Module: OsLib_Reporting
- Defined in:
- lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb
Class Method Summary collapse
- .adaptive_comfort_t_range(arr_daily_t_out) ⇒ Object
- .air_quality_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
- .ann_env_pd(sqlFile) ⇒ Object
- .arr_conditional_mean(v_val, v_cond, positive = true) ⇒ Object
- .arr_conditional_sum(v_val, v_cond) ⇒ Object
- .arr_mean(v_val) ⇒ Object
- .arr_mean_diffs(v_val, v_cond, val_ref) ⇒ Object
- .arr_sum(v_val) ⇒ Object
-
.cleanup(html_in_path) ⇒ Object
cleanup - prep html and close sql.
- .co2_exceedance_by_month(v_co2_ppm, v_occ, v_datetimes, s_per_h, co2_threshold_1 = 800, co2_threshold_2 = 5000, risk_weight = 5) ⇒ Object
- .create_xls ⇒ Object
- .exceedance_hour_count(v_val, v_cond, step_per_h, threshold = [0, 20]) ⇒ Object
- .geb_metrics_section(model, sqlFile, base_sqlFile, event_date, runner, name_only = false, args = nil, is_ip_units = true, shed_start = nil, shed_end = nil, take_start = nil, take_end = nil) ⇒ Object
- .geo_sequence(a, r, n) ⇒ Object
- .get_annual_useful_daylight(v_lux, lower_lux = 300, upper_lux = 3000) ⇒ Object
- .get_daily_overcondition_degree_hours(hash_daily_adaptive_comfort_t_ranges, v_indoor_t, v_outdoor_t, v_datetimes, s_per_h) ⇒ Object
- .get_degree_days(model, hdd_base = 18, cdd_base = 10) ⇒ Object
- .get_hash_daily_adaptive_comfort_t_ranges(hash_past_n_daily_average) ⇒ Object
- .get_hash_daily_means(v_val, v_datetimes, s_per_h) ⇒ Object
- .get_hash_moving_daily_average(v_val, v_datetimes, step_per_h = 6, previous_n_days = 7) ⇒ Object
- .get_hash_past_n_daily_average(v_val, v_datetimes, step_per_h = 6, previous_n_days = 7) ⇒ Object
- .get_hourly_average(v_val, v_datetimes, s_per_h) ⇒ Object
- .get_lux_setpoint(model, space_name) ⇒ Object
- .get_non_zero_avg_2ts(arr_ts_1, arr_ts_2, conversion_ts_1 = 1, conversion_ts_2 = 1) ⇒ Object
- .get_overall_lux(v_lux, v_lght_w, lux_sp) ⇒ Object
- .get_true_key(zone_name, hash_ts) ⇒ Object
- .get_ts_by_var(runner, sqlFile, var_k_name, freq = 'Zone Timestep', get_datetime = false) ⇒ Object
-
.get_ts_by_var_key(runner, sqlFile, var_k_name, freq = 'Zone Timestep', get_datetime = false) ⇒ Object
Utility functions.
- .get_zone_area(model, runner) ⇒ Object
- .hash_sum(hash_k_arr) ⇒ Object
-
.other_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create other_kpi_section.
-
.reg_val_string_prep(string) ⇒ Object
clean up unkown strings used for runner.registerValue names.
- .save_xls(book) ⇒ Object
-
.setup(runner) ⇒ Object
setup - get model, sql, and setup web assets path.
-
.template_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create template section.
-
.template_table(model, sqlFile, runner, is_ip_units = true) ⇒ Object
create template section.
-
.thermal_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create thermal_kpi section.
- .thermal_unsatisfied_occ_hour_by_month(v_val, v_weight, v_datetimes, step_per_h, threshold = [0, 20], pct_weight = true) ⇒ Object
-
.visual_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create visual_kpi_section.
-
.write_xls(table_data, book) ⇒ Object
write an Excel file from table data the Excel Functions are not currently being used, left in as example Requires ruby Gem which isn’t currently supported in OpenStudio GUIs.
Class Method Details
.adaptive_comfort_t_range(arr_daily_t_out) ⇒ Object
970 971 972 973 974 975 976 977 978 979 980 981 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 970 def self.adaptive_comfort_t_range(arr_daily_t_out) # This method calculate the lower and upper margin of the comfort adaptive temperature # Ref: 10.1016/j.enbuild.2019.109539 alpha = 0.8 v_constant = Vector.elements(OsLib_Reporting.geo_sequence(1, alpha, 7)) # arr_daily_t_out is an array of average daily outdoor temperature of the past seven days. v_daily_t_out = Vector.elements(arr_daily_t_out) t_rm = (1 - alpha) * v_constant.inner_product(v_daily_t_out) # t_rm: running mean temperature of previous seven days upper_margin = 0.09 * t_rm + 24.6 lower_margin = 0.09 * t_rm + 20.6 return [lower_margin, upper_margin] end |
.air_quality_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 1045 def self.air_quality_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) # Prepare tables and chart hashes @air_quality_kpi_section = {} @air_quality_kpi_section[:title] = 'Air Quality KPIs' @air_quality_kpi_section[:tables] = [] @air_quality_kpi_section[:hash_KPI_ts_charts] = [] @air_quality_kpi_section[:hash_KPI_stacked_bar_charts] = [] # stop here if only name is requested this is used to populate display name for arguments if name_only == true return @air_quality_kpi_section end # gather data for section freq = 'Zone Timestep' s_per_h = model.getTimestep.numberOfTimestepsPerHour.to_f hash_zone_area = OsLib_Reporting.get_zone_area(model, runner) var_k_name = 'Zone People Occupant Count' hash_occ_v_ts, v_datetimes = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq, true) v_datetimes = v_datetimes.map { |date| DateTime.parse(date.to_s).strftime('%Y-%m-%d %H:%M:%S') } var_k_name = 'Zone Air CO2 Concentration' hash_zone_co2_v_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone Mechanical Ventilation Standard Density Volume' hash_zone_ventilation_v_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone Mechanical Ventilation Standard Density Volume Flow Rate' hash_zone_ventilation_m3s_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Fan Electric Power' hash_fan_electric_w_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) ref_co2_ppm = 400 # File.write('C:/Users/hlee9/Documents/GitHub/OS-measures/occupant_centric_kpi_report/tests/hash_zone_ventilation_v_ts.yml', hash_zone_ventilation_v_ts.to_yaml) # File.write('C:/Users/hlee9/Documents/GitHub/OS-measures/occupant_centric_kpi_report/tests/hash_fan_electric_w_ts.yml', hash_fan_electric_w_ts.to_yaml) # File.write('C:/Users/hlee9/Documents/GitHub/OS-measures/occupant_centric_kpi_report/tests/hash_zone_ventilation_m3s_ts.yml', hash_zone_ventilation_m3s_ts.to_yaml) # File.write('C:/Users/hlee9/Documents/GitHub/OS-measures/occupant_centric_kpi_report/tests/hash_zone_co2_v_ts.yml', hash_zone_co2_v_ts.to_yaml) # Create tables aq_kpi_table_01 = {} aq_kpi_table_01[:title] = 'Air Quality KPIs' aq_kpi_table_01[:header] = [ 'Zone', 'Annual ventilation volume per area', 'Average ventilation volume per person hour', 'Average electric power to ventilation rate ratio*', 'Average indoor and outdoor CO2 concentration difference during occupant hours**' ] aq_kpi_table_01[:units] = ['', 'm^3/m^2', 'm^3/(occupant hour)', 'W/cfm', 'ppm'] aq_kpi_table_01[:data] = [] aq_kpi_table_01[:KPI_descriptions] = [ '* Fan energy electricity consumption is considered.', '** Default outdoor CO2 concentration is 400ppm.' ] # Time-series