Class: OpenSSL::Cipher

Inherits:
Object
  • Object
show all
Defined in:
ext/openssl/ossl_cipher.c,
lib/openssl/cipher.rb,
ext/openssl/ossl_cipher.c

Overview

Provides symmetric algorithms for encryption and decryption. The algorithms that are available depend on the particular version of OpenSSL that is installed.

Listing all supported algorithms

A list of supported algorithms can be obtained by

puts OpenSSL::Cipher.ciphers

Instantiating a Cipher

There are several ways to create a Cipher instance. Generally, a Cipher algorithm is categorized by its name, the key length in bits and the cipher mode to be used. The most generic way to create a Cipher is the following

cipher = OpenSSL::Cipher.new('<name>-<key length>-<mode>')

That is, a string consisting of the hyphenated concatenation of the individual components name, key length and mode. Either all uppercase or all lowercase strings may be used, for example:

cipher = OpenSSL::Cipher.new('AES-128-CBC')

For each algorithm supported, there is a class defined under the Cipher class that goes by the name of the cipher, e.g. to obtain an instance of AES, you could also use

# these are equivalent
cipher = OpenSSL::Cipher::AES.new(128, :CBC)
cipher = OpenSSL::Cipher::AES.new(128, 'CBC')
cipher = OpenSSL::Cipher::AES.new('128-CBC')

Finally, due to its wide-spread use, there are also extra classes defined for the different key sizes of AES

cipher = OpenSSL::Cipher::AES128.new(:CBC)
cipher = OpenSSL::Cipher::AES192.new(:CBC)
cipher = OpenSSL::Cipher::AES256.new(:CBC)

Choosing either encryption or decryption mode

Encryption and decryption are often very similar operations for symmetric algorithms, this is reflected by not having to choose different classes for either operation, both can be done using the same class. Still, after obtaining a Cipher instance, we need to tell the instance what it is that we intend to do with it, so we need to call either

cipher.encrypt

or

cipher.decrypt

on the Cipher instance. This should be the first call after creating the instance, otherwise configuration that has already been set could get lost in the process.

Choosing a key

Symmetric encryption requires a key that is the same for the encrypting and for the decrypting party and after initial key establishment should be kept as private information. There are a lot of ways to create insecure keys, the most notable is to simply take a password as the key without processing the password further. A simple and secure way to create a key for a particular Cipher is

cipher = OpenSSL::AES256.new(:CFB)
cipher.encrypt
key = cipher.random_key # also sets the generated key on the Cipher

If you absolutely need to use passwords as encryption keys, you should use Password-Based Key Derivation Function 2 (PBKDF2) by generating the key with the help of the functionality provided by OpenSSL::PKCS5.pbkdf2_hmac_sha1 or OpenSSL::PKCS5.pbkdf2_hmac.

Although there is Cipher#pkcs5_keyivgen, its use is deprecated and it should only be used in legacy applications because it does not use the newer PKCS#5 v2 algorithms.

Choosing an IV

The cipher modes CBC, CFB, OFB and CTR all need an “initialization vector”, or short, IV. ECB mode is the only mode that does not require an IV, but there is almost no legitimate use case for this mode because of the fact that it does not sufficiently hide plaintext patterns. Therefore

You should never use ECB mode unless you are absolutely sure that you absolutely need it

Because of this, you will end up with a mode that explicitly requires an IV in any case. Although the IV can be seen as public information, i.e. it may be transmitted in public once generated, it should still stay unpredictable to prevent certain kinds of attacks. Therefore, ideally

Always create a secure random IV for every encryption of your Cipher

A new, random IV should be created for every encryption of data. Think of the IV as a nonce (number used once) - it’s public but random and unpredictable. A secure random IV can be created as follows

cipher = ...
cipher.encrypt
key = cipher.random_key
iv = cipher.random_iv # also sets the generated IV on the Cipher

Although the key is generally a random value, too, it is a bad choice as an IV. There are elaborate ways how an attacker can take advantage of such an IV. As a general rule of thumb, exposing the key directly or indirectly should be avoided at all cost and exceptions only be made with good reason.

