_swap_buffer!(packed, 8) end end end # Adjust packed size to hold number of items written buffer[lower_bound..upper_bound] = adjust_packed_size(num_bytes, packed) if num_bytes > 0 else ################################## # Handle :INT and :UINT Bitfields ################################## raise ArgumentError, "write_array does not support little endian bit fields with bit_size greater than 1-bit" if endianness == :LITTLE_ENDIAN and bit_size > 1 num_writes.times do |index| self.write(values[index], bit_offset, bit_size, data_type, buffer, endianness, overflow) bit_offset += bit_size end end when :FLOAT ########################## # Handle :FLOAT data type ########################## if byte_aligned case bit_size when 32 if endianness == :BIG_ENDIAN packed = values.pack(PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY) else # endianness == :LITTLE_ENDIAN packed = values.pack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY) end when 64 if endianness == :BIG_ENDIAN packed = values.pack(PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY) else # endianness == :LITTLE_ENDIAN packed = values.pack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY) end else raise ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}" end # Adjust packed size to hold number of items written buffer[lower_bound..upper_bound] = adjust_packed_size(num_bytes, packed) if num_bytes > 0 else raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}" end else ############################ # Handle Unknown data types ############################ raise ArgumentError, "data_type #{data_type} is not recognized" end # case data_type values end |
.write_item(item, value, buffer) ⇒ Object
127 128 129 130 131 132 133 134 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 127 def self.write_item(item, value, buffer) return nil if item.data_type == :DERIVED if item.array_size return write_array(value, item.bit_offset, item.bit_size, item.data_type, item.array_size, buffer, item.endianness, item.overflow) else return write(value, item.bit_offset, item.bit_size, item.data_type, buffer, item.endianness, item.overflow) end end |
Instance Method Details
#enforce_derived_write_conversion(_item) ⇒ Object
If this is true it will enfore that COSMOS DERIVED items must have a write_conversion to be written
1254 1255 1256 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1254 def enforce_derived_write_conversion(_item) return true end |
#enforce_encoding ⇒ Object
If this is set it will enforce that buffer data is encoded in a specific encoding
1234 1235 1236 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1234 def enforce_encoding return 'ASCII-8BIT'.freeze end |
#enforce_length ⇒ Object
This affects whether the Packet class enforces the buffer length at all. Set to false to remove any correlation between buffer length and defined sizes of items in COSMOS
1241 1242 1243 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1241 def enforce_length return true end |
#enforce_short_buffer_allowed ⇒ Object
This sets the short_buffer_allowed flag in the Packet class which allows packets that have a buffer shorter than the defined size. Note that the buffer is still resized to the defined length
1248 1249 1250 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 1248 def enforce_short_buffer_allowed return false end |