CO2 concentration hash_ts_co2_chart = {} hash_ts_co2_chart[:title] = 'Zone CO2 concentration' hash_ts_co2_chart[:chart_div] = 'aq_KPI_1' hash_ts_co2_chart[:chart_data] = [] hash_ts_co2_chart[:date_range] = [v_datetimes[0], v_datetimes[-1]] # Stacked bar plots hash_co2_exceedance_occ_hour_chart = {} hash_co2_exceedance_occ_hour_chart[:title] = 'Weighted CO2 Exceedance Occupant-hours by Month' hash_co2_exceedance_occ_hour_chart[:chart_div] = 'co2_exceedance_occ_hour' hash_co2_exceedance_occ_hour_chart[:chart_data] = [] hash_co2_exceedance_occ_hour_chart[:yaxis_label] = 'Occupant * Hour' hash_co2_exceedance_occ_hour_chart[:KPI_description] = %q( * The exceedance occupant hour is the sum of weighted occupant*hours. The weight is zero when the indoor CO2 concentration is below 1000ppm, the weight is 1 when the indoor CO2 concentration is between 1000ppm and 5000ppm, The weight is 5 when the indoor CO2 concentration is above 5000ppm. ) hash_zone_area.each do |zone_name, area| begin ventilation_zone_name = OsLib_Reporting.get_true_key(zone_name, hash_zone_ventilation_v_ts) fan_zone_name = OsLib_Reporting.get_true_key(zone_name, hash_fan_electric_w_ts) occ_zone_name = OsLib_Reporting.get_true_key(zone_name, hash_occ_v_ts) co2_zone_name = OsLib_Reporting.get_true_key(zone_name, hash_zone_co2_v_ts) # KPIs in table row_data = [ zone_name, (hash_zone_ventilation_v_ts.length > 0 ? (OsLib_Reporting.arr_sum(hash_zone_ventilation_v_ts[ventilation_zone_name]) / area).round(1) : 'N.A.'), (hash_zone_ventilation_v_ts.length > 0 ? (OsLib_Reporting.arr_sum(hash_zone_ventilation_v_ts[ventilation_zone_name]) / (OsLib_Reporting.arr_sum(hash_occ_v_ts[occ_zone_name]) / s_per_h)).round(1) : 'N.A.'), (hash_fan_electric_w_ts.length > 0 ? (OsLib_Reporting.get_non_zero_avg_2ts(hash_fan_electric_w_ts[fan_zone_name], hash_zone_ventilation_m3s_ts[ventilation_zone_name], 1, $M3S_to_CFM)).round(1) : 'N.A.'), (hash_zone_co2_v_ts.length > 0 ? OsLib_Reporting.arr_mean_diffs(hash_zone_co2_v_ts[co2_zone_name], hash_occ_v_ts[occ_zone_name], ref_co2_ppm).round(1) : 'N.A.') #TODO: calculate average CO2 concentration difference ] aq_kpi_table_01[:data] << row_data # KPIs in plots # Time-series hash_ts_co2_chart[:chart_data] << JSON.generate( type: "scatter", mode: "lines", name: zone_name, x: v_datetimes, y: hash_zone_co2_v_ts[occ_zone_name] ) # Stacked-bar y_stack = OsLib_Reporting.co2_exceedance_by_month(hash_zone_co2_v_ts[co2_zone_name], hash_occ_v_ts[occ_zone_name], v_datetimes, s_per_h) hash_co2_exceedance_occ_hour_chart[:chart_data] << JSON.generate( x: ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'], y: y_stack, name: zone_name, type: 'bar' ) rescue runner.registerInfo("No air quality time series data found for #{zone_name}.") end end @air_quality_kpi_section[:tables] << aq_kpi_table_01 @air_quality_kpi_section[:hash_KPI_ts_charts] << hash_ts_co2_chart @air_quality_kpi_section[:hash_KPI_stacked_bar_charts] << hash_co2_exceedance_occ_hour_chart return @air_quality_kpi_section end |
.ann_env_pd(sqlFile) ⇒ Object
58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 58 def self.ann_env_pd(sqlFile) # get the weather file run period (as opposed to design day run period) ann_env_pd = nil sqlFile.availableEnvPeriods.each do |env_pd| env_type = sqlFile.environmentType(env_pd) if env_type.is_initialized if env_type.get == OpenStudio::EnvironmentType.new('WeatherRunPeriod') ann_env_pd = env_pd end end end return ann_env_pd end |
.arr_conditional_mean(v_val, v_cond, positive = true) ⇒ Object
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 225 def self.arr_conditional_mean(v_val, v_cond, positive = true) sum = 0 length = 0 v_val.each_with_index do |val, index| if positive if v_cond[index] > 0 && val > 0 sum += val length += 1 end else if v_cond[index] > 0 && val < 0 sum += val length += 1 end end end sum / length end |
.arr_conditional_sum(v_val, v_cond) ⇒ Object
267 268 269 270 271 272 273 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 267 def self.arr_conditional_sum(v_val, v_cond) sum = 0 v_val.each_with_index do |val, index| v_cond[index] > 0 ? (sum += val) : (sum = sum) end sum end |
.arr_mean(v_val) ⇒ Object
217 218 219 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 217 def self.arr_mean(v_val) v_val.inject { |sum, ele| sum + ele }.to_f / v_val.size end |
.arr_mean_diffs(v_val, v_cond, val_ref) ⇒ Object
283 284 285 286 287 288 289 290 291 292 293 294 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 283 def self.arr_mean_diffs(v_val, v_cond, val_ref) sum_diff = 0 time_steps_count = 0 v_val.each_with_index do |val, index| if v_cond[index] > 0 # Count only when occupied sum_diff += val - val_ref time_steps_count += 1 end end sum_diff / time_steps_count end |
.arr_sum(v_val) ⇒ Object
221 222 223 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 221 def self.arr_sum(v_val) v_val.inject(0) { |sum, ele| sum + ele.to_f } end |
.cleanup(html_in_path) ⇒ Object
cleanup - prep html and close sql
117 118 119 120 121 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 117 def self.cleanup(html_in_path) # TODO: - would like to move code here, but couldn't get it working. May look at it again later on. return html_out_path end |
.co2_exceedance_by_month(v_co2_ppm, v_occ, v_datetimes, s_per_h, co2_threshold_1 = 800, co2_threshold_2 = 5000, risk_weight = 5) ⇒ Object
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 340 def self.co2_exceedance_by_month(v_co2_ppm, v_occ, v_datetimes, s_per_h, co2_threshold_1 = 800, co2_threshold_2 = 5000, risk_weight = 5) v_results = [] current_month_number = 1 current_month_sum = 0 v_co2_ppm.each_with_index do |val, index| n_occ = v_occ[index] if n_occ > 0 if val >= co2_threshold_1 && val < co2_threshold_2 current_month_sum += (val - co2_threshold_1) / co2_threshold_1 * n_occ / s_per_h elsif val >= co2_threshold_2 current_month_sum += (val - co2_threshold_2) / co2_threshold_2 * n_occ * risk_weight / s_per_h # can change this weight end end if DateTime.parse(v_datetimes[index]).strftime('%m').to_i > current_month_number # puts "Month #{current_month_number}'s sum is done..." v_results << current_month_sum current_month_sum = 0 current_month_number += 1 end end v_results << current_month_sum # last month's sum v_results end |
.create_xls ⇒ Object
73 74 75 76 77 78 79 80 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 73 def self.create_xls require 'rubyXL' book = ::RubyXL::Workbook.new # delete initial worksheet return book end |
.exceedance_hour_count(v_val, v_cond, step_per_h, threshold = [0, 20]) ⇒ Object
275 276 277 278 279 280 281 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 275 def self.exceedance_hour_count(v_val, v_cond, step_per_h, threshold = [0, 20]) sum = 0 v_val.each_with_index do |val, index| (val < threshold[0] || val > threshold[1]) && (v_cond[index] > 0) ? (sum += 1) : (sum = sum) end sum / step_per_h end |