Calling Cipher#final

ECB (which should not be used) and CBC are both block-based modes. This means that unlike for the other streaming-based modes, they operate on fixed-size blocks of data, and therefore they require a “finalization” step to produce or correctly decrypt the last block of data by appropriately handling some form of padding. Therefore it is essential to add the output of OpenSSL::Cipher#final to your encryption/decryption buffer or you will end up with decryption errors or truncated data.

Although this is not really necessary for streaming-mode ciphers, it is still recommended to apply the same pattern of adding the output of Cipher#final there as well - it also enables you to switch between modes more easily in the future.

Encrypting and decrypting some data

data = "Very, very confidential data"

cipher = OpenSSL::Cipher::AES.new(128, :CBC)
cipher.encrypt
key = cipher.random_key
iv = cipher.random_iv

encrypted = cipher.update(data) + cipher.final
...
decipher = OpenSSL::Cipher::AES.new(128, :CBC)
decipher.decrypt
decipher.key = key
decipher.iv = iv

plain = decipher.update(encrypted) + decipher.final

puts data == plain #=> true

Authenticated Encryption and Associated Data (AEAD)

If the OpenSSL version used supports it, an Authenticated Encryption mode (such as GCM or CCM) should always be preferred over any unauthenticated mode. Currently, OpenSSL supports AE only in combination with Associated Data (AEAD) where additional associated data is included in the encryption process to compute a tag at the end of the encryption. This tag will also be used in the decryption process and by verifying its validity, the authenticity of a given ciphertext is established.

This is superior to unauthenticated modes in that it allows to detect if somebody effectively changed the ciphertext after it had been encrypted. This prevents malicious modifications of the ciphertext that could otherwise be exploited to modify ciphertexts in ways beneficial to potential attackers.

An associated data is used where there is additional information, such as headers or some metadata, that must be also authenticated but not necessarily need to be encrypted. If no associated data is needed for encryption and later decryption, the OpenSSL library still requires a value to be set - “” may be used in case none is available.

An example using the GCM (Galois/Counter Mode). You have 16 bytes key, 12 bytes (96 bits) nonce and the associated data auth_data. Be sure not to reuse the key and nonce pair. Reusing an nonce ruins the security guarantees of GCM mode.

cipher = OpenSSL::Cipher::AES.new(128, :GCM).encrypt
cipher.key = key
cipher.iv = nonce
cipher.auth_data = auth_data

encrypted = cipher.update(data) + cipher.final
tag = cipher.auth_tag # produces 16 bytes tag by default

Now you are the receiver. You know the key and have received nonce, auth_data, encrypted and tag through an untrusted network. Note that GCM accepts an arbitrary length tag between 1 and 16 bytes. You may additionally need to check that the received tag has the correct length, or you allow attackers to forge a valid single byte tag for the tampered ciphertext with a probability of 1/256.

raise "tag is truncated!" unless tag.bytesize == 16
decipher = OpenSSL::Cipher::AES.new(128, :GCM).decrypt
decipher.key = key
decipher.iv = nonce
decipher.auth_tag = tag
decipher.auth_data = auth_data

decrypted = decipher.update(encrypted) + decipher.final

puts data == decrypted #=> true

Direct Known Subclasses

Cipher

Defined Under Namespace

Classes: Cipher, CipherError

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#new(string) ⇒ Object

The string must be a valid cipher name like “AES-128-CBC” or “3DES”.

A list of cipher names is available by calling OpenSSL::Cipher.ciphers.



111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# File 'ext/openssl/ossl_cipher.c', line 111

static VALUE
ossl_cipher_initialize(VALUE self, VALUE str)
{
    EVP_CIPHER_CTX *ctx;
    const EVP_CIPHER *cipher;
    char *name;

    name = StringValueCStr(str);
    GetCipherInit(self, ctx);
    if (ctx) {
	ossl_raise(rb_eRuntimeError, "Cipher already initialized!");
    }
    AllocCipher(self, ctx);
    if (!(cipher = EVP_get_cipherbyname(name))) {
	ossl_raise(rb_eRuntimeError, "unsupported cipher algorithm (%"PRIsVALUE")", str);
    }
    if (EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, -1) != 1)
	ossl_raise(eCipherError, NULL);

    return self;
}

Class Method Details

.OpenSSL::Cipher.ciphersObject

Returns the names of all available ciphers in an array.



