Class: SetNISTInfiltrationCorrelations
- Inherits:
-
OpenStudio::Measure::ModelMeasure
- Object
- OpenStudio::Measure::ModelMeasure
- SetNISTInfiltrationCorrelations
- Defined in:
- lib/measures/set_nist_infiltration_correlations/measure.rb
Overview
start the measure
Instance Method Summary collapse
-
#arguments(model) ⇒ Object
define the arguments that the user will input.
-
#description ⇒ Object
human readable description.
- #infer_nist_building_type(model) ⇒ Object
-
#invert_schedule_day(old_schedule_day, new_schedule_day, new_schedule_name) ⇒ Object
method to invert a schedule day.
-
#invert_schedule_ruleset(schedule_ruleset, new_schedule_name) ⇒ Object
method to invert a schedule ruleset.
-
#modeler_description ⇒ Object
human readable description of modeling approach.
-
#name ⇒ Object
human readable name.
-
#nist_building_types ⇒ Object
DOE prototype buildings for which there are NIST infiltration coefficients.
-
#run(model, runner, user_arguments) ⇒ Object
define what happens when the measure is run.
Instance Method Details
#arguments(model) ⇒ Object
define the arguments that the user will input
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 176 def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # airtightness value airtightness_value = OpenStudio::Measure::OSArgument::makeDoubleArgument('airtightness_value', false) airtightness_value.setDefaultValue(13.8) airtightness_value.setDisplayName('Airtightness design value (m^3/h-m^2)') airtightness_value.setDescription('The airtightness design value from a building pressurization test. Use 5.0 (m^3/h-m^2) as a default for buildings with air barriers. Convert (cfm/ft^2) to (m^3/h-m^2) by multiplying by 18.288 (m-min/ft-hr). (0.3048 m/ft)*(60 min/hr) = 18.288 (m-min/ft-hr).') args << airtightness_value # airtightness pressure airtightness_pressure = OpenStudio::Measure::OSArgument::makeDoubleArgument('airtightness_pressure', false) airtightness_pressure.setDefaultValue(75.0) airtightness_pressure.setDisplayName('Airtightness design pressure (Pa)') airtightness_pressure.setDescription('The corresponding pressure for the airtightness design value, typically 75 Pa for commercial buildings and 50 Pa for residential buildings.') args << airtightness_pressure # choices for air-tightness scope airtightness_choices = OpenStudio::StringVector.new airtightness_choices << '4-sided' airtightness_choices << '5-sided' airtightness_choices << '6-sided' # airtightness area airtightness_area = OpenStudio::Measure::OSArgument.makeChoiceArgument('airtightness_area', airtightness_choices, false) airtightness_area.setDefaultValue('5-sided') airtightness_area.setDisplayName('Airtightness exterior surface area scope') airtightness_area.setDescription('Airtightness measurements are weighted by exterior surface area. 4-sided values divide infiltration by exterior wall area. 5-sided values additionally include roof area. 6-sided values additionally include floor and ground area.') args << airtightness_area # air barrier = OpenStudio::Measure::OSArgument::makeBoolArgument('air_barrier', false) .setDefaultValue(false) .setDisplayName('Does the building have an air barrier?') .setDescription('Buildings with air barriers use a different set of coefficients.') args << # populate choice argument for schedules in the model sch_handles = OpenStudio::StringVector.new sch_display_names = OpenStudio::StringVector.new # populate choice argument for schedules that are applied to surfaces in the model schedule_handles = OpenStudio::StringVector.new schedule_display_names = OpenStudio::StringVector.new # putting space types and names into hash schedule_names = [] schedule_names << 'Lookup From Model' model.getScheduleRulesets.each { |sch| schedule_names << sch.name.to_s } model.getScheduleConstants.each { |sch| schedule_names << sch.name.to_s } # hvac operation schedule hvac_schedule = OpenStudio::Measure::OSArgument::makeChoiceArgument('hvac_schedule', schedule_names, false, true) hvac_schedule.setDefaultValue('Lookup From Model') hvac_schedule.setDisplayName('HVAC Operating Schedule') hvac_schedule.setDescription('Choose the HVAC Operating Schedule for the building. The schedule must be a Schedule Constant or Schedule Ruleset object. Lookup From Model will use the operating schedule from the largest airloop by floor area served. If the largest