Class: OpenSSL::PKey::RSA
- Includes:
- Marshal
- Defined in:
- ext/openssl/ossl_pkey_rsa.c,
lib/openssl/pkey.rb,
ext/openssl/ossl_pkey_rsa.c
Overview
RSA is an asymmetric public key algorithm that has been formalized in RFC 3447. It is in widespread use in public key infrastructures (PKI) where certificates (cf. OpenSSL::X509::Certificate) often are issued on the basis of a public/private RSA key pair. RSA is used in a wide field of applications such as secure (symmetric) key exchange, e.g. when establishing a secure TLS/SSL connection. It is also used in various digital signature schemes.
Constant Summary collapse
- PKCS1_PADDING =
1
- SSLV23_PADDING =
2
- NO_PADDING =
3
- PKCS1_OAEP_PADDING =
4
Class Method Summary collapse
-
.generate(size, exp = 0x10001, &blk) ⇒ Object
:call-seq: RSA.generate(size, exponent = 65537) -> RSA.
-
.new(*args, &blk) ⇒ Object
Handle RSA.new(size, exponent) form here; new(str) and new() forms are handled by #initialize.
Instance Method Summary collapse
-
#export(*args) ⇒ Object
(also: #to_pem, #to_s)
Outputs this keypair in PEM encoding.
-
#initialize(*args) ⇒ Object
constructor
Generates or loads an RSA keypair.
- #initialize_copy(other) ⇒ Object
-
#params ⇒ Hash
THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!.
-
#private? ⇒ Boolean
Does this keypair contain a private key?.
-
#private_decrypt(data, padding = PKCS1_PADDING) ⇒ Object
:call-seq: rsa.private_decrypt(string) -> String rsa.private_decrypt(string, padding) -> String.
-
#private_encrypt(string, padding = PKCS1_PADDING) ⇒ Object
:call-seq: rsa.private_encrypt(string) -> String rsa.private_encrypt(string, padding) -> String.
-
#public? ⇒ true
The return value is always
true
since every private key is also a public key. -
#public_decrypt(string, padding = PKCS1_PADDING) ⇒ Object
:call-seq: rsa.public_decrypt(string) -> String rsa.public_decrypt(string, padding) -> String.
-
#public_encrypt(data, padding = PKCS1_PADDING) ⇒ Object
:call-seq: rsa.public_encrypt(string) -> String rsa.public_encrypt(string, padding) -> String.
-
#public_key ⇒ Object
:call-seq: rsa.public_key -> rsanew.
-
#set_crt_params(dmp1, dmq1, iqmp) ⇒ self
Sets dmp1, dmq1, iqmp for the RSA instance.
-
#set_factors(p, q) ⇒ self
Sets p, q for the RSA instance.
-
#set_key(n, e, d) ⇒ self
Sets n, e, d for the RSA instance.
-
#sign_pss(digest, data, salt_length: , mgf1_hash: ) ⇒ String
Signs data using the Probabilistic Signature Scheme (RSA-PSS) and returns the calculated signature.
-
#to_der ⇒ DER-format String
Outputs this keypair in DER encoding.
-
#verify_pss(digest, signature, data, salt_length: , mgf1_hash: ) ⇒ Object
Verifies data using the Probabilistic Signature Scheme (RSA-PSS).
Methods included from Marshal
Constructor Details
#new ⇒ Object #new(encoded_key[, passphrase]) ⇒ Object #new(encoded_key) { ... } ⇒ Object #new(size[, exponent]) ⇒ Object
Generates or loads an RSA keypair.
If called without arguments, creates a new instance with no key components set. They can be set individually by #set_key, #set_factors, and #set_crt_params.
If called with a String, tries to parse as DER or PEM encoding of an RSA key. Note that, if passphrase is not specified but the key is encrypted with a passphrase, OpenSSL will prompt for it. See also OpenSSL::PKey.read which can parse keys of any kinds.
If called with a number, generates a new key pair. This form works as an alias of RSA.generate.
