Class: AedgSmallToMediumOfficeExteriorWallConstruction
- Inherits:
-
OpenStudio::Measure::ModelMeasure
- Object
- OpenStudio::Measure::ModelMeasure
- AedgSmallToMediumOfficeExteriorWallConstruction
- Includes:
- OsLib_AedgMeasures, OsLib_Constructions
- Defined in:
- lib/measures/AedgSmallToMediumOfficeExteriorWallConstruction/measure.rb
Overview
start the measure
Instance Method Summary collapse
-
#arguments(model) ⇒ Object
define the arguments that the user will input.
-
#name ⇒ Object
define the name that a user will see, this method may be deprecated as the display name in PAT comes from the name field in measure.xml.
-
#run(model, runner, user_arguments) ⇒ Object
define what happens when the measure is run.
Methods included from OsLib_AedgMeasures
getClimateZoneNumber, getK12Tips, getLongHowToTips, getSmMdOffTips
Instance Method Details
#arguments(model) ⇒ Object
define the arguments that the user will input
34 35 36 37 38 39 40 41 42 43 44 |
# File 'lib/measures/AedgSmallToMediumOfficeExteriorWallConstruction/measure.rb', line 34 def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # make an argument for material and installation cost material_cost_insulation_increase_ip = OpenStudio::Measure::OSArgument.makeDoubleArgument('material_cost_insulation_increase_ip', true) material_cost_insulation_increase_ip.setDisplayName('Increase Cost per Area of Construction Where Insulation was Improved ($/ft^2).') material_cost_insulation_increase_ip.setDefaultValue(0.0) args << material_cost_insulation_increase_ip return args end |
#name ⇒ Object
define the name that a user will see, this method may be deprecated as the display name in PAT comes from the name field in measure.xml
29 30 31 |
# File 'lib/measures/AedgSmallToMediumOfficeExteriorWallConstruction/measure.rb', line 29 def name return 'AedgSmallToMediumOfficeExteriorWallConstruction' end |
#run(model, runner, user_arguments) ⇒ Object
define what happens when the measure is run
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# File 'lib/measures/AedgSmallToMediumOfficeExteriorWallConstruction/measure.rb', line 47 def run(model, runner, user_arguments) super(model, runner, user_arguments) # use the built-in error checking if !runner.validateUserArguments(arguments(model), user_arguments) return false end # assign the user inputs to variables material_cost_insulation_increase_ip = runner.getDoubleArgumentValue('material_cost_insulation_increase_ip', user_arguments) # no validation needed for cost inputs, negative values are fine, however negative would be odd choice since this measure only improves vs. decreases insulation and SRI performance # global variables for costs expected_life = 25 years_until_costs_start = 0 material_cost_insulation_increase_si = OpenStudio.convert(material_cost_insulation_increase_ip, '1/ft^2', '1/m^2').get running_cost_insulation = 0 # prepare rule hash rules = [] # climate zone, roof type, thermal transmittance (Btu/h·ft2·°F), SRI # Mass (HC > 7 Btu/ft^2) # notes: Insulation may be placed on either the inside or the outside of the masonry wall. The greatest advantages of mass walls can be obtained when insulation is placed on its exterior. rules << ['1', 'Mass', 0.151] # R-5.7 c.i. rules << ['2', 'Mass', 0.123] # R-7.6 c.i.. rules << ['3', 'Mass', 0.090] # R-11.4 c.i. rules << ['4', 'Mass', 0.080] # R-13.3 c.i. rules << ['5', 'Mass', 0.080] # R-13.3 c.i. rules << ['6', 'Mass', 0.066] # R-19.0 c.i. rules << ['7', 'Mass', 0.066] # R-19.0 c.i. rules << ['8', 'Mass', 0.066] # R-19.0 c.i. # SteelFramed # notes: Adding exterior foam sheathing as c.i. is the preferred method to upgrade the wall thermal performance because it will increase the overall wall thermal performance and tends to minimize the impact of the thermal bridging. rules << ['1', 'SteelFramed', 0.064] # R-13.0 + R-7.5 c.i. rules << ['2', 'SteelFramed', 0.064] # R-13.0 + R-7.5 c.i. rules << ['3', 'SteelFramed', 0.064] # R-13.0 + R-7.5 c.i. rules << ['4', 'SteelFramed', 0.064] # R-13.0 + R-7.5 c.i. rules << ['5', 'SteelFramed', 0.042] # R-13.0 + R-15.6 c.i. rules << ['6', 'SteelFramed', 0.037] # R-13.0 + R-18.8 c.i. rules << ['7', 'SteelFramed', 0.037] # R-13.0 + R-18.8 c.i. rules << ['8', 'SteelFramed', 