Class: NRELZNEReady2017
- Includes:
- NRELZNEReady2017CoolingTower
- Defined in:
- lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.Space.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.Model.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.FanOnOff.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.ThermalZone.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.hvac_systems.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.Model.elevators.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.FanVariableVolume.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.FanConstantVolume.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.FanVariableVolume.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.CoolingTowerTwoSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.HeatExchangerSensLat.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.CoolingTowerSingleSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.CoolingTowerVariableSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirTerminalSingleDuctVAVReheat.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.AirTerminalSingleDuctVAVReheat.rb
Overview
This class holds methods that apply the “standard” assumptions for ZNE-Ready buildings, as defined by NREL in 2017, to a given model.
Direct Known Subclasses
NRELZNEReady2017FullServiceRestaurant, NRELZNEReady2017HighriseApartment, NRELZNEReady2017Hospital, NRELZNEReady2017LargeHotel, NRELZNEReady2017LargeOffice, NRELZNEReady2017MediumOffice, NRELZNEReady2017MidriseApartment, NRELZNEReady2017Outpatient, NRELZNEReady2017PrimarySchool, NRELZNEReady2017QuickServiceRestaurant, NRELZNEReady2017RetailStandalone, NRELZNEReady2017RetailStripmall, NRELZNEReady2017SecondarySchool, NRELZNEReady2017SmallHotel, NRELZNEReady2017SmallOffice, NRELZNEReady2017SuperMarket, NRELZNEReady2017Warehouse, NRELZNEReady2017_Prototype
Constant Summary collapse
- @@template =
rubocop:disable Style/ClassVars
'NREL ZNE Ready 2017'
Constants inherited from Standard
Instance Attribute Summary collapse
-
#template ⇒ Object
readonly
Returns the value of attribute template.
Attributes inherited from Standard
#space_multiplier_map, #standards_data
Space collapse
-
#space_daylighted_area_window_width(space) ⇒ String
Determines the method used to extend the daylighted area horizontally next to a window.
-
#space_daylighting_control_required?(space, areas) ⇒ Array<Bool>
Determine if the space requires daylighting controls for toplighting, primary sidelighting, and secondary sidelighting.
-
#space_daylighting_fractions_and_windows(space, areas, sorted_windows, sorted_skylights, req_top_ctrl, req_pri_ctrl, req_sec_ctrl) ⇒ Object
Determine the fraction controlled by each sensor and which window each sensor should go near.
-
#space_infiltration_rate_75_pa(space) ⇒ Double
Determine the base infiltration rate at 75 PA.
Model collapse
-
#model_economizer_type(model, climate_zone) ⇒ String
Determine the prototypical economizer type for the model.
FanOnOff collapse
-
#fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off) ⇒ Double
Determine the prototype fan pressure rise for an on off fan on an AirLoopHVAC or inside a unitary system based on the airflow of the system.
AirLoopHVAC collapse
-
#air_loop_hvac_apply_multizone_vav_outdoor_air_sizing(air_loop_hvac) ⇒ Object
Apply multizone vav outdoor air method and adjust multizone VAV damper positions to achieve a system minimum ventilation effectiveness of 0.6 per PNNL.
-
#air_loop_hvac_dcv_required_when_erv(air_loop_hvac) ⇒ Object
Determine if the standard has an exception for demand control ventilation when an energy recovery device is present.
-
#air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac) ⇒ Array<Double>
Determines the OA flow rates above which an economizer is required.
-
#air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>
Determine the limits for the type of economizer present on the AirLoopHVAC, if any.
-
#air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone) ⇒ Bool
Check the economizer type currently specified in the ControllerOutdoorAir object on this air loop is acceptable per the standard.
-
#air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone) ⇒ Boolean
Determine if the system economizer must be integrated or not.
-
#air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>
Determine the air flow and number of story limits for whether motorized OA damper is required.
-
#air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone) ⇒ Bool
Determine if multizone vav optimization is required.