165
166
167
168
169
170
171
172
173
174
175
176
# File 'ext/openssl/ossl_cipher.c', line 165

static VALUE
ossl_s_ciphers(VALUE self)
{
    VALUE ary;

    ary = rb_ary_new();
    OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_CIPHER_METH,
                    (void(*)(const OBJ_NAME*,void*))add_cipher_name_to_ary,
                    (void*)ary);

    return ary;
}

Instance Method Details

#auth_data=(string) ⇒ String

Sets the cipher’s additional authenticated data. This field must be set when using AEAD cipher modes such as GCM or CCM. If no associated data shall be used, this method must still be called with a value of “”. The contents of this field should be non-sensitive data which will be added to the ciphertext to generate the authentication tag which validates the contents of the ciphertext.

The AAD must be set prior to encryption or decryption. In encryption mode, it must be set after calling Cipher#encrypt and setting Cipher#key= and Cipher#iv=. When decrypting, the authenticated data must be set after key, iv and especially after the authentication tag has been set. I.e. set it only after calling Cipher#decrypt, Cipher#key=, Cipher#iv= and Cipher#auth_tag= first.

Returns:

  • (String)


559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# File 'ext/openssl/ossl_cipher.c', line 559

static VALUE
ossl_cipher_set_auth_data(VALUE self, VALUE data)
{
    EVP_CIPHER_CTX *ctx;
    unsigned char *in;
    long in_len, out_len;

    StringValue(data);

    in = (unsigned char *) RSTRING_PTR(data);
    in_len = RSTRING_LEN(data);

    GetCipher(self, ctx);
    if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
	ossl_raise(eCipherError, "AEAD not supported by this cipher");

    if (!ossl_cipher_update_long(ctx, NULL, &out_len, in, in_len))
        ossl_raise(eCipherError, "couldn't set additional authenticated data");

    return data;
}

#auth_tag(tag_len = 16) ⇒ String

Gets the authentication tag generated by Authenticated Encryption Cipher modes (GCM for example). This tag may be stored along with the ciphertext, then set on the decryption cipher to authenticate the contents of the ciphertext against changes. If the optional integer parameter tag_len is given, the returned tag will be tag_len bytes long. If the parameter is omitted, the default length of 16 bytes or the length previously set by #auth_tag_len= will be used. For maximum security, the longest possible should be chosen.

The tag may only be retrieved after calling Cipher#final.

Returns:

  • (String)


596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# File 'ext/openssl/ossl_cipher.c', line 596

static VALUE
ossl_cipher_get_auth_tag(int argc, VALUE *argv, VALUE self)
{
    VALUE vtag_len, ret;
    EVP_CIPHER_CTX *ctx;
    int tag_len = 16;

    rb_scan_args(argc, argv, "01", &vtag_len);
    if (NIL_P(vtag_len))
	vtag_len = rb_attr_get(self, id_auth_tag_len);
    if (!NIL_P(vtag_len))
	tag_len = NUM2INT(vtag_len);

    GetCipher(self, ctx);

    if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
	ossl_raise(eCipherError, "authentication tag not supported by this cipher");

    ret = rb_str_new(NULL, tag_len);
    if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, tag_len, RSTRING_PTR(ret)))
	ossl_raise(eCipherError, "retrieving the authentication tag failed");

    return ret;
}

#auth_tag=(string) ⇒ String

Sets the authentication tag to verify the integrity of the ciphertext. This can be called only when the cipher supports AE. The tag must be set after calling Cipher#decrypt, Cipher#key= and Cipher#iv=, but before calling Cipher#final. After all decryption is performed, the tag is verified automatically in the call to Cipher#final.

For OCB mode, the tag length must be supplied with #auth_tag_len= beforehand.

