Class: OpenSSL::PKey::RSA

Inherits:
PKey
  • Object
show all
Includes:
Marshal
Defined in:
ext/openssl/ossl_pkey_rsa.c,
lib/openssl/pkey.rb,
ext/openssl/ossl_pkey_rsa.c

Overview

RSA is an asymmetric public key algorithm that has been formalized in RFC 3447. It is in widespread use in public key infrastructures (PKI) where certificates (cf. OpenSSL::X509::Certificate) often are issued on the basis of a public/private RSA key pair. RSA is used in a wide field of applications such as secure (symmetric) key exchange, e.g. when establishing a secure TLS/SSL connection. It is also used in various digital signature schemes.

Constant Summary collapse

PKCS1_PADDING =
1
SSLV23_PADDING =
2
NO_PADDING =
3
PKCS1_OAEP_PADDING =
4

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Marshal

#_dump, included

Constructor Details

#newObject #new(encoded_key[, passphrase]) ⇒ Object #new(encoded_key) { ... } ⇒ Object #new(size[, exponent]) ⇒ Object

Generates or loads an RSA keypair.

If called without arguments, creates a new instance with no key components set. They can be set individually by #set_key, #set_factors, and #set_crt_params.

If called with a String, tries to parse as DER or PEM encoding of an RSA key. Note that, if passphrase is not specified but the key is encrypted with a passphrase, OpenSSL will prompt for it. See also OpenSSL::PKey.read which can parse keys of any kinds.

If called with a number, generates a new key pair. This form works as an alias of RSA.generate.

Examples:

OpenSSL::PKey::RSA.new 2048
OpenSSL::PKey::RSA.new File.read 'rsa.pem'
OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'

Overloads:

  • #new(encoded_key) { ... } ⇒ Object

    Yields:



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# File 'ext/openssl/ossl_pkey_rsa.c', line 76

static VALUE
ossl_rsa_initialize(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey;
    RSA *rsa;
    BIO *in = NULL;
    VALUE arg, pass;
    int type;

    TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
    if (pkey)
        rb_raise(rb_eTypeError, "pkey already initialized");

    /* The RSA.new(size, generator) form is handled by lib/openssl/pkey.rb */
    rb_scan_args(argc, argv, "02", &arg, &pass);
    if (argc == 0) {
	rsa = RSA_new();
        if (!rsa)
            ossl_raise(eRSAError, "RSA_new");
        goto legacy;
    }

    pass = ossl_pem_passwd_value(pass);
    arg = ossl_to_der_if_possible(arg);
    in = ossl_obj2bio(&arg);

    /* First try RSAPublicKey format */
    rsa = d2i_RSAPublicKey_bio(in, NULL);
    if (rsa)
        goto legacy;
    OSSL_BIO_reset(in);
    rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL);
    if (rsa)
        goto legacy;
    OSSL_BIO_reset(in);

    /* Use the generic routine */
    pkey = ossl_pkey_read_generic(in, pass);
    BIO_free(in);
    if (!pkey)
        ossl_raise(eRSAError, "Neither PUB key nor PRIV key");

    type = EVP_PKEY_base_id(pkey);
    if (type != EVP_PKEY_RSA) {
        EVP_PKEY_free(pkey);
        rb_raise(eRSAError, "incorrect pkey type: %s", OBJ_nid2sn(type));
    }
    RTYPEDDATA_DATA(self) = pkey;
    return self;

  legacy:
    BIO_free(in);
    pkey = EVP_PKEY_new();
    if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa) != 1) {
        EVP_PKEY_free(pkey);
        RSA_free(rsa);
        ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
    }
    RTYPEDDATA_DATA(self) = pkey;
    return self;
}

Class Method Details

.generate(size, exp = 0x10001, &blk) ⇒ Object

:call-seq:

RSA.generate(size, exponent = 65537) -> RSA

Generates an RSA keypair.