Examples:
OpenSSL::PKey::RSA.new 2048
OpenSSL::PKey::RSA.new File.read 'rsa.pem'
OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 76
static VALUE
ossl_rsa_initialize(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
RSA *rsa;
BIO *in = NULL;
VALUE arg, pass;
int type;
TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
if (pkey)
rb_raise(rb_eTypeError, "pkey already initialized");
/* The RSA.new(size, generator) form is handled by lib/openssl/pkey.rb */
rb_scan_args(argc, argv, "02", &arg, &pass);
if (argc == 0) {
rsa = RSA_new();
if (!rsa)
ossl_raise(eRSAError, "RSA_new");
goto legacy;
}
pass = ossl_pem_passwd_value(pass);
arg = ossl_to_der_if_possible(arg);
in = ossl_obj2bio(&arg);
/* First try RSAPublicKey format */
rsa = d2i_RSAPublicKey_bio(in, NULL);
if (rsa)
goto legacy;
OSSL_BIO_reset(in);
rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL);
if (rsa)
goto legacy;
OSSL_BIO_reset(in);
/* Use the generic routine */
pkey = ossl_pkey_read_generic(in, pass);
BIO_free(in);
if (!pkey)
ossl_raise(eRSAError, "Neither PUB key nor PRIV key");
type = EVP_PKEY_base_id(pkey);
if (type != EVP_PKEY_RSA) {
EVP_PKEY_free(pkey);
rb_raise(eRSAError, "incorrect pkey type: %s", OBJ_nid2sn(type));
}
RTYPEDDATA_DATA(self) = pkey;
return self;
legacy:
BIO_free(in);
pkey = EVP_PKEY_new();
if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa) != 1) {
EVP_PKEY_free(pkey);
RSA_free(rsa);
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
}
RTYPEDDATA_DATA(self) = pkey;
return self;
}
|
Class Method Details
.generate(size, exp = 0x10001, &blk) ⇒ Object
:call-seq:
RSA.generate(size, exponent = 65537) -> RSA
Generates an RSA keypair.
See also OpenSSL::PKey.generate_key.
size
-
The desired key size in bits.
exponent
-
An odd Integer, normally 3, 17, or 65537.
343 344 345 346 347 348 |
# File 'lib/openssl/pkey.rb', line 343 def generate(size, exp = 0x10001, &blk) OpenSSL::PKey.generate_key("RSA", { "rsa_keygen_bits" => size, "rsa_keygen_pubexp" => exp, }, &blk) end |
.new(*args, &blk) ⇒ Object
Handle RSA.new(size, exponent) form here; new(str) and new() forms are handled by #initialize
352 353 354 355 356 357 358 |
# File 'lib/openssl/pkey.rb', line 352 def new(*args, &blk) # :nodoc: if args[0].is_a?(Integer) generate(*args, &blk) else super end end |
Instance Method Details
#export([cipher, pass_phrase]) ⇒ PEM-format String #to_pem([cipher, pass_phrase]) ⇒ PEM-format String #to_s([cipher, pass_phrase]) ⇒ PEM-format String Also known as: to_pem, to_s
Outputs this keypair in PEM encoding. If cipher and pass_phrase are given they will be used to encrypt the key. cipher must be an OpenSSL::Cipher instance.
228 229 230 231 232 233 234 235 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 228
static VALUE
ossl_rsa_export(int argc, VALUE *argv, VALUE self)
{
if (can_export_rsaprivatekey(self))
return ossl_pkey_export_traditional(argc, argv, self, 0);
else
return ossl_pkey_export_spki(self, 0);
}
|
#initialize_copy(other) ⇒ Object
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 139
static VALUE
ossl_rsa_initialize_copy(VALUE self, VALUE other)
{
EVP_PKEY *pkey;
RSA *rsa, *rsa_new;
TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
if (pkey)
rb_raise(rb_eTypeError, "pkey already initialized");
GetRSA(other, rsa);
rsa_new = (RSA *)ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey,
(d2i_of_void *)d2i_RSAPrivateKey,
(char *)rsa);
if (!rsa_new)
ossl_raise(eRSAError, "ASN1_dup");
pkey = EVP_PKEY_new();
if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa_new) != 1) {
RSA_free(rsa_new);
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
}
RTYPEDDATA_DATA(self) = pkey;
return self;
}
|
#params ⇒ Hash
THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
Stores all parameters of key to the hash. The hash has keys ‘n’, ‘e’, ‘d’, ‘p’, ‘q’, ‘dmp1’, ‘dmq1’, ‘iqmp’.