Returns:

  • (String)


634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
# File 'ext/openssl/ossl_cipher.c', line 634

static VALUE
ossl_cipher_set_auth_tag(VALUE self, VALUE vtag)
{
    EVP_CIPHER_CTX *ctx;
    unsigned char *tag;
    int tag_len;

    StringValue(vtag);
    tag = (unsigned char *) RSTRING_PTR(vtag);
    tag_len = RSTRING_LENINT(vtag);

    GetCipher(self, ctx);
    if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
	ossl_raise(eCipherError, "authentication tag not supported by this cipher");

    if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag_len, tag))
	ossl_raise(eCipherError, "unable to set AEAD tag");

    return vtag;
}

#auth_tag_len=(Integer) ⇒ Integer

Sets the length of the authentication tag to be generated or to be given for AEAD ciphers that requires it as in input parameter. Note that not all AEAD ciphers support this method.

In OCB mode, the length must be supplied both when encrypting and when decrypting, and must be before specifying an IV.

Returns:



666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
# File 'ext/openssl/ossl_cipher.c', line 666

static VALUE
ossl_cipher_set_auth_tag_len(VALUE self, VALUE vlen)
{
    int tag_len = NUM2INT(vlen);
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);
    if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
	ossl_raise(eCipherError, "AEAD not supported by this cipher");

    if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag_len, NULL))
	ossl_raise(eCipherError, "unable to set authentication tag length");

    /* for #auth_tag */
    rb_ivar_set(self, id_auth_tag_len, INT2NUM(tag_len));

    return vlen;
}

#authenticated?Boolean

Indicated whether this Cipher instance uses an Authenticated Encryption mode.

Returns:

  • (Boolean)


531
532
533
534
535
536
537
538
539
# File 'ext/openssl/ossl_cipher.c', line 531

static VALUE
ossl_cipher_is_authenticated(VALUE self)
{
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);

    return (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER) ? Qtrue : Qfalse;
}

#block_sizeInteger

Returns the size in bytes of the blocks on which this Cipher operates on.

Returns:



805
806
807
808
809
810
811
812
813
# File 'ext/openssl/ossl_cipher.c', line 805

static VALUE
ossl_cipher_block_size(VALUE self)
{
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);

    return INT2NUM(EVP_CIPHER_CTX_block_size(ctx));
}

#decryptself

Initializes the Cipher for decryption.

Make sure to call Cipher#encrypt or Cipher#decrypt before using any of the following methods:

  • #key=, #iv=, #random_key, #random_iv, #pkcs5_keyivgen

Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, 0).

Returns:

  • (self)


276
277
278
279
280
# File 'ext/openssl/ossl_cipher.c', line 276

static VALUE
ossl_cipher_decrypt(int argc, VALUE *argv, VALUE self)
{
    return ossl_cipher_init(argc, argv, self, 0);
}

#encryptself

Initializes the Cipher for encryption.

Make sure to call Cipher#encrypt or Cipher#decrypt before using any of the following methods:

  • #key=, #iv=, #random_key, #random_iv, #pkcs5_keyivgen

Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, 1).

Returns:

  • (self)


258
259
260
261
262
# File 'ext/openssl/ossl_cipher.c', line 258

static VALUE
ossl_cipher_encrypt(int argc, VALUE *argv, VALUE self)
{
    return ossl_cipher_init(argc, argv, self, 1);
}

#finalString

Returns the remaining data held in the cipher object. Further calls to Cipher#update or Cipher#final will return garbage. This call should always be made as the last call of an encryption or decryption operation, after having fed the entire plaintext or ciphertext to the Cipher instance.

If an authenticated cipher was used, a CipherError is raised if the tag could not be authenticated successfully. Only call this method after setting the authentication tag and passing the entire contents of the ciphertext into the cipher.