See also OpenSSL::PKey.generate_key.

size

The desired key size in bits.

exponent

An odd Integer, normally 3, 17, or 65537.



343
344
345
346
347
348
# File 'lib/openssl/pkey.rb', line 343

def generate(size, exp = 0x10001, &blk)
  OpenSSL::PKey.generate_key("RSA", {
    "rsa_keygen_bits" => size,
    "rsa_keygen_pubexp" => exp,
  }, &blk)
end

.new(*args, &blk) ⇒ Object

Handle RSA.new(size, exponent) form here; new(str) and new() forms are handled by #initialize



352
353
354
355
356
357
358
# File 'lib/openssl/pkey.rb', line 352

def new(*args, &blk) # :nodoc:
  if args[0].is_a?(Integer)
    generate(*args, &blk)
  else
    super
  end
end

Instance Method Details

#export([cipher, pass_phrase]) ⇒ PEM-format String #to_pem([cipher, pass_phrase]) ⇒ PEM-format String #to_s([cipher, pass_phrase]) ⇒ PEM-format String Also known as: to_pem, to_s

Outputs this keypair in PEM encoding. If cipher and pass_phrase are given they will be used to encrypt the key. cipher must be an OpenSSL::Cipher instance.

Overloads:

  • #export([cipher, pass_phrase]) ⇒ PEM-format String

    Returns:

    • (PEM-format String)
  • #to_pem([cipher, pass_phrase]) ⇒ PEM-format String

    Returns:

    • (PEM-format String)
  • #to_s([cipher, pass_phrase]) ⇒ PEM-format String

    Returns:

    • (PEM-format String)


228
229
230
231
232
233
234
235
# File 'ext/openssl/ossl_pkey_rsa.c', line 228

static VALUE
ossl_rsa_export(int argc, VALUE *argv, VALUE self)
{
    if (can_export_rsaprivatekey(self))
        return ossl_pkey_export_traditional(argc, argv, self, 0);
    else
        return ossl_pkey_export_spki(self, 0);
}

#initialize_copy(other) ⇒ Object



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# File 'ext/openssl/ossl_pkey_rsa.c', line 139

static VALUE
ossl_rsa_initialize_copy(VALUE self, VALUE other)
{
    EVP_PKEY *pkey;
    RSA *rsa, *rsa_new;

    TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
    if (pkey)
        rb_raise(rb_eTypeError, "pkey already initialized");
    GetRSA(other, rsa);

    rsa_new = (RSA *)ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey,
                              (d2i_of_void *)d2i_RSAPrivateKey,
                              (char *)rsa);
    if (!rsa_new)
	ossl_raise(eRSAError, "ASN1_dup");

    pkey = EVP_PKEY_new();
    if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa_new) != 1) {
        RSA_free(rsa_new);
        ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
    }
    RTYPEDDATA_DATA(self) = pkey;

    return self;
}

#paramsHash

THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!

Stores all parameters of key to the hash. The hash has keys ‘n’, ‘e’, ‘d’, ‘p’, ‘q’, ‘dmp1’, ‘dmq1’, ‘iqmp’.

Don’t use :-)) (It’s up to you)

Returns:

  • (Hash)


453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# File 'ext/openssl/ossl_pkey_rsa.c', line 453

static VALUE
ossl_rsa_get_params(VALUE self)
{
    OSSL_3_const RSA *rsa;
    VALUE hash;
    const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;

    GetRSA(self, rsa);
    RSA_get0_key(rsa, &n, &e, &d);
    RSA_get0_factors(rsa, &p, &q);
    RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);

    hash = rb_hash_new();
    rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n));
    rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e));
    rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d));
    rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
    rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
    rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1));
    rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1));
    rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp));

    return hash;
}

#private?Boolean

Does this keypair contain a private key?