.geb_metrics_section(model, sqlFile, base_sqlFile, event_date, runner, name_only = false, args = nil, is_ip_units = true, shed_start = nil, shed_end = nil, take_start = nil, take_end = nil) ⇒ Object
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 418 def self.geb_metrics_section(model, sqlFile, base_sqlFile, event_date, runner, name_only = false, args = nil, is_ip_units = true, shed_start=nil, shed_end=nil, take_start=nil, take_end=nil) # Initial setup @geb_metrics_section = {} @geb_metrics_section[:title] = 'GEB metrics' @geb_metrics_section[:tables] = [] @geb_metrics_section[:bldg_demand_charts] = [] @geb_metrics_section[:bldg_demand_chg_chart] = [] # stop here if only name is requested this is used to populate display name for arguments if name_only return @geb_metrics_section end base_results = OsLib_Reporting.get_ts_by_var_key(runner, base_sqlFile, 'Facility Net Purchased Electricity Rate', 'Zone Timestep', true) base_demand_ts_annual = base_results[0].values[0] datetimes = base_results[1].map { |date| Time.parse(date.to_s) } geb_results = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, 'Facility Net Purchased Electricity Rate', 'Zone Timestep', false) geb_demand_ts_annual = geb_results.values[0] # initialize the result vars event_month = event_date.split('-')[0].to_i event_day = event_date.split('-')[1].to_i event_day_times = [] event_day_base_values = [] event_day_geb_values = [] summer_month_start = 6 summer_month_end = 9 summer_demand_base_values = [] summer_demand_geb_values = [] winter_demand_base_values = [] winter_demand_geb_values = [] step_per_h = model.getTimestep.numberOfTimestepsPerHour.to_f floor_area_ft2 = OpenStudio.convert(model.building.get.floorArea.to_f, 'm^2', 'ft^2').get datetimes.each_with_index do |time, idx| # get results for the event day if time.month == event_month && time.day == event_day event_day_times << time.strftime("%H:%M") event_day_base_values << base_demand_ts_annual[idx] event_day_geb_values << geb_demand_ts_annual[idx] end # gather summer and winter demand values if time.month >= summer_month_start && time.month <= summer_month_end summer_demand_base_values << base_demand_ts_annual[idx] summer_demand_geb_values << geb_demand_ts_annual[idx] else winter_demand_base_values << base_demand_ts_annual[idx] winter_demand_geb_values << geb_demand_ts_annual[idx] end end # Check model's daylight saving period, if event date is within daylight saving period, # for visualization purpose, shift the profile one hour later eventDate = OpenStudio::Date.new(OpenStudio::MonthOfYear.new(event_month), event_day) if model.getObjectsByType('OS:RunPeriodControl:DaylightSavingTime'.to_IddObjectType).size >= 1 runperiodctrl_daylgtsaving = model.getRunPeriodControlDaylightSavingTime daylight_saving_startdate = runperiodctrl_daylgtsaving.startDate daylight_saving_enddate = runperiodctrl_daylgtsaving.endDate if eventDate >= OpenStudio::Date.new(daylight_saving_startdate.monthOfYear, daylight_saving_startdate.dayOfMonth, eventDate.year) && eventDate <= OpenStudio::Date.new(daylight_saving_enddate.monthOfYear, daylight_saving_enddate.dayOfMonth, eventDate.year) event_day_base_values = event_day_base_values.rotate(-4) # shift the load profile one hour later, 15min output so rotate the last four to the front event_day_geb_values = event_day_geb_values.rotate(-4) end end if (shed_start.is_a?Time) && (shed_end.is_a?Time) shed_range = [shed_start.strftime("%H:%M"), shed_end.strftime("%H:%M")] demand_decrease_shed_period = [] demand_base_shed_period = [] event_day_times.each_with_index do |time, idx| if time >= shed_range[0] && time <= shed_range[1] demand_decrease_shed_period << event_day_base_values[idx] - event_day_geb_values[idx] demand_base_shed_period << event_day_base_values[idx] end end # take period only exists with shed period if (take_start.is_a?Time) && (take_end.is_a?Time) take_range = [take_start.strftime("%H:%M"), take_end.strftime("%H:%M")] demand_increase_take_period = [] demand_base_take_period = [] event_day_times.each_with_index do |time, idx| if (take_range[0] < take_range[1]) && (time >= take_range[0] && time <= take_range[1]) demand_increase_take_period << event_day_geb_values[idx] - event_day_base_values[idx] demand_base_take_period << event_day_base_values[idx] elsif (take_range[0] > take_range[1]) && ((time >= take_range[1] && time <= "23:59") || (time >= "00:00" && time <= take_range[1])) demand_increase_take_period << event_day_geb_values[idx] - event_day_base_values[idx] demand_base_take_period << event_day_base_values[idx] end end end end # table: list all the primary DF metrics demand_decrease_primary_metrics_table = {} demand_decrease_primary_metrics_table[:title] = 'Demand Decrease (Shed) Primary Metrics' demand_decrease_primary_metrics_table[:header] = ['P1-Base: Summer Peak Demand Intensity - baseline', 'P1-GEB: Summer Peak Demand Intensity - GEB measures', 'P2-Base: Winter Peak Demand Intensity - baseline', 'P2-GEB: Winter Peak Demand Intensity - GEB measures', 'E1: Net Building Consumption Change Percentage (24 hours)'] demand_decrease_primary_metrics_table[:units] = ['W/ft2', 'W/ft2', 'W/ft2', 'W/ft2', '%'] demand_decrease_primary_metrics_table[:data] = [] demand_decrease_primary_metrics_table[:Metric_descriptions] = [ '* Test description.' ] demand_decrease_primary_metrics_table[:data] << [ (summer_demand_base_values.max/floor_area_ft2).round(2), (summer_demand_geb_values.max/floor_area_ft2).round(2), (winter_demand_base_values.max/floor_area_ft2).round(2), (winter_demand_geb_values.max/floor_area_ft2).round(2), ((event_day_geb_values.sum - event_day_base_values.sum)/event_day_base_values.sum * 100).round(2) # % ] if (shed_start.is_a?Time) && (shed_end.is_a?Time) demand_decrease_primary_metrics_table[:header].concat(['D1: Demand Decrease During Shed Period', 'D2: Demand Decrease Intensity During Shed Period', 'D3: Demand Decrease Percentage During Shed Period']) demand_decrease_primary_metrics_table[:units].concat(['kW', 'W/ft2', '%']) demand_decrease_shed = demand_decrease_shed_period.sum/demand_decrease_shed_period.size/1000.0 # kW demand_decrease_primary_metrics_table[:data][0].concat([demand_decrease_shed.round(2), # kW (demand_decrease_shed*1000/floor_area_ft2).round(2), ((demand_decrease_shed_period.sum/demand_base_shed_period.sum) * 100).round(2)]) # % if (take_start.is_a?Time) && (take_end.is_a?Time) demand_decrease_primary_metrics_table[:header].concat(['I1: Demand Increase During Take Period', 'I2: Demand Increase Intensity During Take Period', 'I3: Demand Increase Percentage During Take Period']) demand_decrease_primary_metrics_table[:units].concat(['kW', 