0.037] # R-13.0 + R-18.8 c.i. # WoodFramed # notes: similar to steel. Fot framed walls (wood or steel) I will leave composite layer alone, and add c.i. rules << ['1', 'WoodFramed', 0.089] # R-13.0 rules << ['2', 'WoodFramed', 0.064] # R-13.0 + R-3.8 c.i. rules << ['3', 'WoodFramed', 0.064] # R-13.0 + R-3.8 c.i. rules << ['4', 'WoodFramed', 0.051] # R-13.0 + R-7.5 c.i. rules << ['5', 'WoodFramed', 0.045] # R-13.0 + R-10.0 c.i. rules << ['6', 'WoodFramed', 0.040] # R-13.0 + R-12.5 c.i. rules << ['7', 'WoodFramed', 0.037] # R-13.0 + R-15.0 c.i. rules << ['8', 'WoodFramed', 0.032] # R-13.0 + R-18.8 c.i. # Metal # notes: insulation should be where exist, or one layer under exterior exposed, if there isn't any insulation in existing wall rules << ['1', 'Metal', 0.094] # R-0.0 + R-9.8 c.i. rules << ['2', 'Metal', 0.094] # R-0.0 + R-9.8 c.i. rules << ['3', 'Metal', 0.072] # R-0.0 + R-13.0 c.i. rules << ['4', 'Metal', 0.060] # R-0.0 + R-15.8 c.i. rules << ['5', 'Metal', 0.050] # R-0.0 + R-19.0 c.i. rules << ['6', 'Metal', 0.050] # R-0.0 + R-19.0 c.i. rules << ['7', 'Metal', 0.044] # R-0.0 + R-22.1 c.i. rules << ['8', 'Metal', 0.039] # R-0.0 + R-25.0 c.i. # make rule hash for cleaner code rulesHash = {} rules.each do |rule| rulesHash["#{rule[0]} #{rule[1]}"] = { 'conductivity_ip' => rule[2] } end # get climate zone climateZoneNumber = OsLib_AedgMeasures.getClimateZoneNumber(model, runner) # climateZoneNumber = "4" # this is just in for quick testing of different climate zones # return false with error if can't find climate zone number if climateZoneNumber == false return false end # get starting r-value startingRvaluesExtWall = [] # flag for roof surface type for tips massFlag = false steelFramedFlag = false woodFramedFlag = false = false # affected area counter insulation_affected_area = 0 # construction hashes (construction is key, value is array [thermal transmittance (Btu/h·ft2·°F),rule thermal transmittance (Btu/h·ft2·°F),classification string) massConstructions = {} steelFramedConstructions = {} woodFramedConstructions = {} = {} # this contains constructions that do not have a recognized Standards Construction Type otherConstructions = [] # loop through constructions constructions = model.getConstructions constructions.each do |construction| # skip if not used next if construction.getNetArea <= 0 # skip if not opaque next if !construction.isOpaque # get construction and standard constructionStandard = construction.standardsInformation # get intended surface and standards construction type intendedSurfaceType = constructionStandard.intendedSurfaceType constructionType = constructionStandard.standardsConstructionType # get conductivity conductivity_si = construction.thermalConductance.get r_value_ip = OpenStudio.convert(1 / conductivity_si, 'm^2*K/W', 'ft^2*h*R/Btu').get # check rules based on intended use and type if intendedSurfaceType.to_s == 'ExteriorWall' # this should not include attics as they will be "Attic Wall" if constructionType.to_s == 'Mass' # store starting values startingRvaluesExtWall << r_value_ip massFlag = true # test construction against rules ruleSet = rulesHash["#{climateZoneNumber} Mass"] if 1 / r_value_ip > ruleSet['conductivity_ip'] massConstructions[construction] = { 'conductivity_ip' => 1 / r_value_ip, 'transmittance_ip_rule' => ruleSet['conductivity_ip'], 'classification' => 'massConstructions' } end elsif constructionType.to_s == 'SteelFramed' # store starting values startingRvaluesExtWall << r_value_ip steelFramedFlag = true # test construction against rules ruleSet = rulesHash["#{climateZoneNumber} SteelFramed"] if 1 / r_value_ip > ruleSet['conductivity_ip'] steelFramedConstructions[construction] = { 'conductivity_ip' => 1 / r_value_ip, 'transmittance_ip_rule' => ruleSet['conductivity_ip'], 'classification' => 'steelFramedConstructions' } end elsif constructionType.to_s == 'WoodFramed' # store starting values startingRvaluesExtWall << r_value_ip woodFramedFlag = true # test construction against rules ruleSet = rulesHash["#{climateZoneNumber} WoodFramed"] if 1 / r_value_ip > ruleSet['conductivity_ip'] woodFramedConstructions[construction] = { 'conductivity_ip' => 1 / r_value_ip, 'transmittance_ip_rule' => ruleSet['conductivity_ip'], 