airloop serves less than 5% of the building, the measure will attempt to use the Building Hours of Operation schedule instead.') args << hvac_schedule # climate zone options cz_choices = OpenStudio::StringVector.new cz_choices << '1A' cz_choices << '1B' cz_choices << '2A' cz_choices << '2B' cz_choices << '3A' cz_choices << '3B' cz_choices << '3C' cz_choices << '4A' cz_choices << '4B' cz_choices << '4C' cz_choices << '5A' cz_choices << '5B' cz_choices << '5C' cz_choices << '6A' cz_choices << '6B' cz_choices << '7A' cz_choices << '8A' cz_choices << 'Lookup From Model' # climate zone climate_zone = OpenStudio::Measure::OSArgument.makeChoiceArgument('climate_zone', cz_choices, false) climate_zone.setDefaultValue('Lookup From Model') climate_zone.setDisplayName('Climate Zone') climate_zone.setDescription('Specify the ASHRAE climate zone. CEC climate zones are not supported.') args << climate_zone # building type options building_types = nist_building_types building_types << 'Lookup From Model' # building type building_type = OpenStudio::Measure::OSArgument.makeChoiceArgument('building_type', building_types, false) building_type.setDefaultValue('Lookup From Model') building_type.setDisplayName('Building Type') building_type.setDescription('If the building type is not available, pick the one with the most similar geometry and exhaust fan flow rates.') args << building_type return args end |
#description ⇒ Object
human readable description
17 18 19 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 17 def description return "This measure incorporates infiltration that varies with weather and HVAC operation, and takes into account building geometry (height, above-ground exterior surface area, and volume). It is based on work published by Ng et al. (2018) <a href='https://doi.org/10.1016/j.buildenv.2017.10.029'>'Weather correlations to calculate infiltration rates for U.S. commercial building energy models'</a> and Ng et al. (2021) <a href='https://doi.org/10.1016/j.buildenv.2021.107783'>'Evaluating potential benefits of air barriers in commercial buildings using NIST infiltration correlations in EnergyPlus'</a>. This method of calculating infiltration was developed using eleven of the DOE commercial prototype building models (<a href='https://www.energycodes.gov/development/commercial/prototype_models'>Goel et al. 2014</a>) and TMY3 weather files for eight climate zones (CZ). Guidance on implementing the infiltration correlations are explained in the NIST technical report <a href='https://doi.org/10.6028/NIST.TN.2221'>'Implementing NIST Infiltration Correlations'</a>. Ng et al. (2018) shows that when analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the infiltration inputs included in this Measure compared with using the default inputs that are included in the prototype building models. Brian Polidoro (NIST) first developed this Measure in 2015 and updated it in 2018 and 2019. Matthew Dahlhausen (NREL) updated the 2019 Measure and published this current version in 2023. To provide feedback on the NIST infiltration correlations, please email [email protected] or [email protected]. For measure implementation questions or issues, contact [email protected]." end |
#infer_nist_building_type(model) ⇒ Object
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 44 def infer_nist_building_type(model) if model.getBuilding.standardsBuildingType.is_initialized model_building_type = model.getBuilding.standardsBuildingType.get else model_building_type = '' end case model_building_type when 'Office' # map office building type to small medium or large floor_area = model.getBuilding.floorArea if floor_area < 2750.0 nist_building_type = 'SmallOffice' else nist_building_type = 'MediumOffice' end when 'LargeOffice' nist_building_type = 'MediumOffice' when 'Retail' # map retal building type to RetailStripmall or RetailStandalone based on building name building_name = model.getBuilding.name.get if building_name.include? 