Class: OpenSSL::Digest

Inherits:
Object
  • Object
show all
Defined in:
ext/openssl/ossl_digest.c,
lib/openssl/digest.rb

Overview

OpenSSL::Digest allows you to compute message digests (sometimes interchangeably called “hashes”) of arbitrary data that are cryptographically secure, i.e. a Digest implements a secure one-way function.

One-way functions offer some useful properties. E.g. given two distinct inputs the probability that both yield the same output is highly unlikely. Combined with the fact that every message digest algorithm has a fixed-length output of just a few bytes, digests are often used to create unique identifiers for arbitrary data. A common example is the creation of a unique id for binary documents that are stored in a database.

Another useful characteristic of one-way functions (and thus the name) is that given a digest there is no indication about the original data that produced it, i.e. the only way to identify the original input is to “brute-force” through every possible combination of inputs.

These characteristics make one-way functions also ideal companions for public key signature algorithms: instead of signing an entire document, first a hash of the document is produced with a considerably faster message digest algorithm and only the few bytes of its output need to be signed using the slower public key algorithm. To validate the integrity of a signed document, it suffices to re-compute the hash and verify that it is equal to that in the signature.

You can get a list of all digest algorithms supported on your system by running this command in your terminal:

openssl list -digest-algorithms

Among the OpenSSL 1.1.1 supported message digest algorithms are:

  • SHA224, SHA256, SHA384, SHA512, SHA512-224 and SHA512-256

  • SHA3-224, SHA3-256, SHA3-384 and SHA3-512

  • BLAKE2s256 and BLAKE2b512

Each of these algorithms can be instantiated using the name:

digest = OpenSSL::Digest.new('SHA256')

“Breaking” a message digest algorithm means defying its one-way function characteristics, i.e. producing a collision or finding a way to get to the original data by means that are more efficient than brute-forcing etc. Most of the supported digest algorithms can be considered broken in this sense, even the very popular MD5 and SHA1 algorithms. Should security be your highest concern, then you should probably rely on SHA224, SHA256, SHA384 or SHA512.

Hashing a file

data = File.binread('document')
sha256 = OpenSSL::Digest.new('SHA256')
digest = sha256.digest(data)

Hashing several pieces of data at once

data1 = File.binread('file1')
data2 = File.binread('file2')
data3 = File.binread('file3')
sha256 = OpenSSL::Digest.new('SHA256')
sha256 << data1
sha256 << data2
sha256 << data3
digest = sha256.digest

Reuse a Digest instance

data1 = File.binread('file1')
sha256 = OpenSSL::Digest.new('SHA256')
digest1 = sha256.digest(data1)

data2 = File.binread('file2')
sha256.reset
digest2 = sha256.digest(data2)

Direct Known Subclasses

Digest

Defined Under Namespace

Classes: Digest, DigestError

Class Method Summary collapse

Class Method Details

.digest(name, data) ⇒ Object

Return the hash value computed with name Digest. name is either the long name or short name of a supported digest algorithm.

Examples

OpenSSL::Digest.digest("SHA256", "abc")

which is equivalent to:

OpenSSL::Digest.digest('SHA256', "abc")


29
30
31
# File 'lib/openssl/digest.rb', line 29

def self.digest(name, data)
  super(data, name)
end