'W/ft2', '%']) demand_increase_take = demand_increase_take_period.sum/demand_increase_take_period.size/1000.0 # kW demand_decrease_primary_metrics_table[:data][0].concat([demand_increase_take.round(2), # kW (demand_increase_take*1000/floor_area_ft2).round(2), ((demand_increase_take_period.sum/demand_base_take_period.sum) * 100).round(2)]) # % end end # plot: event day timestep demand profiles of baseline and GEB measures bldg_demand_chart = {} bldg_demand_chart[:title] = 'Whole Building Net Electricity Consumption on selected day (W)' bldg_demand_chart[:chart_div] = 'bldg_demand_chart' bldg_demand_chart[:xaxis_label] = 'Time' bldg_demand_chart[:yaxis_label] = 'W' bldg_demand_chart[:chart_data] = [] bldg_demand_chart[:date_range] = [event_day_times[0], event_day_times[-1]] if (shed_start.is_a?Time) && (shed_end.is_a?Time) bldg_demand_chart[:shed_range] = [shed_start.strftime("%H:%M"), shed_end.strftime("%H:%M")] # take period only exists with shed period if (take_start.is_a?Time) && (take_end.is_a?Time) bldg_demand_chart[:take_range] = [take_start.strftime("%H:%M"), take_end.strftime("%H:%M")] end end bldg_demand_chart[:chart_data] << JSON.generate( type: "scatter", mode: "lines", name: 'Baseline', x: event_day_times, y: event_day_base_values ) bldg_demand_chart[:chart_data] << JSON.generate( type: "scatter", mode: "lines", name: 'GEB measures', x: event_day_times, y: event_day_geb_values ) @geb_metrics_section[:tables] << demand_decrease_primary_metrics_table @geb_metrics_section[:bldg_demand_charts] << bldg_demand_chart # @geb_metrics_section[:tables] << demand_increase_primary_metrics_table return @geb_metrics_section end |
.geo_sequence(a, r, n) ⇒ Object
965 966 967 968 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 965 def self.geo_sequence(a, r, n) # Create a geometric sequence (n - 1).times.inject([a]) { |a| a << a.last * r } end |
.get_annual_useful_daylight(v_lux, lower_lux = 300, upper_lux = 3000) ⇒ Object
730 731 732 733 734 735 736 737 738 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 730 def self.get_annual_useful_daylight(v_lux, lower_lux=300, upper_lux=3000) = 0 v_lux.each_with_index do |lux, index| if lux >= lower_lux && lux <=upper_lux += 1 end end return .to_f/v_lux.length*100 end |
.get_daily_overcondition_degree_hours(hash_daily_adaptive_comfort_t_ranges, v_indoor_t, v_outdoor_t, v_datetimes, s_per_h) ⇒ Object
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 920 def self.get_daily_overcondition_degree_hours(hash_daily_adaptive_comfort_t_ranges, v_indoor_t, v_outdoor_t, v_datetimes, s_per_h) hash_daily_adaptive_t_lower = hash_daily_adaptive_comfort_t_ranges[0] hash_daily_adaptive_t_upper = hash_daily_adaptive_comfort_t_ranges[1] v_overheating_degree_hrs = [] v_overcooling_degree_hrs = [] v_indoor_t.each_with_index do |indoor_t, index| str_date = DateTime.parse(v_datetimes[index]).strftime('%Y-%m-%d') outdoor_t = v_outdoor_t[index] comfort_adaptive_t_lower = hash_daily_adaptive_t_lower[str_date] comfort_adaptive_t_upper = hash_daily_adaptive_t_upper[str_date] # puts "Date is #{str_date}, comfort_adaptive_t_lower is #{comfort_adaptive_t_lower}, comfort_adaptive_t_upper is #{comfort_adaptive_t_upper}, outdoor_t is #{outdoor_t} " begin # Overcooling degree hours if indoor_t < comfort_adaptive_t_lower && outdoor_t > comfort_adaptive_t_upper v_overcooling_degree_hrs << (comfort_adaptive_t_lower - indoor_t) / s_per_h else v_overcooling_degree_hrs << 0 end # Overheating degree hours if indoor_t > comfort_adaptive_t_upper && outdoor_t < comfort_adaptive_t_lower v_overheating_degree_hrs << (indoor_t - comfort_adaptive_t_upper) / s_per_h else v_overheating_degree_hrs << 0 end rescue v_overcooling_degree_hrs << 0 v_overheating_degree_hrs << 0 end end return [v_overcooling_degree_hrs, v_overheating_degree_hrs] end |
.get_degree_days(model, hdd_base = 18, cdd_base = 10) ⇒ Object
312 313 314 315 316 317 318 319 320 321 322 323 324 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 312 def self.get_degree_days(model, hdd_base = 18, cdd_base = 10) weather_file = model.getWeatherFile.file weather_file = weather_file.get data = weather_file.data cdd = 0.0 # degreeDays hdd = 0.0 # degreeDays data.each do |epw_data_point| temperature = epw_data_point.dryBulbTemperature.get # degreeCelsius cdd += [temperature - cdd_base, 0].max / 24 # degreeDays hdd += [hdd_base - temperature, 0].max / 24 # degreeDays end return [hdd, cdd] end |
.get_hash_daily_adaptive_comfort_t_ranges(hash_past_n_daily_average) ⇒ Object
953 954 955 956 957 958 959 960 961 962 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 953 def self.get_hash_daily_adaptive_comfort_t_ranges(hash_past_n_daily_average) hash_adpative_comfort_lower = {} hash_adpative_comfort_upper = {} hash_past_n_daily_average.each do |str_date, val| margins = OsLib_Reporting.adaptive_comfort_t_range(val) hash_adpative_comfort_lower[str_date] = margins[0] hash_adpative_comfort_upper[str_date] = margins[1] end return [hash_adpative_comfort_lower, hash_adpative_comfort_upper] end |
.get_hash_daily_means(v_val, v_datetimes, s_per_h) ⇒ Object
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 983 def self.get_hash_daily_means(v_val, v_datetimes, s_per_h) str_current_date = 'init' current_day_sum = 0 v_daily_mean = [] hash_daily_mean = {} v_val.each_with_index do |val, index| if DateTime.parse(v_datetimes[index]).strftime('%Y-%m-%d') != str_current_date v_daily_mean << current_day_sum / (24 * s_per_h) hash_daily_mean[str_current_date] = current_day_sum / (24 * s_per_h) current_day_sum = 0 str_current_date = DateTime.parse(v_datetimes[index]).strftime('%Y-%m-%d') else current_day_sum += val end end # Remove the empty first value hash_daily_mean.delete('init') hash_daily_mean end |
.get_hash_moving_daily_average(v_val, v_datetimes, step_per_h = 6, previous_n_days = 7) ⇒ Object
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 1024 def self.get_hash_moving_daily_average(v_val, v_datetimes, step_per_h = 6, previous_n_days = 7) # This method calculate the moving daily average of the past n days, v_val and v_datetimes should have the same length hash_daily_means = self.get_hash_daily_means(v_val, v_datetimes, step_per_h) hash_moving_daily_averages = {} hash_daily_means.each do |str_date, val| arr_vals_of_previous_n_days = [] (1..previous_n_days).each do |n| begin # Append the previous nth day's value arr_vals_of_previous_n_days << hash_daily_means[(DateTime.parse(str_date) - n).strftime('%Y-%m-%d')].to_f rescue # Append the current day value if the previous nth day's value is unavailable arr_vals_of_previous_n_days << hash_daily_means[str_date].to_f end end hash_moving_daily_averages[str_date] = OsLib_Reporting.arr_mean(arr_vals_of_previous_n_days) end hash_moving_daily_averages end |