'RetailStandalone' nist_building_type = 'RetailStandalone' else nist_building_type = 'RetailStripmall' end when 'StripMall' nist_building_type = 'RetailStripmall' when 'Warehouse' nist_building_type = 'RetailStripmall' when 'QuickServiceRestaurant' nist_building_type = 'RetailStripmall' when 'FullServiceRestaurant' nist_building_type = 'RetailStripmall' when 'Outpatient' nist_building_type = 'MediumOffice' when 'SuperMarket' nist_building_type = 'RetailStandalone' when 'EPr' nist_building_type = 'PrimarySchool' when 'ESe' nist_building_type = 'SecondarySchool' when 'RtL' nist_building_type = 'RetailStandalone' when 'RtS' nist_building_type = 'RetailStripmall' when 'RSD' nist_building_type = 'RetailStripmall' when 'RFF' nist_building_type = 'RetailStripmall' when 'Mtl' nist_building_type = 'SmallHotel' when 'Htl' nist_building_type = 'LargeHotel' when 'Hsp' nist_building_type = 'Hospital' when 'OfS' nist_building_type = 'SmallOffice' when 'OfL' nist_building_type = 'MediumOffice' when 'SCn' nist_building_type = 'RetailStripmall' else nist_building_type = model_building_type end results = {} results['model_building_type'] = model_building_type results['nist_building_type'] = nist_building_type return results end |
#invert_schedule_day(old_schedule_day, new_schedule_day, new_schedule_name) ⇒ Object
method to invert a schedule day
118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 118 def invert_schedule_day(old_schedule_day, new_schedule_day, new_schedule_name) new_schedule_day.setName("#{new_schedule_name}") for index in 0..old_schedule_day.times.size-1 old_value = old_schedule_day.values[index] if old_value == 0 new_value = 1 else new_value = 0 end new_schedule_day.addValue(old_schedule_day.times[index], new_value) end return new_schedule_day end |
#invert_schedule_ruleset(schedule_ruleset, new_schedule_name) ⇒ Object
method to invert a schedule ruleset
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 134 def invert_schedule_ruleset(schedule_ruleset, new_schedule_name) model = schedule_ruleset.model new_schedule = OpenStudio::Model::ScheduleRuleset.new(model, 0.0) new_schedule.setName(new_schedule_name) # change summer design day summer_design_day_schedule = schedule_ruleset.summerDesignDaySchedule new_summer_design_day_schedule = OpenStudio::Model::ScheduleDay.new(model) invert_schedule_day(summer_design_day_schedule, new_summer_design_day_schedule, "#{new_schedule_name} Summer Design Day Schedule") new_schedule.setSummerDesignDaySchedule(new_summer_design_day_schedule) # change winter design day winter_design_day_schedule = schedule_ruleset.winterDesignDaySchedule new_winter_design_day_schedule = OpenStudio::Model::ScheduleDay.new(model) invert_schedule_day(winter_design_day_schedule, new_winter_design_day_schedule, "#{new_schedule_name} Winter Design Day Schedule") new_schedule.setWinterDesignDaySchedule(new_winter_design_day_schedule) # change the default day values default_day_schedule = schedule_ruleset.defaultDaySchedule new_default_day_schedule = new_schedule.defaultDaySchedule invert_schedule_day(default_day_schedule, new_default_day_schedule, "#{new_schedule_name} Default Day Schedule") # change for schedule rules schedule_ruleset.scheduleRules.each_with_index do |rule, i| old_schedule_day = rule.daySchedule new_schedule_day = OpenStudio::Model::ScheduleDay.new(model) invert_schedule_day(old_schedule_day, new_schedule_day, "#{new_schedule_name} Schedule Day #{i}") new_rule = OpenStudio::Model::ScheduleRule.new(new_schedule, new_schedule_day) new_rule.setName("#{new_schedule_day.name} Rule") new_rule.setApplySunday(rule.applySunday) new_rule.setApplyMonday(rule.applyMonday) new_rule.setApplyTuesday(rule.applyTuesday) new_rule.setApplyWednesday(rule.applyWednesday) new_rule.setApplyThursday(rule.applyThursday) new_rule.setApplyFriday(rule.applyFriday) new_rule.setApplySaturday(rule.applySaturday) end return new_schedule end |
#modeler_description ⇒ Object
human readable description of modeling approach
22 23 24 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 22 def modeler_description return "This measure will remove any existing infiltration objects (OS:SpaceInfiltration:DesignFlowRate and OS:SpaceInfiltration:EffectiveLeakageArea). Every zone will then get two OS:SpaceInfiltration:DesignFlowRate objects that add infiltration using the 'Flow per Exterior Surface Area' input option, one infiltration object when the HVAC system is on and one object when the HVAC system is off. The method assumes that HVAC operation is set by a schedule, though it may not reflect actual simulation/operation when fan operation may depend on internal loads and temperature setpoints. By default, interior zones will