Don’t use :-)) (It’s up to you)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 453
static VALUE
ossl_rsa_get_params(VALUE self)
{
OSSL_3_const RSA *rsa;
VALUE hash;
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
GetRSA(self, rsa);
RSA_get0_key(rsa, &n, &e, &d);
RSA_get0_factors(rsa, &p, &q);
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n));
rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e));
rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d));
rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1));
rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1));
rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp));
return hash;
}
|
#private? ⇒ Boolean
Does this keypair contain a private key?
193 194 195 196 197 198 199 200 201 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 193
static VALUE
ossl_rsa_is_private(VALUE self)
{
OSSL_3_const RSA *rsa;
GetRSA(self, rsa);
return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse;
}
|
#private_decrypt(data, padding = PKCS1_PADDING) ⇒ Object
:call-seq:
rsa.private_decrypt(string) -> String
rsa.private_decrypt(string, padding) -> String
Decrypt string
, which has been encrypted with the public key, with the private key. padding
defaults to PKCS1_PADDING, which is known to be insecure but is kept for backwards compatibility.
Deprecated in version 3.0. Consider using PKey::PKey#encrypt and PKey::PKey#decrypt instead.
439 440 441 442 443 444 445 446 447 448 449 |
# File 'lib/openssl/pkey.rb', line 439 def private_decrypt(data, padding = PKCS1_PADDING) n or raise OpenSSL::PKey::RSAError, "incomplete RSA" private? or raise OpenSSL::PKey::RSAError, "private key needed." begin decrypt(data, { "rsa_padding_mode" => translate_padding_mode(padding), }) rescue OpenSSL::PKey::PKeyError raise OpenSSL::PKey::RSAError, $!. end end |
#private_encrypt(string, padding = PKCS1_PADDING) ⇒ Object
:call-seq:
rsa.private_encrypt(string) -> String
rsa.private_encrypt(string, padding) -> String
Encrypt string
with the private key. padding
defaults to PKCS1_PADDING, which is known to be insecure but is kept for backwards compatibility. The encrypted string output can be decrypted using #public_decrypt.
Deprecated in version 3.0. Consider using PKey::PKey#sign_raw and PKey::PKey#verify_raw, and PKey::PKey#verify_recover instead.
373 374 375 376 377 378 379 380 381 382 383 |
# File 'lib/openssl/pkey.rb', line 373 def private_encrypt(string, padding = PKCS1_PADDING) n or raise OpenSSL::PKey::RSAError, "incomplete RSA" private? or raise OpenSSL::PKey::RSAError, "private key needed." begin sign_raw(nil, string, { "rsa_padding_mode" => translate_padding_mode(padding), }) rescue OpenSSL::PKey::PKeyError raise OpenSSL::PKey::RSAError, $!. end end |
#public? ⇒ true
The return value is always true
since every private key is also a public key.
174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 174
static VALUE
ossl_rsa_is_public(VALUE self)
{
OSSL_3_const RSA *rsa;
GetRSA(self, rsa);
/*
* This method should check for n and e. BUG.
*/
(void)rsa;
return Qtrue;
}
|
#public_decrypt(string, padding = PKCS1_PADDING) ⇒ Object
:call-seq:
rsa.public_decrypt(string) -> String
rsa.public_decrypt(string, padding) -> String
Decrypt string
, which has been encrypted with the private key, with the public key. padding
defaults to PKCS1_PADDING which is known to be insecure but is kept for backwards compatibility.