.get_hash_past_n_daily_average(v_val, v_datetimes, step_per_h = 6, previous_n_days = 7) ⇒ Object
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 1003 def self.get_hash_past_n_daily_average(v_val, v_datetimes, step_per_h = 6, previous_n_days = 7) # This method calculate the daily average of the past n days, v_val and v_datetimes should have the same length hash_daily_means = self.get_hash_daily_means(v_val, v_datetimes, step_per_h) hash_past_n_daily_averages = {} hash_daily_means.each do |str_date, val| arr_vals_of_previous_n_days = [] (1..previous_n_days).each do |n| nth_previous_daily_mean = hash_daily_means[(DateTime.parse(str_date) - n).strftime('%Y-%m-%d')] if nth_previous_daily_mean.nil? # Append the current day value if the previous nth day's value is unavailable arr_vals_of_previous_n_days << hash_daily_means[str_date].to_f else # Append the previous nth day's value arr_vals_of_previous_n_days << nth_previous_daily_mean.to_f end end hash_past_n_daily_averages[str_date] = arr_vals_of_previous_n_days end hash_past_n_daily_averages end |
.get_hourly_average(v_val, v_datetimes, s_per_h) ⇒ Object
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 365 def self.get_hourly_average(v_val, v_datetimes, s_per_h) hash_hour_sums = {} hash_hour_counts = {} v_val.each_with_index do |val, index| hour = DateTime.parse(v_datetimes[index].to_s).strftime('%H').to_i # Sum each "hour of day" values if hash_hour_sums.has_key? "#{hour}" hash_hour_sums["#{hour}"] += val else hash_hour_sums["#{hour}"] = 0 end # Count the "hour of day" appearance if hash_hour_counts.has_key? "#{hour}" hash_hour_counts["#{hour}"] += 1 else hash_hour_counts["#{hour}"] = 0 end end # Calculate the average value for each hour v_results = [] (0..23).each do |key| v_results << (hash_hour_sums[key.to_s] / (hash_hour_counts[key.to_s] * s_per_h)).round(0) end v_results end |
.get_lux_setpoint(model, space_name) ⇒ Object
394 395 396 397 398 399 400 401 402 403 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 394 def self.get_lux_setpoint(model, space_name) v_setpoints = [] d_lgth_ctrls = model.getDaylightingControls d_lgth_ctrls.each do |d_lgth_ctrl| if d_lgth_ctrl.space.get.name.to_s == space_name v_setpoints << d_lgth_ctrl.illuminanceSetpoint end end arr_mean(v_setpoints) end |
.get_non_zero_avg_2ts(arr_ts_1, arr_ts_2, conversion_ts_1 = 1, conversion_ts_2 = 1) ⇒ Object
326 327 328 329 330 331 332 333 334 335 336 337 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 326 def self.get_non_zero_avg_2ts(arr_ts_1, arr_ts_2, conversion_ts_1 = 1, conversion_ts_2 = 1) # two arrays should have the same length val_sum = 0 count = 0 arr_ts_1.each_with_index do |val, i| unless val == 0 count += 1 val_sum += (val * conversion_ts_1).to_f / (arr_ts_2[i] * conversion_ts_2) end end val_sum / count end |
.get_overall_lux(v_lux, v_lght_w, lux_sp) ⇒ Object
405 406 407 408 409 410 411 412 413 414 415 416 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 405 def self.get_overall_lux(v_lux, v_lght_w, lux_sp) v_overall_lux = [] v_lux.each_with_index do |lux, index| if v_lght_w[index] > 0 && lux < lux_sp # When the light is on and daylighting lux is smaller than the setpoint v_overall_lux << lux_sp.round(1) else v_overall_lux << lux.round(1) end end v_overall_lux end |
.get_true_key(zone_name, hash_ts) ⇒ Object
302 303 304 305 306 307 308 309 310 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 302 def self.get_true_key(zone_name, hash_ts) true_key = zone_name hash_ts.each do |hash_key, ts| if (hash_key.include? zone_name) || (hash_key.split(' ')[0] == zone_name.split(' ')[0]) true_key = hash_key end end return true_key end |
.get_ts_by_var(runner, sqlFile, var_k_name, freq = 'Zone Timestep', get_datetime = false) ⇒ Object
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 168 def self.get_ts_by_var(runner, sqlFile, var_k_name, freq = 'Zone Timestep', get_datetime = false) # OsLib_Reporting.get_ts_by_var(runner, base_sqlFile, 'Facility Net Purchased Electricity Rate', 'Timestep') hash_result = {} v_datetimes = [] ann_env_pd = OsLib_Reporting.ann_env_pd(sqlFile) puts "ann_env_pd: #{ann_env_pd.inspect}" puts "availableReportingFrequencies: #{sqlFile.availableReportingFrequencies(ann_env_pd)}" puts "availableTimeSeries: #{sqlFile.availableTimeSeries}" # puts "availableVariableNames: #{sqlFile.availableVariableNames(ann_env_pd, )}" runner.registerInfo("= = =>Getting #{var_k_name} timeseries at #{freq} frequency from #{ann_env_pd}") if ann_env_pd output_timeseries = sqlFile.timeSeries(ann_env_pd, freq, var_k_name) puts "output_timeseries: #{output_timeseries.inspect}" if output_timeseries.is_initialized v_datetimes = output_timeseries.get.dateTimes output_timeseries = output_timeseries.get.values else runner.registerWarning("Didn't find data for #{var_k_name}") end v_temp = [] for i in 0..(output_timeseries.size - 1) v_temp << output_timeseries[i] end hash_result['key'] = v_temp end if get_datetime return [hash_result, v_datetimes] else return hash_result end end |
.get_ts_by_var_key(runner, sqlFile, var_k_name, freq = 'Zone Timestep', get_datetime = false) ⇒ Object
Utility functions
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 137 def self.get_ts_by_var_key(runner, sqlFile, var_k_name, freq = 'Zone Timestep', get_datetime = false) hash_result = {} v_datetimes = [] ann_env_pd = OsLib_Reporting.ann_env_pd(sqlFile) runner.registerInfo("= = =>Getting #{var_k_name} timeseries at #{freq} frequency from #{ann_env_pd}") if ann_env_pd keys = sqlFile.availableKeyValues(ann_env_pd, freq, var_k_name) # runner.registerInfo("Key length is #{keys.length}") keys.each do |key| # runner.registerInfo("SWH key = #{key}") output_timeseries = sqlFile.timeSeries(ann_env_pd, freq, var_k_name, key) if output_timeseries.is_initialized v_datetimes = output_timeseries.get.dateTimes output_timeseries = output_timeseries.get.values else runner.registerWarning("Didn't find data for #{var_k_name}") end v_temp = [] for i in 0..(output_timeseries.size - 1) v_temp << output_timeseries[i] end hash_result[key] = v_temp end end if get_datetime return [hash_result, v_datetimes] else return hash_result end end |
.get_zone_area(model, runner) ⇒ Object
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 200 def self.get_zone_area(model, runner) source_units_area = "m^2" target_units_area = "ft^2" target_units_area = "m^2" # Space area hash_zone_area = {} spaces = model.getSpaces spaces.each do |space| area = OpenStudio.convert(space.floorArea, source_units_area, target_units_area).get key = space.thermalZone.get.name.to_s.upcase hash_zone_area[key] = area # runner.registerInfo("Space = #{space.thermalZone.get.name}, Area = #{hash_zone_area[key]}") end hash_zone_area end |
.hash_sum(hash_k_arr) ⇒ Object