Returns:

  • (Boolean)


193
194
195
196
197
198
199
200
201
# File 'ext/openssl/ossl_pkey_rsa.c', line 193

static VALUE
ossl_rsa_is_private(VALUE self)
{
    OSSL_3_const RSA *rsa;

    GetRSA(self, rsa);

    return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse;
}

#private_decrypt(data, padding = PKCS1_PADDING) ⇒ Object

:call-seq:

rsa.private_decrypt(string)          -> String
rsa.private_decrypt(string, padding) -> String

Decrypt string, which has been encrypted with the public key, with the private key. padding defaults to PKCS1_PADDING, which is known to be insecure but is kept for backwards compatibility.

Deprecated in version 3.0. Consider using PKey::PKey#encrypt and PKey::PKey#decrypt instead.



439
440
441
442
443
444
445
446
447
448
449
# File 'lib/openssl/pkey.rb', line 439

def private_decrypt(data, padding = PKCS1_PADDING)
  n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
  private? or raise OpenSSL::PKey::RSAError, "private key needed."
  begin
    decrypt(data, {
      "rsa_padding_mode" => translate_padding_mode(padding),
    })
  rescue OpenSSL::PKey::PKeyError
    raise OpenSSL::PKey::RSAError, $!.message
  end
end

#private_encrypt(string, padding = PKCS1_PADDING) ⇒ Object

:call-seq:

rsa.private_encrypt(string)          -> String
rsa.private_encrypt(string, padding) -> String

Encrypt string with the private key. padding defaults to PKCS1_PADDING, which is known to be insecure but is kept for backwards compatibility. The encrypted string output can be decrypted using #public_decrypt.

Deprecated in version 3.0. Consider using PKey::PKey#sign_raw and PKey::PKey#verify_raw, and PKey::PKey#verify_recover instead.



373
374
375
376
377
378
379
380
381
382
383
# File 'lib/openssl/pkey.rb', line 373

def private_encrypt(string, padding = PKCS1_PADDING)
  n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
  private? or raise OpenSSL::PKey::RSAError, "private key needed."
  begin
    sign_raw(nil, string, {
      "rsa_padding_mode" => translate_padding_mode(padding),
    })
  rescue OpenSSL::PKey::PKeyError
    raise OpenSSL::PKey::RSAError, $!.message
  end
end

#public?true

The return value is always true since every private key is also a public key.

Returns:

  • (true)


174
175
176
177
178
179
180
181
182
183
184
185
# File 'ext/openssl/ossl_pkey_rsa.c', line 174

static VALUE
ossl_rsa_is_public(VALUE self)
{
    OSSL_3_const RSA *rsa;

    GetRSA(self, rsa);
    /*
     * This method should check for n and e.  BUG.
     */
    (void)rsa;
    return Qtrue;
}

#public_decrypt(string, padding = PKCS1_PADDING) ⇒ Object

:call-seq:

rsa.public_decrypt(string)          -> String
rsa.public_decrypt(string, padding) -> String

Decrypt string, which has been encrypted with the private key, with the public key. padding defaults to PKCS1_PADDING which is known to be insecure but is kept for backwards compatibility.

Deprecated in version 3.0. Consider using PKey::PKey#sign_raw and PKey::PKey#verify_raw, and PKey::PKey#verify_recover instead.



396
397
398
399
400
401
402
403
404
405
# File 'lib/openssl/pkey.rb', line 396

def public_decrypt(string, padding = PKCS1_PADDING)
  n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
  begin
    verify_recover(nil, string, {
      "rsa_padding_mode" => translate_padding_mode(padding),
    })
  rescue OpenSSL::PKey::PKeyError
    raise OpenSSL::PKey::RSAError, $!.message
  end
end

#public_encrypt(data, padding = PKCS1_PADDING) ⇒ Object

:call-seq:

rsa.public_encrypt(string)          -> String
rsa.public_encrypt(string, padding) -> String

Encrypt string with the public key. padding defaults to PKCS1_PADDING, which is known to be insecure but is kept for backwards compatibility. The encrypted string output can be decrypted using #private_decrypt.