-
#air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone) ⇒ Integer
Determine the number of stages that should be used as controls for single zone DX systems.
-
#air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone) ⇒ Bool
Determine if the system required supply air temperature (SAT) reset.
ThermalZone collapse
-
#thermal_zone_demand_control_ventilation_limits(thermal_zone) ⇒ Array<Double>
Determine the area and occupancy level limits for demand control ventilation.
hvac_systems collapse
-
#model_cw_loop_cooling_tower_fan_type(model) ⇒ String
Determine which type of fan the cooling tower will have.
elevators collapse
-
#model_elevator_fan_pwr(model, vent_rate_cfm) ⇒ Double
Determines the power of the elevator ventilation fan.
-
#model_elevator_lighting_pct_incandescent(model) ⇒ Object
Determines the percentage of the elevator cab lighting that is incandescent.
FanVariableVolume collapse
-
#fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume) ⇒ Double
Determine the prototype fan pressure rise for a variable volume fan on an AirLoopHVAC based on the airflow of the system.
-
#fan_variable_volume_part_load_fan_power_limitation_capacity_limit(fan_variable_volume) ⇒ Double
The threhold capacity below which part load control is not required.
-
#fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume) ⇒ Double
The threhold horsepower below which part load control is not required.
FanConstantVolume collapse
-
#fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume) ⇒ Double
Determine the prototype fan pressure rise for a constant volume fan on an AirLoopHVAC based on the airflow of the system.
HeatExchangerSensLat collapse
-
#heat_exchanger_air_to_air_sensible_and_latent_minimum_efficiency(heat_exchanger_air_to_air_sensible_and_latent) ⇒ Object
Defines the minimum sensible and latent effectiveness of the heat exchanger.
AirTerminalSingleDuctVAVReheat collapse
-
#air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, building_type, zone_oa_per_area) ⇒ Bool
Set the initial minimum damper position based on OA rate of the space and the template.
-
#air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false) ⇒ Object
Specifies the minimum damper position for VAV dampers.
Instance Method Summary collapse
-
#cooling_tower_variable_speed_apply_efficiency_and_curves(cooling_tower_variable_speed) ⇒ Object
Apply the efficiency, plus Multicell heat rejection with VSD per 90.1-2013 6.5.2.2.
-
#initialize ⇒ NRELZNEReady2017
constructor
A new instance of NRELZNEReady2017.
Methods included from NRELZNEReady2017CoolingTower
#cooling_tower_apply_minimum_power_per_flow_gpm_limit
Methods inherited from Standard
#adjust_infiltration_to_lower_pressure, #adjust_infiltration_to_prototype_building_conditions, #afue_to_thermal_eff, #air_loop_hvac_add_motorized_oa_damper, #air_loop_hvac_adjust_minimum_vav_damper_positions, #air_loop_hvac_adjust_minimum_vav_damper_positions_outpatient, #air_loop_hvac_allowable_system_brake_horsepower, #air_loop_hvac_apply_baseline_fan_pressure_rise, #air_loop_hvac_apply_economizer_integration, #air_loop_hvac_apply_economizer_limits, #air_loop_hvac_apply_energy_recovery_ventilator, #air_loop_hvac_apply_maximum_reheat_temperature, #air_loop_hvac_apply_minimum_vav_damper_positions, #air_loop_hvac_apply_prm_baseline_controls, #air_loop_hvac_apply_prm_baseline_economizer, #air_loop_hvac_apply_prm_baseline_fan_power, #air_loop_hvac_apply_prm_sizing_temperatures, #air_loop_hvac_apply_single_zone_controls, #air_loop_hvac_apply_standard_controls