Returns:

  • (String)


424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# File 'ext/openssl/ossl_cipher.c', line 424

static VALUE
ossl_cipher_final(VALUE self)
{
    EVP_CIPHER_CTX *ctx;
    int out_len;
    VALUE str;

    GetCipher(self, ctx);
    str = rb_str_new(0, EVP_CIPHER_CTX_block_size(ctx));
    if (!EVP_CipherFinal_ex(ctx, (unsigned char *)RSTRING_PTR(str), &out_len))
	ossl_raise(eCipherError, NULL);
    assert(out_len <= RSTRING_LEN(str));
    rb_str_set_len(str, out_len);

    return str;
}

#initialize_copy(other) ⇒ Object



133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# File 'ext/openssl/ossl_cipher.c', line 133

static VALUE
ossl_cipher_copy(VALUE self, VALUE other)
{
    EVP_CIPHER_CTX *ctx1, *ctx2;

    rb_check_frozen(self);
    if (self == other) return self;

    GetCipherInit(self, ctx1);
    if (!ctx1) {
	AllocCipher(self, ctx1);
    }
    GetCipher(other, ctx2);
    if (EVP_CIPHER_CTX_copy(ctx1, ctx2) != 1)
	ossl_raise(eCipherError, NULL);

    return self;
}

#iv=(string) ⇒ String

Sets the cipher IV. Please note that since you should never be using ECB mode, an IV is always explicitly required and should be set prior to encryption. The IV itself can be safely transmitted in public, but it should be unpredictable to prevent certain kinds of attacks. You may use Cipher#random_iv to create a secure random IV.

Only call this method after calling Cipher#encrypt or Cipher#decrypt.

Returns:

  • (String)


502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# File 'ext/openssl/ossl_cipher.c', line 502

static VALUE
ossl_cipher_set_iv(VALUE self, VALUE iv)
{
    EVP_CIPHER_CTX *ctx;
    int iv_len = 0;

    StringValue(iv);
    GetCipher(self, ctx);

    if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER)
	iv_len = (int)(VALUE)EVP_CIPHER_CTX_get_app_data(ctx);
    if (!iv_len)
	iv_len = EVP_CIPHER_CTX_iv_length(ctx);
    if (RSTRING_LEN(iv) != iv_len)
	ossl_raise(rb_eArgError, "iv must be %d bytes", iv_len);

    if (EVP_CipherInit_ex(ctx, NULL, NULL, NULL, (unsigned char *)RSTRING_PTR(iv), -1) != 1)
	ossl_raise(eCipherError, NULL);

    return iv;
}

#iv_lenInteger

Returns the expected length in bytes for an IV for this Cipher.

Returns:



784
785
786
787
788
789
790
791
792
793
794
795
796
797
# File 'ext/openssl/ossl_cipher.c', line 784

static VALUE
ossl_cipher_iv_length(VALUE self)
{
    EVP_CIPHER_CTX *ctx;
    int len = 0;

    GetCipher(self, ctx);
    if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER)
	len = (int)(VALUE)EVP_CIPHER_CTX_get_app_data(ctx);
    if (!len)
	len = EVP_CIPHER_CTX_iv_length(ctx);

    return INT2NUM(len);
}

#iv_len=(integer) ⇒ Integer

Sets the IV/nonce length of the Cipher. Normally block ciphers don’t allow changing the IV length, but some make use of IV for ‘nonce’. You may need this for interoperability with other applications.

Returns:



693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# File 'ext/openssl/ossl_cipher.c', line 693

static VALUE
ossl_cipher_set_iv_length(VALUE self, VALUE iv_length)
{
    int len = NUM2INT(iv_length);
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);
    if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
	ossl_raise(eCipherError, "cipher does not support AEAD");

    if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, len, NULL))
	ossl_raise(eCipherError, "unable to set IV length");

    /*
     * EVP_CIPHER_CTX_iv_length() returns the default length. So we need to save
     * the length somewhere. Luckily currently we aren't using app_data.
     */
    EVP_CIPHER_CTX_set_app_data(ctx, (void *)(VALUE)len);

    return iv_length;
}

#key=(string) ⇒ String

Sets the cipher key. To generate a key, you should either use a secure random byte string or, if the key is to be derived from a password, you should rely on PBKDF2 functionality provided by OpenSSL::PKCS5. To generate a secure random-based key, Cipher#random_key may be used.

Only call this method after calling Cipher#encrypt or Cipher#decrypt.