Deprecated in version 3.0. Consider using PKey::PKey#encrypt and PKey::PKey#decrypt instead.



418
419
420
421
422
423
424
425
426
427
# File 'lib/openssl/pkey.rb', line 418

def public_encrypt(data, padding = PKCS1_PADDING)
  n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
  begin
    encrypt(data, {
      "rsa_padding_mode" => translate_padding_mode(padding),
    })
  rescue OpenSSL::PKey::PKeyError
    raise OpenSSL::PKey::RSAError, $!.message
  end
end

#public_keyObject

:call-seq:

rsa.public_key -> rsanew

Returns a new RSA instance that carries just the public key components.

This method is provided for backwards compatibility. In most cases, there is no need to call this method.

For the purpose of serializing the public key, to PEM or DER encoding of X.509 SubjectPublicKeyInfo format, check PKey#public_to_pem and PKey#public_to_der.



327
328
329
# File 'lib/openssl/pkey.rb', line 327

def public_key
  OpenSSL::PKey.read(public_to_der)
end

#set_crt_params(dmp1, dmq1, iqmp) ⇒ self

Sets dmp1, dmq1, iqmp for the RSA instance. They are calculated by d mod (p - 1), d mod (q - 1) and q^(-1) mod p respectively.

Returns:

  • (self)

#set_factors(p, q) ⇒ self

Sets p, q for the RSA instance.

Returns:

  • (self)

#set_key(n, e, d) ⇒ self

Sets n, e, d for the RSA instance.

Returns:

  • (self)

#sign_pss(digest, data, salt_length: , mgf1_hash: ) ⇒ String

Signs data using the Probabilistic Signature Scheme (RSA-PSS) and returns the calculated signature.

RSAError will be raised if an error occurs.

See #verify_pss for the verification operation.

Parameters

digest

A String containing the message digest algorithm name.

data

A String. The data to be signed.

salt_length

The length in octets of the salt. Two special values are reserved: :digest means the digest length, and :max means the maximum possible length for the combination of the private key and the selected message digest algorithm.

mgf1_hash

The hash algorithm used in MGF1 (the currently supported mask generation function (MGF)).

Example

data = "Sign me!"
pkey = OpenSSL::PKey::RSA.new(2048)
signature = pkey.sign_pss("SHA256", data, salt_length: :max, mgf1_hash: "SHA256")
pub_key = OpenSSL::PKey.read(pkey.public_to_der)
puts pub_key.verify_pss("SHA256", signature, data,
                        salt_length: :auto, mgf1_hash: "SHA256") # => true

Returns:

  • (String)


285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# File 'ext/openssl/ossl_pkey_rsa.c', line 285

static VALUE
ossl_rsa_sign_pss(int argc, VALUE *argv, VALUE self)
{
    VALUE digest, data, options, kwargs[2], signature;
    static ID kwargs_ids[2];
    EVP_PKEY *pkey;
    EVP_PKEY_CTX *pkey_ctx;
    const EVP_MD *md, *mgf1md;
    EVP_MD_CTX *md_ctx;
    size_t buf_len;
    int salt_len;

    if (!kwargs_ids[0]) {
	kwargs_ids[0] = rb_intern_const("salt_length");
	kwargs_ids[1] = rb_intern_const("mgf1_hash");
    }
    rb_scan_args(argc, argv, "2:", &digest, &data, &options);
    rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
    if (kwargs[0] == ID2SYM(rb_intern("max")))
	salt_len = -2; /* RSA_PSS_SALTLEN_MAX_SIGN */
    else if (kwargs[0] == ID2SYM(rb_intern("digest")))
	salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
    else
	salt_len = NUM2INT(kwargs[0]);
    mgf1md = ossl_evp_get_digestbyname(kwargs[1]);

    pkey = GetPrivPKeyPtr(self);
    buf_len = EVP_PKEY_size(pkey);
    md = ossl_evp_get_digestbyname(digest);
    StringValue(data);
    signature = rb_str_new(NULL, (long)buf_len);

    md_ctx = EVP_MD_CTX_new();
    if (!md_ctx)
	goto err;

    if (EVP_DigestSignInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
	goto err;

    if (EVP_DigestSignUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
	goto err;

    if (EVP_DigestSignFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), &buf_len) != 1)
	goto err;

    rb_str_set_len(signature, (long)buf_len);