receive no infiltration. The user may enter a design building envelope airtightness at a specific design pressure, and whether the design value represents a 4-sided, 5-sided, or 6-sided normalization. By default, the measure assumes an airtightness design value of 13.8 (m^3/h-m^2) at 75 Pa. The measure assumes that infiltration is evenly distributed across the entire building envelope, including the roof. The user may select the HVAC system operating schedule in the model, or infer it based on the availability schedule of the air loop that serves the largest amount of floor area. The measure will make a copy of the HVAC operating schedule, 'Infiltration HVAC On Schedule', which is used with the HVAC on infiltration correlations. The measure will also make an 'Infiltration HVAC Off Schedule' with inverse operation, used with the HVAC off infiltration correlations. OS:SpaceInfiltration:DesignFlowRate object coefficients (A, B, C, and D) come from Ng et al. (2018). The user may select the Building Type and Climate Zone, or the measure will infer them from the model." end |
#name ⇒ Object
human readable name
11 12 13 14 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 11 def name # Measure name should be the title case of the class name. return 'SetNISTInfiltrationCorrelations' end |
#nist_building_types ⇒ Object
DOE prototype buildings for which there are NIST infiltration coefficients
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 27 def nist_building_types building_types = OpenStudio::StringVector.new building_types << 'SecondarySchool' building_types << 'PrimarySchool' building_types << 'SmallOffice' building_types << 'MediumOffice' building_types << 'SmallHotel' building_types << 'LargeHotel' building_types << 'RetailStandalone' building_types << 'RetailStripmall' building_types << 'Hospital' building_types << 'MidriseApartment' building_types << 'HighriseApartment' return building_types end |
#run(model, runner, user_arguments) ⇒ Object
define what happens when the measure is run
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
# File 'lib/measures/set_nist_infiltration_correlations/measure.rb', line 277 def run(model, runner, user_arguments) super(model, runner, user_arguments) # use the built-in error checking if !runner.validateUserArguments(arguments(model), user_arguments) return false end # assign the user inputs to variables airtightness_value = runner.getDoubleArgumentValue('airtightness_value', user_arguments) airtightness_pressure = runner.getDoubleArgumentValue('airtightness_pressure', user_arguments) airtightness_area = runner.getStringArgumentValue('airtightness_area', user_arguments) = runner.getBoolArgumentValue('air_barrier', user_arguments) hvac_schedule = runner.getStringArgumentValue('hvac_schedule', user_arguments) climate_zone = runner.getStringArgumentValue('climate_zone', user_arguments) building_type = runner.getStringArgumentValue('building_type', user_arguments) # validate airtightness value and pressure if airtightness_value < 0.0 runner.registerError('Airtightness value must be postive.') return false end if airtightness_pressure < 0.0 runner.registerError('Airtightness pressure must be postive.') return false end # calculate infiltration design value at 4 Pa airtightness_value_4pa_per_hr = airtightness_value * ((4.0 / airtightness_pressure)**0.65) runner.registerInfo("User-inputed airtightness design value #{airtightness_value} (m^3/h-m^2) at #{airtightness_pressure} Pa converts to #{airtightness_value_4pa_per_hr.round(7)} (m^3/h-m^2) at 4 Pa") # convert to m^3/s-m^2 airtightness_value_4pa_per_s = airtightness_value_4pa_per_hr / 3600.0 # get 4-sided, 5-sided, and 6-sided areas exterior_wall_area = 0.0 exterior_roof_area = 0.0 exterior_floor_area = 0.0 ground_wall_area = 0.0 ground_roof_area = 0.0 ground_floor_area = 0.0 model.getSurfaces.each do |surface| bc = surface.outsideBoundaryCondition type = surface.surfaceType area = surface.grossArea exterior_wall_area += area if bc == 'Outdoors' && type == 'Wall' exterior_roof_area += area if bc == 'Outdoors' && type == 'RoofCeiling' exterior_floor_area += area if bc == 'Outdoors' && type == 'Floor' ground_wall_area += area if bc == 'Ground' && type == 'Wall' ground_roof_area += area if bc == 'Ground' && type == 'RoofCeiling' ground_floor_area += area if bc == 'Ground' && type == 'Floor' end four_sided_area = exterior_wall_area + ground_wall_area five_sided_area = exterior_wall_area + ground_wall_area + exterior_roof_area + ground_roof_area six_sided_area = exterior_wall_area + ground_wall_area + exterior_roof_area + ground_roof_area + exterior_floor_area + ground_floor_area energy_plus_area = exterior_wall_area + exterior_roof_area runner.registerInfo("4-sided area = #{four_sided_area.round(2)} m^2, 5-sided area = #{five_sided_area.round(2)} m^2, 6-sided area = #{six_sided_area.round(2)} m^2.") # The SpaceInfiltrationDesignFlowRate object FlowperExteriorSurfaceArea method only counts surfaces with the 'Outdoors' boundary conditions towards exterior surface area, not surfaces with the 'Ground' boundary conditions. That means all values need to be normalized to exterior wall and roof area. case airtightness_area when '4-sided' design_infiltration_4pa = airtightness_value_4pa_per_s * (four_sided_area / energy_plus_area) runner.registerInfo("#{airtightness_area} infiltration design value #{airtightness_value_4pa_per_s.round(7)} (m^3/s-m^2) converted to #{design_infiltration_4pa.round(7)} (m^3/s-m^2) based on 4-sided area #{four_sided_area.round(2)} m^2 and 5-sided area #{energy_plus_area.round(2)} m^2 excluding ground boundary surfaces for energyplus.") when '5-sided' design_infiltration_4pa = airtightness_value_4pa_per_s * (five_sided_area / energy_plus_area) runner.registerInfo("#{airtightness_area} infiltration design value #{airtightness_value_4pa_per_s.round(7)} (m^3/s-m^2) converted to #{design_infiltration_4pa.round(7)} (m^3/s-m^2) based on 5-sided area #{five_sided_area.round(2)} m^2 and 5-sided area #{energy_plus_area.round(2)} m^2 excluding ground boundary surfaces for energyplus.") when '6-sided' design_infiltration_4pa = airtightness_value_4pa_per_s * (six_sided_area / energy_plus_area) runner.registerInfo("#{airtightness_area} infiltration design value #{airtightness_value_4pa_per_s.round(7)} (m^3/s-m^2) converted to #{design_infiltration_4pa.round(7)} (m^3/s-m^2) based on 6-sided area #{six_sided_area.round(2)} m^2 and 5-sided area #{energy_plus_area.round(2)} m^2 excluding ground boundary surfaces for energyplus.") end runner.registerValue('design_infiltration_4pa', design_infiltration_4pa, 'm/s') # validate hvac schedule if hvac_schedule == 'Lookup From Model' # lookup from model, using largest air loop # check multiple kinds of systems, including unitary systems hvac_schedule = nil largest_area = 0.0 model.getAirLoopHVACs.each do |air_loop| air_loop_area = 0.0 air_loop.thermalZones.each { |tz| air_loop_area += tz.floorArea } if air_loop_area > largest_area hvac_schedule = air_loop.availabilitySchedule largest_area = air_loop_area end end model.getAirLoopHVACUnitarySystems.each do |unitary| next unless unitary.thermalZone.is_initialized air_loop_area = unitary.thermalZone.get.floorArea if air_loop_area > largest_area if unitary.availabilitySchedule.is_initialized hvac_schedule = unitary.availabilitySchedule.get else hvac_schedule = model.alwaysOnDiscreteSchedule end largest_area = air_loop_area end end model.getAirLoopHVACUnitaryHeatPumpAirToAirs.each do |unitary| next unless unitary.controllingZone.is_initialized air_loop_area = unitary.controllingZone.get.floorArea if air_loop_area > largest_area hvac_schedule = unitary.availabilitySchedule.get largest_area = air_loop_area end end model.getAirLoopHVACUnitaryHeatPumpAirToAirMultiSpeeds.each do |unitary| next unless unitary.controllingZoneorThermostatLocation.is_initialized air_loop_area = unitary.controllingZoneorThermostatLocation.get.floorArea if air_loop_area > largest_area if unitary.availabilitySchedule.is_initialized hvac_schedule = unitary.availabilitySchedule.get else hvac_schedule = model.alwaysOnDiscreteSchedule end largest_area = air_loop_area end end model.getFanZoneExhausts.each do |fan| next unless fan.thermalZone.is_initialized air_loop_area = fan.thermalZone.get.floorArea if air_loop_area > largest_area if fan.availabilitySchedule.is_initialized hvac_schedule = fan.availabilitySchedule.get else hvac_schedule = model.alwaysOnDiscreteSchedule end largest_area = air_loop_area end end building_area = model.getBuilding.floorArea if largest_area < 0.05*building_area runner.registerWarning("The largest airloop or HVAC system serves #{largest_area.round(1)} m^2, which