Module: CVFFI::ImagePatch
- Defined in:
- lib/opencv-ffi-wrappers/features2d/image_patch.rb
Defined Under Namespace
Classes: CircularMask, Mask, Params, Result, ResultsArray, SquareMask
Class Method Summary collapse
Class Method Details
.describe(img, keypoints, params) ⇒ Object
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# File 'lib/opencv-ffi-wrappers/features2d/image_patch.rb', line 217 def self.describe( img, keypoints, params ) img = img.to_IplImage.ensure_greyscale preOriented = false half_size = (params.size/2).floor results = ResultsArray.new( params ) mask = results.mask puts "Extracting #{keypoints.length} keypoints" keypoints.each_with_index { |kp,idx| next if kp.x < half_size or kp.y < half_size or (img.width - kp.x) <= half_size or (img.height - kp.y) <= half_size angle = 0.0 rect = Rect.new( [ kp.x-half_size, kp.y-half_size, params.size, params.size ] ) CVFFI::cvSetImageROI( img, rect.to_CvRect ) # ## Simple single-channel implementation # Patch is row-major (i == row == y, j = column == x) patch = Array.new( params.size ) { |i| Array.new( params.size ) { |j| mask.valid?(i,j) ? CVFFI::cvGetReal2D( img, i,j ) : 0.0 } } CVFFI::cvResetImageROI( img ) if params.oriented == true # Calculate covariance matrix by Yingen Xiong patch_sum = mxi = mxj = 0.0 patch.each_index { |i| patch[i].each_index { |j| if mask.valid?(i,j) patch_sum += patch[i][j] mxi += i*patch[i][j] mxj += j*patch[i][j] end } } mxi /= patch_sum mxj /= patch_sum # puts "Medoids = " + [mxi,mxj].join(',') c11 = c12 = c22 = 0.0 patch.each_index { |i| patch[i].each_index { |j| if mask.valid?(i,j) c11 += patch[i][j] * (i-mxi)*(i-mxi) c12 += patch[i][j] * (i-mxi)*(j-mxj) c22 += patch[i][j] * (j-mxj)*(j-mxj) end } } c = Matrix.rows( [ [c11,c12],[c12,c22] ] ) d,v = CVFFI::Eigen.eigen( c ) d = d.to_a i = if d[0] == d[1] # Equal eigenvalues 0 else d.find_index( d.max ) end vec = v.to_Matrix.column_vectors[i] # Eigenvector corresponding to larger eignvector defines orientation # However it's in i-j space, which is OpenCV (y-down, x-right) # Subtract from 2PI to put in mathematical (x-right, y-up) space angle = 2*Math::PI - Math::atan2( vec[0],vec[1] ) angle %= 2*Math::PI #puts "Computed angle #{angle * 180.0/Math::PI}" ## Pre-orient patch # puts "Pre-orienting patch" rotmat = CVFFI::CvMat.new CVFFI::cvCreateMat( 2,3, :CV_32F ) CVFFI::cv2DRotationMatrix( kp.to_CvPoint2D32f, -angle*180.0/Math::PI, 1.0, rotmat ) dstimg = img.twin CVFFI::cvWarpAffine( img, dstimg, rotmat ) CVFFI::cvSetImageROI( dstimg, rect.to_CvRect ) patch = Array.new( params.size ) { |i| Array.new( params.size ) { |j| mask.valid?(i,j) ? CVFFI::cvGetReal2D( dstimg, i,j ) : 0.0 } } CVFFI::cvResetImageROI( dstimg ) CVFFI::cvReleaseImage( dstimg ) preOriented = true GC.start if (idx % 5) == 0 end results << Result.new( kp, patch, angle, preOriented ) } results end |