Deprecated in version 3.0. Consider using PKey::PKey#sign_raw and PKey::PKey#verify_raw, and PKey::PKey#verify_recover instead.
396 397 398 399 400 401 402 403 404 405 |
# File 'lib/openssl/pkey.rb', line 396 def public_decrypt(string, padding = PKCS1_PADDING) n or raise OpenSSL::PKey::RSAError, "incomplete RSA" begin verify_recover(nil, string, { "rsa_padding_mode" => translate_padding_mode(padding), }) rescue OpenSSL::PKey::PKeyError raise OpenSSL::PKey::RSAError, $!. end end |
#public_encrypt(data, padding = PKCS1_PADDING) ⇒ Object
:call-seq:
rsa.public_encrypt(string) -> String
rsa.public_encrypt(string, padding) -> String
Encrypt string
with the public key. padding
defaults to PKCS1_PADDING, which is known to be insecure but is kept for backwards compatibility. The encrypted string output can be decrypted using #private_decrypt.
Deprecated in version 3.0. Consider using PKey::PKey#encrypt and PKey::PKey#decrypt instead.
418 419 420 421 422 423 424 425 426 427 |
# File 'lib/openssl/pkey.rb', line 418 def public_encrypt(data, padding = PKCS1_PADDING) n or raise OpenSSL::PKey::RSAError, "incomplete RSA" begin encrypt(data, { "rsa_padding_mode" => translate_padding_mode(padding), }) rescue OpenSSL::PKey::PKeyError raise OpenSSL::PKey::RSAError, $!. end end |
#public_key ⇒ Object
:call-seq:
rsa.public_key -> rsanew
Returns a new RSA instance that carries just the public key components.
This method is provided for backwards compatibility. In most cases, there is no need to call this method.
For the purpose of serializing the public key, to PEM or DER encoding of X.509 SubjectPublicKeyInfo format, check PKey#public_to_pem and PKey#public_to_der.
327 328 329 |
# File 'lib/openssl/pkey.rb', line 327 def public_key OpenSSL::PKey.read(public_to_der) end |
#set_crt_params(dmp1, dmq1, iqmp) ⇒ self
Sets dmp1, dmq1, iqmp for the RSA instance. They are calculated by d mod (p - 1)
, d mod (q - 1)
and q^(-1) mod p
respectively.
#set_factors(p, q) ⇒ self
Sets p, q for the RSA instance.
#set_key(n, e, d) ⇒ self
Sets n, e, d for the RSA instance.
#sign_pss(digest, data, salt_length: , mgf1_hash: ) ⇒ String
Signs data using the Probabilistic Signature Scheme (RSA-PSS) and returns the calculated signature.
RSAError will be raised if an error occurs.
See #verify_pss for the verification operation.
Parameters
- digest
-
A String containing the message digest algorithm name.
- data
-
A String. The data to be signed.
- salt_length
-
The length in octets of the salt. Two special values are reserved:
:digest
means the digest length, and:max
means the maximum possible length for the combination of the private key and the selected message digest algorithm. - mgf1_hash
-
The hash algorithm used in MGF1 (the currently supported mask generation function (MGF)).
Example
data = "Sign me!"