is less than 5% of the building area #{building_area.round(1)} m^2. Attempting to use building hours of operation schedule instead.") default_schedule_set = model.getBuilding.defaultScheduleSet if default_schedule_set.is_initialized default_schedule_set = default_schedule_set.get hoo = default_schedule_set.hoursofOperationSchedule if hoo.is_initialized hvac_schedule = hoo.get largest_area = building_area else runner.registerWarning("Unable to determine building hours of operation schedule. Treating the building as if there is no HVAC system schedule.") hvac_schedule = nil end else runner.registerWarning("Unable to determine building hours of operation schedule. Treating the building as if there is no HVAC system schedule.") hvac_schedule = nil end end unless hvac_schedule.nil? area_fraction = 100.0 * largest_area / building_area runner.registerInfo("Using schedule #{hvac_schedule.name} serving area #{largest_area.round(1)} m^2, #{area_fraction.round(0)}% of building area #{building_area.round(1)} m^2 to determine infiltration on/off schedule.") end else hvac_schedule = model.getScheduleByName(hvac_schedule) unless schedule_object.is_initialized runner.registerError("HVAC schedule argument #{hvac_schedule} not found in the model. IT may have been removed by another measure.") return false end hvac_schedule = hvac_schedule.get if hvac_schedule.get.to_ScheduleRuleset.is_initialized hvac_schedule = hvac_schedule.get.to_ScheduleRuleset.get elsif hvac_schedule.get.to_ScheduleConstant.is_initialized hvac_schedule = hvac_schedule.get.to_ScheduleConstant.get else runner.registerError("HVAC schedule argument #{hvac_schedule} is not a Schedule Constant or Schedule Ruleset object.") return false end runner.registerInfo("Using HVAC schedule #{hvac_schedule.name} from user arguments to determine infiltration on/off schedule.") end # creating infiltration schedules based on hvac schedule if hvac_schedule.nil? runner.registerWarning('Unable to determine the HVAC schedule. Treating the building as if there is no HVAC system with outdoor air. If this is not the case, input a schedule argument, or assign one to an air loop in the model.') on_schedule = OpenStudio::Model::ScheduleConstant.new(model) on_schedule.setName("Infiltration HVAC On Schedule") on_schedule.setValue(0.0) off_schedule = OpenStudio::Model::ScheduleConstant.new(model) off_schedule.setName("Infiltration HVAC Off Schedule") off_schedule.setValue(1.0) elsif hvac_schedule.to_ScheduleConstant.is_initialized hvac_schedule = hvac_schedule.to_ScheduleConstant.get on_schedule = OpenStudio::Model::ScheduleConstant.new(model) on_schedule.setName("Infiltration HVAC On Schedule") on_schedule.setValue(hvac_schedule.value) off_schedule = OpenStudio::Model::ScheduleConstant.new(model) off_schedule.setName("Infiltration HVAC Off Schedule") if hvac_schedule.value > 0 off_schedule.setValue(0.0) else off_schedule.setValue(1.0) end elsif hvac_schedule.to_ScheduleRuleset.is_initialized hvac_schedule = hvac_schedule.to_ScheduleRuleset.get on_schedule = hvac_schedule.clone.to_ScheduleRuleset.get on_schedule.setName("Infiltration HVAC On Schedule") off_schedule = invert_schedule_ruleset(hvac_schedule, 'Infiltration HVAC Off Schedule') end # validate climate zone if climate_zone == 'Lookup From Model' climate_zone = '' model.getClimateZones.climateZones.each do |cz| next if cz.value == '' cz_institution = cz.institution if cz_institution == 'ASHRAE' climate_zone = cz.value climate_zone = climate_zone.gsub('ASHRAE 169-2006-','') climate_zone = climate_zone.gsub('ASHRAE 169-2013-','') climate_zone = climate_zone.gsub('ASHRAE 169-2020-','') climate_zone = climate_zone.gsub('ASHRAE 169-2021-','') elsif cz_institution == 'CEC' california_cz = cz.value.gsub('CEC','') case california_cz when '1' climate_zone = '4B' when '2','3','4','5','6' climate_zone = '3C' when '7','8','9','10','11','12','13','14' climate_zone = '3B' when '15' climate_zone = '2B' when '16' climate_zone = '5B' end runner.registerWarning("Using ASHRAE climate zone #{climate_zone} for California climate zone #{california_cz}.") end end if climate_zone == '' runner.registerError('Unable to determine an ASHRAE climate zone for the model. An ASHRAE climate zone value is necessary to lookup the coefficients.') return false end runner.registerInfo("Using climate zone #{climate_zone} from model.") else runner.registerInfo("Using climate zone #{climate_zone} from user arguments.") end # get climate zone number climate_zone_number = climate_zone.delete('^0-9').to_i # validate building type if building_type == 'Lookup From Model' # get building type from the model building_type_data = infer_nist_building_type(model) model_building_type = building_type_data['model_building_type'] nist_building_type = building_type_data['nist_building_type'] building_type = nist_building_type # check that model building type is supported unless nist_building_types.include? nist_building_type runner.registerError("NIST coefficients are not available for model building type #{nist_building_type}.") return false end # warn the user if the model building type is different from support nist building types unless model_building_type == nist_building_type runner.registerWarning("Using building type #{building_type} for model building type #{model_building_type}.") else runner.registerInfo("Using building type #{building_type} from model.") end else runner.registerInfo("Using building type #{building_type} from user arguments.") end # remove existing infiltration objects runner.registerInitialCondition("The modeled started with #{model.getSpaceInfiltrationDesignFlowRates.size} infiltration objects and #{model.getSpaceInfiltrationEffectiveLeakageAreas.size} effective leakage area objects.") model.getSpaceInfiltrationDesignFlowRates.each(&:remove) model.getSpaceInfiltrationEffectiveLeakageAreas.each(&:remove) # load NIST infiltration correlations file and convert to hash table nist_infiltration_correlations_csv = "#{File.dirname(__FILE__)}/resources/Data-NISTInfiltrationCorrelations.csv" if not File.file?(nist_infiltration_correlations_csv) runner.registerError("Unable to find file: #{nist_infiltration_correlations_csv}") return nil end coefficients_tbl = CSV.table(nist_infiltration_correlations_csv) coefficients_hsh = coefficients_tbl.map { |row| row.to_hash } # select down to building type and climate zone coefficients = coefficients_hsh.select { |r| (r[:building_type] == building_type) && (r[:climate_zone] == climate_zone_number) } # filter by air barrier if coefficients = coefficients.select { |r| r[:air_barrier] == 'yes'} else coefficients = coefficients.select { |r| r[:air_barrier] == 'no'} end # determine coefficients # if no off coefficients are defined, use 0 for a and the on coefficients for b and d on_coefficients = coefficients.select { |r| r[:hvac_status] == 'on'} off_coefficients = coefficients.select { |r| r[:hvac_status] == 'off'} a_on = on_coefficients[0][:a] b_on = on_coefficients[0][:b] d_on = on_coefficients[0][:d] a_off = off_coefficients[0][:a].nil? ? on_coefficients[0][:a] : off_coefficients[0][:a] b_off = off_coefficients[0][:b].nil? ? on_coefficients[0][:b] : off_coefficients[0][:b] d_off = off_coefficients[0][:d].nil? ? on_coefficients[0][:d] : off_coefficients[0][:d] # add new infiltration objects # define infiltration as flow per exterior area model.getSpaces.each do |space| next unless space.exteriorArea > 0.0 hvac_on_infiltration = OpenStudio::Model::SpaceInfiltrationDesignFlowRate.new(model) hvac_on_infiltration.setName("#{space.name.get} HVAC On Infiltration") hvac_on_infiltration.setFlowperExteriorSurfaceArea(design_infiltration_4pa) hvac_on_infiltration.setConstantTermCoefficient(a_on) hvac_on_infiltration.setTemperatureTermCoefficient(b_on) hvac_on_infiltration.setVelocityTermCoefficient(0.0) hvac_on_infiltration.setVelocitySquaredTermCoefficient(d_on) hvac_on_infiltration.setSpace(space) hvac_on_infiltration.setSchedule(on_schedule) hvac_off_infiltration = OpenStudio::Model::SpaceInfiltrationDesignFlowRate.new(model) hvac_off_infiltration.setName("#{space.name.get} HVAC Off Infiltration") hvac_off_infiltration.setFlowperExteriorSurfaceArea(design_infiltration_4pa) hvac_off_infiltration.setConstantTermCoefficient(a_off) hvac_off_infiltration.setTemperatureTermCoefficient(b_off) hvac_off_infiltration.setVelocityTermCoefficient(0.0) hvac_off_infiltration.setVelocitySquaredTermCoefficient(d_off) hvac_off_infiltration.setSpace(space) hvac_off_infiltration.setSchedule(off_schedule) end runner.registerFinalCondition("The modeled finished with #{model.getSpaceInfiltrationDesignFlowRates.size} infiltration objects.") return true end |