'classification' => 'woodFramedConstructions' } end elsif constructionType.to_s == 'Metal' # store starting values startingRvaluesExtWall << r_value_ip = true # test construction against rules ruleSet = rulesHash["#{climateZoneNumber} Metal"] if 1 / r_value_ip > ruleSet['conductivity_ip'] [construction] = { 'conductivity_ip' => 1 / r_value_ip, 'transmittance_ip_rule' => ruleSet['conductivity_ip'], 'classification' => 'metalConstructions' } end else # track other constructions otherConstructions << construction end end end # create warning if construction used on exterior wall doesn't have a surface type of "ExteriorWall", or if constructions tagged to be used as exterior wall, are used on other surface types otherConstructionsWarned = [] surfaces = model.getSurfaces surfaces.each do |surface| if !surface.construction.empty? construction = surface.construction.get if (surface.outsideBoundaryCondition == 'Outdoors') && (surface.surfaceType == 'Wall') if otherConstructions.include?(construction) && (!otherConstructionsWarned.include? construction) runner.registerWarning("#{construction.name} is used on one or more exterior wall surfaces but has an intended surface type or construction type not recognized by this measure. As we can not infer the proper performance target, this construction will not be altered.") otherConstructionsWarned << construction end else if massConstructions.include?(construction) || steelFramedConstructions.include?(construction) || woodFramedConstructions.include?(construction) || .include?(construction) runner.registerWarning("#{surface.name} uses #{construction.name} as a construction that this measure expects to be used for exterior walls. This surface has a type of #{surface.surfaceType} and a a boundary condition of #{surface.outsideBoundaryCondition}. This may result in unexpected changes to your model.") end end end end # alter constructions and add lcc constructionsToChange = massConstructions.sort + steelFramedConstructions.sort + woodFramedConstructions.sort + .sort constructionsToChange.each do |construction, hash| # gather insulation inputs # gather target decrease in conductivity conductivity_ip_starting = hash['conductivity_ip'] conductivity_si_starting = OpenStudio.convert(conductivity_ip_starting, 'Btu/ft^2*h*R', 'W/m^2*K').get r_value_ip_starting = 1 / conductivity_ip_starting # ft^2*h*R/Btu r_value_si_starting = 1 / conductivity_si_starting # m^2*K/W conductivity_ip_target = hash['transmittance_ip_rule'].to_f conductivity_si_target = OpenStudio.convert(conductivity_ip_target, 'Btu/ft^2*h*R', 'W/m^2*K').get r_value_ip_target = 1 / conductivity_ip_target # ft^2*h*R/Btu r_value_si_target = 1 / conductivity_si_target # m^2*K/W # infer insulation material to get input for target thickness minThermalResistance = OpenStudio.convert(1, 'ft^2*h*R/Btu', 'm^2*K/W').get inferredInsulationLayer = OsLib_Constructions.inferInsulationLayer(construction, minThermalResistance) rvalue_si_deficiency = r_value_si_target - r_value_si_starting # add lcc for insulation lcc_mat_insulation = OpenStudio::Model::LifeCycleCost.createLifeCycleCost("LCC_Mat_Insulation - #{construction.name}", construction, material_cost_insulation_increase_si, 'CostPerArea', 'Construction', expected_life, years_until_costs_start) lcc_mat_insulation_value = lcc_mat_insulation.get.totalCost running_cost_insulation += lcc_mat_insulation_value # adjust existing material or add new one if (inferredInsulationLayer['insulationFound'] && (hash['classification'] == 'massConstructions')) || (inferredInsulationLayer['insulationFound'] && (hash['classification'] == 'metalConstructions')) # if insulation layer was found # gather inputs for method target_material_rvalue_si = inferredInsulationLayer['construction_thermal_resistance'] + rvalue_si_deficiency # run method to change insulation layer thickness in cloned material (material,starting_r_value_si,target_r_value_si, model) new_material = OsLib_Constructions.setMaterialThermalResistance(inferredInsulationLayer['construction_layer'], target_material_rvalue_si) # connect new material to original construction construction.eraseLayer(inferredInsulationLayer['layer_index']) construction.insertLayer(inferredInsulationLayer['layer_index'], new_material) # get