, #air_loop_hvac_apply_vav_damper_action, #air_loop_hvac_data_center_area_served, #air_loop_hvac_demand_control_ventilation_required?, #air_loop_hvac_disable_multizone_vav_optimization, #air_loop_hvac_dx_cooling?, #air_loop_hvac_economizer?, #air_loop_hvac_economizer_required?, #air_loop_hvac_enable_demand_control_ventilation, #air_loop_hvac_enable_multizone_vav_optimization, #air_loop_hvac_enable_supply_air_temperature_reset_delta, #air_loop_hvac_enable_supply_air_temperature_reset_outdoor_temperature, #air_loop_hvac_enable_supply_air_temperature_reset_warmest_zone, #air_loop_hvac_enable_unoccupied_fan_shutoff, #air_loop_hvac_energy_recovery?, #air_loop_hvac_energy_recovery_ventilator_flow_limit, #air_loop_hvac_energy_recovery_ventilator_required?, #air_loop_hvac_fan_power_limitation_pressure_drop_adjustment_brake_horsepower, #air_loop_hvac_find_design_supply_air_flow_rate, #air_loop_hvac_floor_area_served, #air_loop_hvac_floor_area_served_exterior_zones, #air_loop_hvac_floor_area_served_interior_zones, #air_loop_hvac_get_occupancy_schedule, #air_loop_hvac_motorized_oa_damper_required?, #air_loop_hvac_multi_stage_dx_cooling?, #air_loop_hvac_multizone_vav_system?, #air_loop_hvac_prm_baseline_economizer_required?, #air_loop_hvac_prm_economizer_type_and_limits, #air_loop_hvac_remove_motorized_oa_damper, #air_loop_hvac_static_pressure_reset_required?, #air_loop_hvac_supply_return_exhaust_relief_fans, #air_loop_hvac_system_fan_brake_horsepower, #air_loop_hvac_system_multiplier, #air_loop_hvac_terminal_reheat?, #air_loop_hvac_total_cooling_capacity, #air_loop_hvac_unoccupied_fan_shutoff_required?, #air_loop_hvac_vav_damper_action, #air_loop_hvac_vav_system?, #air_terminal_single_duct_parallel_piu_reheat_apply_prm_baseline_fan_power, #air_terminal_single_duct_vav_reheat_apply_minimum_damper_position, #air_terminal_single_duct_vav_reheat_reheat_type, #air_terminal_single_duct_vav_reheat_set_heating_cap, #boiler_hot_water_apply_efficiency_and_curves, #boiler_hot_water_find_capacity, #boiler_hot_water_find_search_criteria, #boiler_hot_water_standard_minimum_thermal_efficiency, build, #building_story_floor_multiplier, #building_story_minimum_z_value, #chiller_electric_eir_apply_efficiency_and_curves, #chiller_electric_eir_find_capacity, #chiller_electric_eir_find_search_criteria, #chiller_electric_eir_standard_minimum_full_load_efficiency, #coil_cooling_dx_multi_speed_apply_efficiency_and_curves, #coil_cooling_dx_single_speed_apply_efficiency_and_curves, #coil_cooling_dx_single_speed_find_capacity, #coil_cooling_dx_single_speed_standard_minimum_cop, #coil_cooling_dx_two_speed_apply_efficiency_and_curves, #coil_cooling_dx_two_speed_find_capacity, #coil_cooling_dx_two_speed_standard_minimum_cop, #coil_heating_dx_multi_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_find_capacity, #coil_heating_dx_single_speed_standard_minimum_cop, #coil_heating_gas_apply_prototype_efficiency, #coil_heating_gas_multi_stage_apply_efficiency_and_curves, #combustion_eff_to_thermal_eff, #construction_calculated_solar_heat_gain_coefficient, #construction_calculated_u_factor, #construction_calculated_visible_transmittance, #construction_set_glazing_shgc, #construction_set_glazing_u_value, #construction_set_slab_f_factor, #construction_set_u_value, #construction_set_underground_wall_c_factor, #construction_simple_glazing?, #controller_water_coil_set_convergence_limits, #convert_curve_biquadratic, #cooling_tower_single_speed_apply_efficiency_and_curves, #cooling_tower_two_speed_apply_efficiency