297 298 299 300 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 297 def self.hash_sum(hash_k_arr) # This method sum all the array values for a hash of key:array OsLib_Reporting.arr_sum(hash_k_arr.map { |k, v| OsLib_Reporting.arr_sum(v) }) end |
.other_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create other_kpi_section
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 1177 def self.other_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) # Initial setup other_kpi_tables = [] @other_system_kpi_section = {} @other_system_kpi_section[:title] = 'Other KPIs' @other_system_kpi_section[:tables] = other_kpi_tables # stop here if only name is requested this is used to populate display name for arguments if name_only return @other_system_kpi_section end ############################################################################ # Get raw space information and timeseries results freq = 'Zone Timestep' s_per_h = model.getTimestep.numberOfTimestepsPerHour.to_f hash_zone_area = OsLib_Reporting.get_zone_area(model, runner) var_k_name = 'Electric Equipment Electric Energy' hash_elec_j_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Electric Equipment Electric Power' hash_elec_w_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone People Occupant Count' hash_occ_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) ############################################################################ # Occupant related KPIs runner.registerInfo("-" * 50) runner.registerInfo("---> Calculating occupant-related mels system KPIs.") other_kpi_table_02 = {} other_kpi_table_02[:title] = 'Occupant-related mels System KPIs' other_kpi_table_02[:header] = ['Zone', 'Annual MELs Electricity Consumption Per Max Occupants', 'Annual MELs Electricity Consumption Per Occupant Hour', 'Peak Electric Power Per Max Occupants'] other_kpi_table_02[:units] = ['', 'kWh/(max occupants)', 'kWh/(occupant hour)', 'W/(max occupants)'] other_kpi_table_02[:data] = [] hash_zone_area.each do |key, area| begin j_key = OsLib_Reporting.get_true_key(key, hash_elec_j_ts) w_key = OsLib_Reporting.get_true_key(key, hash_elec_w_ts) o_key = OsLib_Reporting.get_true_key(key, hash_occ_ts) v_temp = [key, (OsLib_Reporting.arr_sum(hash_elec_j_ts[j_key]) * $J_to_KWH / hash_occ_ts[o_key].max).to_i, (OsLib_Reporting.arr_sum(hash_elec_j_ts[j_key]) * $J_to_KWH / OsLib_Reporting.arr_sum(hash_occ_ts[o_key]) / s_per_h).round(3), (hash_elec_w_ts[w_key].max / hash_occ_ts[o_key].max).round(1)] other_kpi_table_02[:data] << v_temp rescue runner.registerInfo("No mels electricity consumption time series data found for #{key}.") end end ############################################################################ # add table to array of tables other_kpi_tables << other_kpi_table_02 return @other_system_kpi_section end |
.reg_val_string_prep(string) ⇒ Object
clean up unkown strings used for runner.registerValue names
124 125 126 127 128 129 130 131 132 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 124 def self.reg_val_string_prep(string) # replace non alpha-numberic characters with an underscore string = string.gsub(/[^0-9a-z]/i, '_') # snake case string string = OpenStudio.toUnderscoreCase(string) return string end |
.save_xls(book) ⇒ Object
82 83 84 85 86 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 82 def self.save_xls(book) file = book.write 'excel-file.xlsx' return file end |
.setup(runner) ⇒ Object
setup - get model, sql, and setup web assets path
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 22 def self.setup(runner) results = {} # get the last model model = runner.lastOpenStudioModel if model.empty? runner.registerError('Cannot find last model.') return false end model = model.get # get the last idf workspace = runner.lastEnergyPlusWorkspace if workspace.empty? runner.registerError('Cannot find last idf file.') return false end workspace = workspace.get # get the last sql file sqlFile = runner.lastEnergyPlusSqlFile if sqlFile.empty? runner.registerError('Cannot find last sql file.') return false end sqlFile = sqlFile.get model.setSqlFile(sqlFile) # populate hash to pass to measure results[:model] = model # results[:workspace] = workspace results[:sqlFile] = sqlFile return results end |
.template_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create template section
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 1243 def self.template_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) # array to hold tables template_tables = [] # gather data for section @template_section = {} @template_section[:title] = 'Tasty Treats' @template_section[:tables] = template_tables # stop here if only name is requested this is used to populate display name for arguments if name_only == true return @template_section end # notes: # The data below would typically come from the model or simulation results # You can loop through objects to make a table for each item of that type, such as air loops # If a section will only have one table you can leave the table title blank and just rely on the section title # these will be updated later to support graphs # create table template_table_01 = {} template_table_01[:title] = 'Fruit' template_table_01[:header] = ['Definition', 'Value'] template_table_01[:units] = ['', '$/pound'] template_table_01[:data] = [] # add rows to table template_table_01[:data] << ['Banana', 0.23] template_table_01[:data] << ['Apple', 0.75] template_table_01[:data] << ['Orange', 0.50] # add table to array of tables template_tables << template_table_01 # using helper method that generates table for second example template_tables << OsLib_Reporting.template_table(model, sqlFile, runner, is_ip_units = true) return @template_section end |
.template_table(model, sqlFile, runner, is_ip_units = true) ⇒ Object
create template section
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 1285 def self.template_table(model, sqlFile, runner, is_ip_units = true) # create a second table template_table = {} template_table[:title] = 'Ice Cream' template_table[:header] = ['Definition', 'Base Flavor', 'Toppings', 'Value'] template_table[:units] = ['', '', '', 'scoop'] template_table[:data] = [] # add rows to table template_table[:data] << ['Vanilla', 'Vanilla', 'NA', 1.5] template_table[:data] << ['Rocky Road', 'Chocolate', 'Nuts', 1.5] template_table[:data] << ['Mint Chip', 'Mint', 'Chocolate Chips', 1.5] return template_table end |
.thermal_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create thermal_kpi section