conductivity final_conductivity_si = construction.thermalConductance.get final_r_value_ip = OpenStudio.convert(1 / final_conductivity_si, 'm^2*K/W', 'ft^2*h*R/Btu').get # report on edited material runner.registerInfo("The R-value of #{construction.name} has been increased from #{OpenStudio.toNeatString(r_value_ip_starting, 2, true)} to #{OpenStudio.toNeatString(final_r_value_ip, 2, true)}(ft^2*h*R/Btu) at a cost of $#{OpenStudio.toNeatString(lcc_mat_insulation_value, 2, true)}. Increased performance was accomplished by adjusting thermal resistance of #{new_material.name}.") else # inputs to pass to method conductivity = 0.045 # W/m*K thickness = rvalue_si_deficiency * conductivity # meters addNewLayerToConstruction_Inputs = { 'roughness' => 'MediumRough', 'thickness' => thickness, # meters, 'conductivity' => conductivity, # W/m*K 'density' => 265.0, 'specificHeat' => 836.8, 'thermalAbsorptance' => 0.9, 'solarAbsorptance' => 0.7, 'visibleAbsorptance' => 0.7 } # if wall is metal, than new layer should go at index 1 vs. 0 if hash['classification'] == 'metalConstructions' addNewLayerToConstruction_Inputs['layerIndex'] = 1 end # create new material if can't infer insulation material (construction,thickness, conductivity, density, specificHeat, roughness,thermalAbsorptance, solarAbsorptance,visibleAbsorptance,model) newMaterialLayer = OsLib_Constructions.addNewLayerToConstruction(construction, addNewLayerToConstruction_Inputs) # get conductivity final_conductivity_si = construction.thermalConductance.get final_r_value_ip = OpenStudio.convert(1 / final_conductivity_si, 'm^2*K/W', 'ft^2*h*R/Btu').get # report on edited material if hash['classification'] == 'metalConstructions' runner.registerInfo("The R-value of #{construction.name} has been increased from #{OpenStudio.toNeatString(r_value_ip_starting, 2, true)} to #{OpenStudio.toNeatString(final_r_value_ip, 2, true)}(ft^2*h*R/Btu) at a cost of $#{OpenStudio.toNeatString(lcc_mat_insulation_value, 2, true)}. Increased performance was accomplished by adding a new material layer to the second layer of #{construction.name}.") else runner.registerInfo("The R-value of #{construction.name} has been increased from #{OpenStudio.toNeatString(r_value_ip_starting, 2, true)} to #{OpenStudio.toNeatString(final_r_value_ip, 2, true)}(ft^2*h*R/Btu) at a cost of $#{OpenStudio.toNeatString(lcc_mat_insulation_value, 2, true)}. Increased performance was accomplished by adding a new material layer to the outside of #{construction.name}.") end end # add to area counter insulation_affected_area += construction.getNetArea # OpenStudio handles matched surfaces so they are not counted twice. end # populate AEDG tip keys aedgTips = [] if massFlag aedgTips.push('EN05', 'EN17', 'EN19', 'EN21') end if steelFramedFlag aedgTips.push('EN06', 'EN17', 'EN19', 'EN21') end if woodFramedFlag aedgTips.push('EN07', 'EN17', 'EN19', 'EN21') end if aedgTips.push('EN08', 'EN17', 'EN19', 'EN21') end # create not applicable of no constructions were tagged to change if aedgTips.empty? runner.registerAsNotApplicable('No surfaces use constructions tagged as an exterior wall type recognized by this measure. No exterior walls were altered.') return true end # populate how to tip messages aedgTipsLong = OsLib_AedgMeasures.getLongHowToTips('SmMdOff', aedgTips.uniq.sort, runner) if !aedgTipsLong return false # this should only happen if measure writer passes bad values to getLongHowToTips end # reporting initial condition of model startingRvalue = startingRvaluesExtWall runner.registerInitialCondition("Starting R-values for constructions intended for exterior wall surfaces range from #{OpenStudio.toNeatString(startingRvalue.min, 2, true)} to #{OpenStudio.toNeatString(startingRvalue.max, 2, true)}(ft^2*h*R/Btu).") # reporting final condition of model insulation_affected_area_ip = OpenStudio.convert(insulation_affected_area, 'm^2', 'ft^2').get runner.registerFinalCondition("#{OpenStudio.toNeatString(insulation_affected_area_ip, 0, true)}(ft^2) of constructions intended for exterior wall surfaces had insulation enhanced at a cost of $#{OpenStudio.toNeatString(running_cost_insulation, 0, true)}. #{aedgTipsLong}") return true end |