_and_curves, #cop_heating_to_cop_heating_no_fan, #cop_to_eer, #cop_to_kw_per_ton, #cop_to_seer, #create_curve_bicubic, #create_curve_biquadratic, #create_curve_cubic, #create_curve_exponent, #create_curve_quadratic, #define_space_multiplier, #eer_to_cop, #fan_constant_volume_apply_prototype_fan_pressure_rise, #fan_on_off_apply_prototype_fan_pressure_rise, #fan_variable_volume_apply_prototype_fan_pressure_rise, #fan_variable_volume_cooling_system_type, #fan_variable_volume_part_load_fan_power_limitation?, #fan_variable_volume_set_control_type, #fan_zone_exhaust_apply_prototype_fan_pressure_rise, #film_coefficients_r_value, #headered_pumps_variable_speed_set_control_type, #heat_exchanger_air_to_air_sensible_and_latent_apply_efficiency, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_nominal_electric_power, #heating_design_outdoor_temperatures, #hspf_to_cop_heating_no_fan, #intialize, #kw_per_ton_to_cop, #load_hvac_map, #load_standards_database, #model_add_baseboard, #model_add_booster_swh_end_uses, #model_add_cav, #model_add_central_air_source_heat_pump, #model_add_chw_loop, #model_add_constant_schedule_ruleset, #model_add_construction, #model_add_construction_set, #model_add_curve, #model_add_cw_loop, #model_add_data_center_hvac, #model_add_data_center_load, #model_add_daylighting_controls, #model_add_design_days_and_weather_file, #model_add_district_ambient_loop, #model_add_doas, #model_add_elevator, #model_add_elevators, #model_add_evap_cooler, #model_add_exhaust_fan, #model_add_four_pipe_fan_coil, #model_add_furnace_central_ac, #model_add_ground_hx_loop, #model_add_ground_temperatures, #model_add_high_temp_radiant, #model_add_hp_loop, #model_add_hvac, #model_add_hvac_system, #model_add_hw_loop, #model_add_ideal_air_loads, #model_add_material, #model_add_prm_baseline_system, #model_add_prm_construction_set, #model_add_psz_ac, #model_add_psz_vav, #model_add_ptac, #model_add_pthp, #model_add_pvav, #model_add_pvav_pfp_boxes, #model_add_refrigeration, #model_add_refrigeration_case, #model_add_refrigeration_compressor, #model_add_refrigeration_system, #model_add_refrigeration_walkin, #model_add_schedule, #model_add_split_ac, #model_add_swh, #model_add_swh_booster, #model_add_swh_end_uses, #model_add_swh_end_uses_by_space, #model_add_swh_loop, #model_add_typical_exterior_lights, #model_add_typical_swh, #model_add_unitheater, #model_add_vav_pfp_boxes, #model_add_vav_reheat, #model_add_water_heater, #model_add_water_source_hp, #model_add_window_ac, #model_add_zone_erv, #model_add_zone_ventilation, #model_apply_hvac_efficiency_standard, #model_apply_infiltration_standard, #model_apply_multizone_vav_outdoor_air_sizing, #model_apply_prm_baseline_skylight_to_roof_ratio, #model_apply_prm_baseline_window_to_wall_ratio, #model_apply_prm_construction_types, #model_apply_prm_sizing_parameters, #model_apply_standard_constructions, #model_assign_spaces_to_stories, #model_attach_water_fixtures_to_spaces?, #model_baseline_system_vav_fan_type, #model_create_exterior_lighting_area_length_count_hash, #model_create_prm_baseline_building, #model_create_prm_baseline_building_requires_vlt_sizing_run, #model_create_space_type_hash, #model_create_story_hash, #model_differentiate_primary_secondary_thermal_zones, #model_effective_num_stories, #model_elevator_lift_power, #model_eliminate_outlier_zones, #model_find_and_add_construction, #model_find_ashrae_hot_water_demand, #model_find_climate_zone_set, #model_find_constructions, #model_find_icc_iecc_2015_hot_water_demand, #model_find_icc_iecc_2015_internal_loads, #model_find_object, #model_find_objects, #model_find_prototype_floor_area, #model_find_target_eui, #model_find_target_eui_by_end_use, #model_find_water_heater_capacity_volume_and_parasitic, #model_get_baseline_system_type_by_zone, #model_get_building_climate_zone_and_building_type, #model_get_climate_zone_set_from_list, #model_get_construction_properties, #model_get_full_weather_file_path, #model_get_lookup_name, #model_get_or_add_ambient_water_loop, #model_get_or_add_chilled_water_loop, #model_get_or_add_ground_hx_loop, #model_get_or_add_heat_pump_loop, #model_get_or_add_hot_water_loop, #model_get_story_for_nominal_z_coordinate, #model_group_zones_by_story, #model_make_name, #model_num_stories_spanned, #model_prm_baseline_system_change_fuel_type, #model_prm_baseline_system_group_minimum_area, #model_prm_baseline_system_groups, #model_prm_baseline_system_number, #model_prm_baseline_system_type, #model_prm_skylight_to_roof_ratio_limit, #model_process_results_for_datapoint, #model_remap_office, #model_remove_external_shading_devices, #model_remove_prm_hvac, #model_residential_and_nonresidential_floor_areas, #model_swh_pump_type, #model_typical_hvac_system_type, #model_validate_standards_spacetypes_in_model, #model_walkin_freezer_latent_case_credit_curve, #model_zones_with_occ_and_fuel_type, #planar_surface_apply_standard_construction, #plant_loop_apply_prm_baseline_chilled_water_pumping_type, #plant_loop_apply_prm_baseline_chilled_water_temperatures, #plant_loop_apply_prm_baseline_condenser_water_pumping_type, #plant_loop_apply_prm_baseline_condenser_water_temperatures, #plant_loop_apply_prm_baseline_hot_water_pumping_type, #plant_loop_apply_prm_baseline_hot_water_temperatures, #plant_loop_apply_prm_baseline_pump_power, #plant_loop_apply_prm_baseline_pumping_type, #plant_loop_apply_prm_baseline_temperatures, #plant_loop_apply_prm_number_of_boilers, #plant_loop_apply_prm_number_of_chillers, #plant_loop_apply_prm_number_of_cooling_towers, #plant_loop_apply_standard_controls, #plant_loop_enable_supply_water_temperature_reset, #plant_loop_find_maximum_loop_flow_rate, #plant_loop_prm_baseline_condenser_water_temperatures, #plant_loop_supply_water_temperature_reset_required?, #plant_loop_swh_loop?, #plant_loop_swh_system_type, #plant_loop_total_cooling_capacity, #plant_loop_total_floor_area_served, #plant_loop_total_heating_capacity, #plant_loop_total_rated_w_per_gpm, #plant_loop_variable_flow_system?, #pump_variable_speed_set_control_type, register_standard, #safe_load_model, #safe_load_sql, #schedule_compact_annual_min_max_value, #schedule_constant_annual_equivalent_full_load_hrs, #schedule_constant_annual_min_max_value, #schedule_ruleset_annual_equivalent_full_load_hrs, #schedule_ruleset_annual_hours_above_value, #schedule_ruleset_annual_min_max_value, #seer_to_cop_cooling_no_fan, #space_add_daylighting_controls, #space_apply_infiltration_rate, #space_conditioning_category, #space_cooled?, #space_daylighted_areas, #space_design_internal_load, #space_exterior_wall_and_roof_and_subsurface_area, #space_exterior_wall_and_window_area, #space_get_adjacent_space_with_most_shared_wall_area, #space_get_adjacent_spaces_with_shared_wall_areas, #space_heated?, #space_plenum?, #space_residential?, #space_sidelighting_effective_aperture, #space_skylight_effective_aperture, #space_type_apply_internal_load_schedules, #space_type_apply_internal_loads, #space_type_apply_rendering_color, #space_type_get_construction_properties, #space_type_get_standards_data, #