pkey = OpenSSL::PKey::RSA.new(2048)
signature = pkey.sign_pss("SHA256", data, salt_length: :max, mgf1_hash: "SHA256")
pub_key = OpenSSL::PKey.read(pkey.public_to_der)
puts pub_key.verify_pss("SHA256", signature, data,
salt_length: :auto, mgf1_hash: "SHA256") # => true
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 285
static VALUE
ossl_rsa_sign_pss(int argc, VALUE *argv, VALUE self)
{
VALUE digest, data, options, kwargs[2], signature;
static ID kwargs_ids[2];
EVP_PKEY *pkey;
EVP_PKEY_CTX *pkey_ctx;
const EVP_MD *md, *mgf1md;
EVP_MD_CTX *md_ctx;
size_t buf_len;
int salt_len;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt_length");
kwargs_ids[1] = rb_intern_const("mgf1_hash");
}
rb_scan_args(argc, argv, "2:", &digest, &data, &options);
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
if (kwargs[0] == ID2SYM(rb_intern("max")))
salt_len = -2; /* RSA_PSS_SALTLEN_MAX_SIGN */
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
else
salt_len = NUM2INT(kwargs[0]);
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
pkey = GetPrivPKeyPtr(self);
buf_len = EVP_PKEY_size(pkey);
md = ossl_evp_get_digestbyname(digest);
StringValue(data);
signature = rb_str_new(NULL, (long)buf_len);
md_ctx = EVP_MD_CTX_new();
if (!md_ctx)
goto err;
if (EVP_DigestSignInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
goto err;
if (EVP_DigestSignUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
goto err;
if (EVP_DigestSignFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), &buf_len) != 1)
goto err;
rb_str_set_len(signature, (long)buf_len);
EVP_MD_CTX_free(md_ctx);
return signature;
err:
EVP_MD_CTX_free(md_ctx);
ossl_raise(eRSAError, NULL);
}
|
#to_der ⇒ DER-format String
Outputs this keypair in DER encoding.
243 244 245 246 247 248 249 250 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 243
static VALUE
ossl_rsa_to_der(VALUE self)
{
if (can_export_rsaprivatekey(self))
return ossl_pkey_export_traditional(0, NULL, self, 1);
else
return ossl_pkey_export_spki(self, 1);
}
|
#verify_pss(digest, signature, data, salt_length: , mgf1_hash: ) ⇒ Object
Verifies data using the Probabilistic Signature Scheme (RSA-PSS).
The return value is true
if the signature is valid, false
otherwise. RSAError will be raised if an error occurs.
See #sign_pss for the signing operation and an example code.
Parameters
- digest
-
A String containing the message digest algorithm name.
- data
-
A String. The data to be signed.
- salt_length
-
The length in octets of the salt. Two special values are reserved:
:digest
means the digest length, and:auto
means automatically determining the length based on the signature. - mgf1_hash
-
The hash algorithm used in MGF1.
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# File 'ext/openssl/ossl_pkey_rsa.c', line 372
static VALUE
ossl_rsa_verify_pss(int argc, VALUE *argv, VALUE self)
{
VALUE digest, signature, data, options, kwargs[2];
static ID kwargs_ids[2];
EVP_PKEY *pkey;
EVP_PKEY_CTX *pkey_ctx;
const EVP_MD *md, *mgf1md;
EVP_MD_CTX *md_ctx;
int result, salt_len;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt_length");
kwargs_ids[1] = rb_intern_const("mgf1_hash");
}
rb_scan_args(argc, argv, "3:", &digest, &signature, &data, &options);
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
if (kwargs[0] == ID2SYM(rb_intern("auto")))
salt_len = -2; /* RSA_PSS_SALTLEN_AUTO */
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
else
salt_len = NUM2INT(kwargs[0]);
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
GetPKey(self, pkey);
md = ossl_evp_get_digestbyname(digest);
StringValue(signature);
StringValue(data);
md_ctx = EVP_MD_CTX_new();
if (!md_ctx)
goto err;
if (EVP_DigestVerifyInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
goto err;
if (EVP_DigestVerifyUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
goto err;
result = EVP_DigestVerifyFinal(md_ctx,
(unsigned char *)RSTRING_PTR(signature),
RSTRING_LEN(signature));
switch (result) {
case 0:
ossl_clear_error();
EVP_MD_CTX_free(md_ctx);
return Qfalse;
case 1:
EVP_MD_CTX_free(md_ctx);
return Qtrue;
default:
goto err;
}
err:
EVP_MD_CTX_free(md_ctx);
ossl_raise(eRSAError, NULL);
}
|