Returns:

  • (String)


469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# File 'ext/openssl/ossl_cipher.c', line 469

static VALUE
ossl_cipher_set_key(VALUE self, VALUE key)
{
    EVP_CIPHER_CTX *ctx;
    int key_len;

    StringValue(key);
    GetCipher(self, ctx);

    key_len = EVP_CIPHER_CTX_key_length(ctx);
    if (RSTRING_LEN(key) != key_len)
	ossl_raise(rb_eArgError, "key must be %d bytes", key_len);

    if (EVP_CipherInit_ex(ctx, NULL, NULL, (unsigned char *)RSTRING_PTR(key), NULL, -1) != 1)
	ossl_raise(eCipherError, NULL);

    rb_ivar_set(self, id_key_set, Qtrue);

    return key;
}

#key_lenInteger

Returns the key length in bytes of the Cipher.

Returns:



768
769
770
771
772
773
774
775
776
# File 'ext/openssl/ossl_cipher.c', line 768

static VALUE
ossl_cipher_key_length(VALUE self)
{
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);

    return INT2NUM(EVP_CIPHER_CTX_key_length(ctx));
}

#key_len=(integer) ⇒ Integer

Sets the key length of the cipher. If the cipher is a fixed length cipher then attempting to set the key length to any value other than the fixed value is an error.

Under normal circumstances you do not need to call this method (and probably shouldn’t).

See EVP_CIPHER_CTX_set_key_length for further information.

Returns:



727
728
729
730
731
732
733
734
735
736
737
738
# File 'ext/openssl/ossl_cipher.c', line 727

static VALUE
ossl_cipher_set_key_length(VALUE self, VALUE key_length)
{
    int len = NUM2INT(key_length);
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);
    if (EVP_CIPHER_CTX_set_key_length(ctx, len) != 1)
        ossl_raise(eCipherError, NULL);

    return key_length;
}

#nameString

Returns the name of the cipher which may differ slightly from the original name provided.

Returns:

  • (String)


448
449
450
451
452
453
454
455
456
# File 'ext/openssl/ossl_cipher.c', line 448

static VALUE
ossl_cipher_name(VALUE self)
{
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);

    return rb_str_new2(EVP_CIPHER_name(EVP_CIPHER_CTX_cipher(ctx)));
}

#padding=(integer) ⇒ Integer

Enables or disables padding. By default encryption operations are padded using standard block padding and the padding is checked and removed when decrypting. If the pad parameter is zero then no padding is performed, the total amount of data encrypted or decrypted must then be a multiple of the block size or an error will occur.

See EVP_CIPHER_CTX_set_padding for further information.

Returns:



750
751
752
753
754
755
756
757
758
759
760
# File 'ext/openssl/ossl_cipher.c', line 750

static VALUE
ossl_cipher_set_padding(VALUE self, VALUE padding)
{
    EVP_CIPHER_CTX *ctx;
    int pad = NUM2INT(padding);

    GetCipher(self, ctx);
    if (EVP_CIPHER_CTX_set_padding(ctx, pad) != 1)
	ossl_raise(eCipherError, NULL);
    return padding;
}

#pkcs5_keyivgen(pass, salt = nil, iterations = 2048, digest = "MD5") ⇒ nil

Generates and sets the key/IV based on a password.

WARNING: This method is only PKCS5 v1.5 compliant when using RC2, RC4-40, or DES with MD5 or SHA1. Using anything else (like AES) will generate the key/iv using an OpenSSL specific method. This method is deprecated and should no longer be used. Use a PKCS5 v2 key generation method from OpenSSL::PKCS5 instead.

Parameters

  • salt must be an 8 byte string if provided.

  • iterations is an integer with a default of 2048.

  • digest is a Digest object that defaults to ‘MD5’

A minimum of 1000 iterations is recommended.