    EVP_MD_CTX_free(md_ctx);
    return signature;

  err:
    EVP_MD_CTX_free(md_ctx);
    ossl_raise(eRSAError, NULL);
}

#to_derDER-format String

Outputs this keypair in DER encoding.

Returns:

  • (DER-format String)


243
244
245
246
247
248
249
250
# File 'ext/openssl/ossl_pkey_rsa.c', line 243

static VALUE
ossl_rsa_to_der(VALUE self)
{
    if (can_export_rsaprivatekey(self))
        return ossl_pkey_export_traditional(0, NULL, self, 1);
    else
        return ossl_pkey_export_spki(self, 1);
}

#verify_pss(digest, signature, data, salt_length: , mgf1_hash: ) ⇒ Object

Verifies data using the Probabilistic Signature Scheme (RSA-PSS).

The return value is true if the signature is valid, false otherwise. RSAError will be raised if an error occurs.

See #sign_pss for the signing operation and an example code.

Parameters

digest

A String containing the message digest algorithm name.

data

A String. The data to be signed.

salt_length

The length in octets of the salt. Two special values are reserved: :digest means the digest length, and :auto means automatically determining the length based on the signature.

mgf1_hash

The hash algorithm used in MGF1.



372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# File 'ext/openssl/ossl_pkey_rsa.c', line 372

static VALUE
ossl_rsa_verify_pss(int argc, VALUE *argv, VALUE self)
{
    VALUE digest, signature, data, options, kwargs[2];
    static ID kwargs_ids[2];
    EVP_PKEY *pkey;
    EVP_PKEY_CTX *pkey_ctx;
    const EVP_MD *md, *mgf1md;
    EVP_MD_CTX *md_ctx;
    int result, salt_len;

    if (!kwargs_ids[0]) {
	kwargs_ids[0] = rb_intern_const("salt_length");
	kwargs_ids[1] = rb_intern_const("mgf1_hash");
    }
    rb_scan_args(argc, argv, "3:", &digest, &signature, &data, &options);
    rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
    if (kwargs[0] == ID2SYM(rb_intern("auto")))
	salt_len = -2; /* RSA_PSS_SALTLEN_AUTO */
    else if (kwargs[0] == ID2SYM(rb_intern("digest")))
	salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
    else
	salt_len = NUM2INT(kwargs[0]);
    mgf1md = ossl_evp_get_digestbyname(kwargs[1]);

    GetPKey(self, pkey);
    md = ossl_evp_get_digestbyname(digest);
    StringValue(signature);
    StringValue(data);

    md_ctx = EVP_MD_CTX_new();
    if (!md_ctx)
	goto err;

    if (EVP_DigestVerifyInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
	goto err;

    if (EVP_DigestVerifyUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
	goto err;

    result = EVP_DigestVerifyFinal(md_ctx,
				   (unsigned char *)RSTRING_PTR(signature),
				   RSTRING_LEN(signature));

    switch (result) {
      case 0:
	ossl_clear_error();
	EVP_MD_CTX_free(md_ctx);
	return Qfalse;
      case 1:
	EVP_MD_CTX_free(md_ctx);
	return Qtrue;
      default:
	goto err;
    }

  err:
    EVP_MD_CTX_free(md_ctx);
    ossl_raise(eRSAError, NULL);
}