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 742 def self.thermal_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) # array to hold tables thermal_kpi_tables = [] # gather data for section @thermal_kpi_section = {} @thermal_kpi_section[:title] = 'Thermal KPIs' @thermal_kpi_section[:tables] = thermal_kpi_tables @thermal_kpi_section[:hash_KPI_ts_charts] = [] @thermal_kpi_section[:hash_KPI_stacked_bar_charts] = [] # stop here if only name is requested this is used to populate display name for arguments if name_only == true return @thermal_kpi_section end ########################################################################### # Get the total end uses for each fuel type bldg_area = model.getBuilding.floorArea runner.registerInfo("Building area = #{bldg_area}") ########################################################################### freq = 'Zone Timestep' step_per_h = model.getTimestep.numberOfTimestepsPerHour.to_f hash_zone_area = OsLib_Reporting.get_zone_area(model, runner) v_outdoor_t = get_ts_by_var_key(runner, sqlFile, 'Site Outdoor Air Drybulb Temperature', freq)['Environment'] # create table thermal_kpi_table_01 = {} thermal_kpi_table_01[:title] = 'Fanger Comfort Model' thermal_kpi_table_01[:header] = [ 'Zone', 'Area', 'Average Negative PMV (when occupied)', 'Average Positive PMV (when occupied)', 'Annual Average PPD (when occupied)', 'Annual Exceedance hours (when occupied and PPD>20%)', 'Annual Overcooling Degree-hours*', 'Annual Overheating Degree-hours*', ] thermal_kpi_table_01[:units] = ['', 'm^2', '', '', '%', 'hours', '°C*hour', '°C*hour'] thermal_kpi_table_01[:data] = [] thermal_kpi_table_01[:KPI_descriptions] = [ "* When the space is too cool (warm) when it's under cooling (heating) condition which indicate uncomfortable thermal condition and energy waste, reference: 10.1016/j.enbuild.2019.109539.", ] var_k_name = 'Zone Air Temperature' hash_zone_t_v_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone Thermal Comfort Fanger Model PMV' hash_zone_pmv_v_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone Thermal Comfort Fanger Model PPD' hash_zone_ppd_v_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone People Occupant Count' hash_occ_v_ts, v_datetimes = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq, true) v_datetimes = v_datetimes.map { |date| DateTime.parse(date.to_s).strftime('%Y-%m-%d %H:%M:%S') } # File.write('C:/Users/hlee9/Documents/GitHub/OS-measures/occupant_centric_kpi_report/tests/hash_zone_pmv_v_ts.yml', hash_zone_pmv_v_ts.to_yaml) # File.write('C:/Users/hlee9/Documents/GitHub/OS-measures/occupant_centric_kpi_report/tests/hash_occ_v_ts.yml', hash_occ_v_ts.to_yaml) # Time-series occupant count hash_ts_occ_count_chart = {} hash_ts_occ_count_chart[:title] = 'Zone People Count' hash_ts_occ_count_chart[:chart_div] = 'thermal_KPI_1' hash_ts_occ_count_chart[:chart_data] = [] hash_ts_occ_count_chart[:date_range] = [v_datetimes[0], v_datetimes[-1]] # Time-series PMV hash_ts_pmv_chart = {} hash_ts_pmv_chart[:title] = 'Zone PMV' hash_ts_pmv_chart[:chart_div] = 'thermal_KPI_2' hash_ts_pmv_chart[:chart_data] = [] hash_ts_pmv_chart[:date_range] = [v_datetimes[0], v_datetimes[-1]] # Time-series PPD hash_ts_ppd_chart = {} hash_ts_ppd_chart[:title] = 'Zone PPD' hash_ts_ppd_chart[:chart_div] = 'thermal_KPI_3' hash_ts_ppd_chart[:chart_data] = [] hash_ts_ppd_chart[:yaxis_label] = '%' hash_ts_ppd_chart[:date_range] = [v_datetimes[0], v_datetimes[-1]] # Stacked bar plots hash_unsatisfied_occ_hour_chart = {} hash_unsatisfied_occ_hour_chart[:title] = 'Unsatisfied Occupant-hours by Month' hash_unsatisfied_occ_hour_chart[:chart_div] = 'unsatisfied_occ_hour' hash_unsatisfied_occ_hour_chart[:chart_data] = [] hash_unsatisfied_occ_hour_chart[:yaxis_label] = 'Occupant * Hour' hash_unsatisfied_occ_hour_chart[:KPI_description] = '* The unsatisfied hours are the sums of total number of occupants multiplied by percent of people unsatisfied for each timestep.' # Get daily adaptive comfort temperature ranges hash_past_n_daily_average = OsLib_Reporting.get_hash_past_n_daily_average(v_outdoor_t, v_datetimes, step_per_h, previous_n_days = 7) hash_daily_adaptive_comfort_t_ranges = OsLib_Reporting.get_hash_daily_adaptive_comfort_t_ranges(hash_past_n_daily_average) # hash_daily_adaptive_comfort_t_lower = hash_daily_adaptive_comfort_t_ranges[0] # hash_daily_adaptive_comfort_t_upper = hash_daily_adaptive_comfort_t_ranges[1] hash_zone_area.each do |zone_name, area| begin t_key_name = OsLib_Reporting.get_true_key(zone_name, hash_zone_t_v_ts) pmv_key_name = OsLib_Reporting.get_true_key(zone_name, hash_zone_pmv_v_ts) ppd_key_name = OsLib_Reporting.get_true_key(zone_name, hash_zone_ppd_v_ts) occ_key_name = OsLib_Reporting.get_true_key(zone_name, hash_occ_v_ts) overcondition_results = OsLib_Reporting.get_daily_overcondition_degree_hours(hash_daily_adaptive_comfort_t_ranges, hash_zone_t_v_ts[t_key_name], v_outdoor_t, v_datetimes, step_per_h) v_overcooling_degree_hrs = overcondition_results[0] v_overheating_degree_hrs = overcondition_results[1] # KPIs in table thermal_kpi_table_01[:data] << [ zone_name, area.round(1), OsLib_Reporting.arr_conditional_mean(hash_zone_pmv_v_ts[pmv_key_name], hash_occ_v_ts[occ_key_name], false).round(2), OsLib_Reporting.arr_conditional_mean(hash_zone_pmv_v_ts[pmv_key_name], hash_occ_v_ts[occ_key_name], true).round(2), OsLib_Reporting.arr_conditional_mean(hash_zone_ppd_v_ts[ppd_key_name], hash_occ_v_ts[occ_key_name], true).round(1), OsLib_Reporting.exceedance_hour_count(hash_zone_ppd_v_ts[ppd_key_name], hash_occ_v_ts[occ_key_name], step_per_h, [0, 20]).round(1), OsLib_Reporting.arr_sum(v_overcooling_degree_hrs).round(1), OsLib_Reporting.arr_sum(v_overheating_degree_hrs).round(1), ] # KPIs in plots # Time-series hash_occ_v_ts[occ_key_name][0] hash_zone_pmv_v_ts[pmv_key_name][0] hash_zone_ppd_v_ts[ppd_key_name][0] hash_ts_occ_count_chart[:chart_data] << JSON.generate( type: "scatter", mode: "lines", name: zone_name, x: v_datetimes, y: hash_occ_v_ts[occ_key_name] ) hash_ts_pmv_chart[:chart_data] << JSON.generate( type: "scatter", mode: "lines", name: zone_name, x: v_datetimes, y: hash_zone_pmv_v_ts[pmv_key_name] ) hash_ts_ppd_chart[:chart_data] << JSON.generate( type: "scatter", mode: "lines", name: zone_name, x: v_datetimes, y: hash_zone_ppd_v_ts[ppd_key_name] ) # Stacked-bar hash_unsatisfied_occ_hour_chart[:chart_data] << JSON.generate( x: ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'], y: OsLib_Reporting.thermal_unsatisfied_occ_hour_by_month(hash_zone_ppd_v_ts[ppd_key_name], hash_occ_v_ts[occ_key_name], v_datetimes, step_per_h, [0, 20]), name: zone_name, type: 'bar' ) rescue runner.registerInfo("No Fanger thermal comfort time series data found for #{zone_name}.") end end # puts hash_ts_occ_count_chart @thermal_kpi_section[:hash_KPI_ts_charts] << hash_ts_occ_count_chart @thermal_kpi_section[:hash_KPI_ts_charts] << hash_ts_pmv_chart @thermal_kpi_section[:hash_KPI_ts_charts] << hash_ts_ppd_chart @thermal_kpi_section[:hash_KPI_stacked_bar_charts] << hash_unsatisfied_occ_hour_chart # add table to array of tables thermal_kpi_tables << thermal_kpi_table_01 # using helper method that generates table for second example return @thermal_kpi_section end |
.thermal_unsatisfied_occ_hour_by_month(v_val, v_weight, v_datetimes, step_per_h, threshold = [0, 20], pct_weight = true) ⇒ Object
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 244 def self.thermal_unsatisfied_occ_hour_by_month(v_val, v_weight, v_datetimes, step_per_h, threshold = [0, 20], pct_weight = true) v_results = [] current_month_number = 1 current_month_sum = 0 v_val.each_with_index do |val, index| if pct_weight # If weight is percentage current_month_sum += val * (v_weight[index] / 100) / step_per_h else current_month_sum += val * v_weight[index] / step_per_h end if DateTime.parse(v_datetimes[index]).strftime('%m').to_i > current_month_number # puts "Month #{current_month_number}'s sum is done..." v_results << current_month_sum current_month_sum = 0 current_month_number += 1 end end v_results << current_month_sum # last month's sum v_results end |
.visual_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) ⇒ Object
create visual_kpi_section
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 599 def self.visual_kpi_section(model, sqlFile, runner, name_only = false, args = nil, is_ip_units = true) # Initial setup @visual_kpi_section = {} @visual_kpi_section[:title] = 'Visual KPIs' @visual_kpi_section[:tables] = [] @visual_kpi_section[:hash_KPI_ts_charts] = [] @visual_kpi_section[:hash_KPI_heatmaps] = [] # stop here if only name is requested this is used to populate display name for arguments if name_only return @visual_kpi_section end # Average lux heatmap hash_hourly_mean_lux_heatmap = {} hash_hourly_mean_lux_heatmap[:title] = 'Hourly Average Daylighting Illuminance Level (lux)' hash_hourly_mean_lux_heatmap[:chart_div] = 'visual_KPI_2' hash_hourly_mean_lux_heatmap[:chart_data] = [] hash_hourly_mean_lux_heatmap[:xaxis_label] = 'Hour' ############################################################################ # Get raw space information and timeseries results freq = 'Zone Timestep' s_per_h = model.getTimestep.numberOfTimestepsPerHour.to_f hash_zone_area = OsLib_Reporting.get_zone_area(model, runner) var_k_name = 'Zone Lights Electric Energy' hash_elec_j_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone Lights Electric Power' hash_elec_w_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Zone People Occupant Count' hash_occ_v_ts, v_datetimes = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq, true) v_datetimes = v_datetimes.map { |date| DateTime.parse(date.to_s).strftime('%Y-%m-%d %H:%M:%S') } var_k_name = 'Daylighting Reference Point 1 Illuminance' hash_lux_1_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) var_k_name = 'Daylighting Reference Point 2 Illuminance' hash_lux_2_ts = OsLib_Reporting.get_ts_by_var_key(runner, sqlFile, var_k_name, freq) # Time-series overall lux (daylighting + artificial lighting) hash_ts_lux_chart = {} hash_ts_lux_chart[:title] = 'Illuminance Level at Zone Centers (lux)' hash_ts_lux_chart[:chart_div] = 'visual_KPI_1' hash_ts_lux_chart[:chart_data] = [] hash_ts_lux_chart[:date_range] = [v_datetimes[0], v_datetimes[-1]] ############################################################################ runner.registerInfo("---> Calculating non-occupant-related lighting system KPIs.") visual_kpi_table_01 = {} visual_kpi_table_01[:title] = 'Lighting System & Visual KPIs' visual_kpi_table_01[:header] = ['Zone', 'Annual Electricity Consumption', 'Annual Electricity Use Intensity', 'Peak Power Density', 'Useful Daylight Illuminance*' ] visual_kpi_table_01[:units] = ['', 'kWh', 'kWh/m^2', 'W/m^2', '%' ] visual_kpi_table_01[:data] = [] visual_kpi_table_01[:KPI_descriptions] = [ '* The percent of time when the zone has comfortable illuminance level (between 300 and 3000 lux) without any artificial lighting or shading device.' ] v_zone_names = [] v_zone_mean_lux = [] hash_zone_area.each do |zone_name, area| begin lght_j_key = OsLib_Reporting.get_true_key(zone_name, hash_elec_j_ts) lght_w_key = OsLib_Reporting.get_true_key(zone_name, hash_elec_w_ts) lght_lux_key = OsLib_Reporting.get_true_key(zone_name, hash_lux_1_ts) occ_key_name = OsLib_Reporting.get_true_key(zone_name, hash_occ_v_ts) visual_kpi_table_01[:data] << [ zone_name, (OsLib_Reporting.arr_sum(hash_elec_j_ts[lght_j_key]) * $J_to_KWH).to_i, (OsLib_Reporting.arr_sum(hash_elec_j_ts[lght_j_key]) * $J_to_KWH / area).to_i, (hash_elec_w_ts[lght_w_key].max / area).round(1), OsLib_Reporting.get_annual_useful_daylight(hash_lux_1_ts[lght_lux_key]).round(1), ] thermal_zone = model.getThermalZoneByName(zone_name).get space_name = thermal_zone.spaces[0].name.to_s lux_setpoint = OsLib_Reporting.get_lux_setpoint(model, space_name) v_overall_lux = OsLib_Reporting.get_overall_lux(hash_lux_1_ts[lght_lux_key], hash_elec_w_ts[lght_w_key], lux_setpoint) v_overall_lux[0] v_datetimes[0] v_datetimes[0] hash_occ_v_ts[occ_key_name][0] hash_ts_lux_chart[:chart_data] << JSON.generate( type: "scatter", mode: "lines", name: zone_name, x: v_datetimes, y: v_overall_lux ) v_zone_mean_lux << OsLib_Reporting.get_hourly_average(hash_lux_1_ts[lght_lux_key], v_datetimes, s_per_h) v_zone_names << zone_name rescue runner.registerInfo("No lighting & visual time series data found for #{zone_name}.") end end hash_hourly_mean_lux_heatmap[:chart_data] << JSON.generate( x: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], y: v_zone_names, z: v_zone_mean_lux, type: 'heatmap', hoverongaps: false ) ############################################################################ # add table to array of tables @visual_kpi_section[:tables] << visual_kpi_table_01 @visual_kpi_section[:hash_KPI_ts_charts] << hash_ts_lux_chart @visual_kpi_section[:hash_KPI_heatmaps] << hash_hourly_mean_lux_heatmap return @visual_kpi_section end |
.write_xls(table_data, book) ⇒ Object
write an Excel file from table data the Excel Functions are not currently being used, left in as example Requires ruby Gem which isn’t currently supported in OpenStudio GUIs. Current setup is simple, creates new workbook for each table Could be updated to have one section per workbook
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'lib/measures/GEB Metrics Report/resources/os_lib_reporting.rb', line 93 def self.write_xls(table_data, book) worksheet = book.add_worksheet table_data[:title] row_cnt = 0 # write the header row header = table_data[:header] header.each_with_index do |h, i| worksheet.add_cell(row_cnt, i, h) end worksheet.change_row_fill(row_cnt, '0ba53d') # loop over data rows data = table_data[:data] data.each do |d| row_cnt += 1 d.each_with_index do |c, i| worksheet.add_cell(row_cnt, i, c) end end return book end |