Returns:

  • (nil)


302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# File 'ext/openssl/ossl_cipher.c', line 302

static VALUE
ossl_cipher_pkcs5_keyivgen(int argc, VALUE *argv, VALUE self)
{
    EVP_CIPHER_CTX *ctx;
    const EVP_MD *digest;
    VALUE vpass, vsalt, viter, vdigest;
    unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH], *salt = NULL;
    int iter;

    rb_scan_args(argc, argv, "13", &vpass, &vsalt, &viter, &vdigest);
    StringValue(vpass);
    if(!NIL_P(vsalt)){
	StringValue(vsalt);
	if(RSTRING_LEN(vsalt) != PKCS5_SALT_LEN)
	    ossl_raise(eCipherError, "salt must be an 8-octet string");
	salt = (unsigned char *)RSTRING_PTR(vsalt);
    }
    iter = NIL_P(viter) ? 2048 : NUM2INT(viter);
    digest = NIL_P(vdigest) ? EVP_md5() : ossl_evp_get_digestbyname(vdigest);
    GetCipher(self, ctx);
    EVP_BytesToKey(EVP_CIPHER_CTX_cipher(ctx), digest, salt,
		   (unsigned char *)RSTRING_PTR(vpass), RSTRING_LENINT(vpass), iter, key, iv);
    if (EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, -1) != 1)
	ossl_raise(eCipherError, NULL);
    OPENSSL_cleanse(key, sizeof key);
    OPENSSL_cleanse(iv, sizeof iv);

    rb_ivar_set(self, id_key_set, Qtrue);

    return Qnil;
}

#random_ivObject

call-seq:

cipher.random_iv -> iv

Generate a random IV with OpenSSL::Random.random_bytes and sets it to the cipher, and returns it.

You must call #encrypt or #decrypt before calling this method.



55
56
57
58
# File 'lib/openssl/cipher.rb', line 55

def random_iv
  str = OpenSSL::Random.random_bytes(self.iv_len)
  self.iv = str
end

#random_keyObject

call-seq:

cipher.random_key -> key

Generate a random key with OpenSSL::Random.random_bytes and sets it to the cipher, and returns it.

You must call #encrypt or #decrypt before calling this method.



43
44
45
46
# File 'lib/openssl/cipher.rb', line 43

def random_key
  str = OpenSSL::Random.random_bytes(self.key_len)
  self.key = str
end

#resetself

Fully resets the internal state of the Cipher. By using this, the same Cipher instance may be used several times for encryption or decryption tasks.

Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, -1).

Returns:

  • (self)


187
188
189
190
191
192
193
194
195
196
197
# File 'ext/openssl/ossl_cipher.c', line 187

static VALUE
ossl_cipher_reset(VALUE self)
{
    EVP_CIPHER_CTX *ctx;

    GetCipher(self, ctx);
    if (EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, -1) != 1)
	ossl_raise(eCipherError, NULL);

    return self;
}

#update(data[, buffer]) ⇒ String

Encrypts data in a streaming fashion. Hand consecutive blocks of data to the #update method in order to encrypt it. Returns the encrypted data chunk. When done, the output of Cipher#final should be additionally added to the result.

If buffer is given, the encryption/decryption result will be written to it. buffer will be resized automatically.

Returns:

  • (String)


371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# File 'ext/openssl/ossl_cipher.c', line 371

static VALUE
ossl_cipher_update(int argc, VALUE *argv, VALUE self)
{
    EVP_CIPHER_CTX *ctx;
    unsigned char *in;
    long in_len, out_len;
    VALUE data, str;

    rb_scan_args(argc, argv, "11", &data, &str);

    if (!RTEST(rb_attr_get(self, id_key_set)))
	ossl_raise(eCipherError, "key not set");

    StringValue(data);
    in = (unsigned char *)RSTRING_PTR(data);
    if ((in_len = RSTRING_LEN(data)) == 0)
        ossl_raise(rb_eArgError, "data must not be empty");
    GetCipher(self, ctx);
    out_len = in_len+EVP_CIPHER_CTX_block_size(ctx);
    if (out_len <= 0) {
	ossl_raise(rb_eRangeError,
		   "data too big to make output buffer: %ld bytes", in_len);
    }

    if (NIL_P(str)) {
        str = rb_str_new(0, out_len);
    } else {
        StringValue(str);
        rb_str_resize(str, out_len);
    }

    if (!ossl_cipher_update_long(ctx, (unsigned char *)RSTRING_PTR(str), &out_len, in, in_len))
	ossl_raise(eCipherError, NULL);
    assert(out_len < RSTRING_LEN(str));
    rb_str_set_len(str, out_len);

    return str;
}