strip_model, #sub_surface_component_infiltration_rate, #sub_surface_reduce_area_by_percent_by_raising_sill, #sub_surface_reduce_area_by_percent_by_shrinking_toward_centroid, #sub_surface_vertical_rectangle?, #surface_component_infiltration_rate, #thermal_eff_to_afue, #thermal_eff_to_comb_eff, #thermal_zone_add_exhaust, #thermal_zone_add_exhaust_fan_dcv, #thermal_zone_add_unconditioned_thermostat, #thermal_zone_apply_prm_baseline_supply_temperatures, #thermal_zone_conditioning_category, #thermal_zone_convert_oa_req_to_per_area, #thermal_zone_cooled?, #thermal_zone_demand_control_ventilation_required?, #thermal_zone_design_internal_load, #thermal_zone_exhaust_fan_dcv_required?, #thermal_zone_floor_area_with_zone_multipliers, #thermal_zone_fossil_hybrid_or_purchased_heat?, #thermal_zone_fossil_or_electric_type, #thermal_zone_get_adjacent_zones_with_shared_wall_areas, #thermal_zone_get_occupancy_schedule, #thermal_zone_heated?, #thermal_zone_infer_system_type, #thermal_zone_majority_space_type, #thermal_zone_mixed_heating_fuel?, #thermal_zone_occupancy_type, #thermal_zone_outdoor_airflow_rate, #thermal_zone_outdoor_airflow_rate_per_area, #thermal_zone_plenum?, #thermal_zone_prm_baseline_cooling_design_supply_temperature, #thermal_zone_prm_baseline_heating_design_supply_temperature, #thermal_zone_residential?, #water_heater_mixed_apply_efficiency, #water_heater_mixed_apply_prm_baseline_fuel_type, #water_heater_mixed_find_capacity, #zone_hvac_component_apply_prm_baseline_fan_power
Methods included from PrototypeFan
#prototype_fan_apply_prototype_fan_efficiency
Methods included from CoilDX
#coil_dx_find_search_criteria, #coil_dx_heat_pump?, #coil_dx_heating_type, #coil_dx_subcategory
Methods included from CoolingTower
#cooling_tower_apply_minimum_power_per_flow, #cooling_tower_apply_minimum_power_per_flow_gpm_limit
Methods included from Pump
#pump_apply_prm_pressure_rise_and_motor_efficiency, #pump_apply_standard_minimum_motor_efficiency, #pump_brake_horsepower, #pump_motor_horsepower, #pump_pumppower, #pump_rated_w_per_gpm, #pump_standard_minimum_motor_efficiency_and_size
Methods included from Fan
#fan_adjust_pressure_rise_to_meet_fan_power, #fan_apply_standard_minimum_motor_efficiency, #fan_baseline_impeller_efficiency, #fan_brake_horsepower, #fan_change_impeller_efficiency, #fan_change_motor_efficiency, #fan_fanpower, #fan_motor_horsepower, #fan_rated_w_per_cfm, #fan_small_fan?, #fan_standard_minimum_motor_efficiency_and_size
Constructor Details
#initialize ⇒ NRELZNEReady2017
Returns a new instance of NRELZNEReady2017.
9 10 11 12 13 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.rb', line 9 def initialize super() @template = @@template load_standards_database end |
Instance Attribute Details
#template ⇒ Object (readonly)
Returns the value of attribute template.
7 8 9 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.rb', line 7 def template @template end |
Instance Method Details
#air_loop_hvac_apply_multizone_vav_outdoor_air_sizing(air_loop_hvac) ⇒ Object
move building-type-specific code to Prototype classes
Apply multizone vav outdoor air method and adjust multizone VAV damper positions to achieve a system minimum ventilation effectiveness of 0.6 per PNNL. Hard-size the resulting min OA into the sizing:system object.
return [Bool] returns true if successful, false if not
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 12 def air_loop_hvac_apply_multizone_vav_outdoor_air_sizing(air_loop_hvac) # First time adjustment: # Only applies to multi-zone vav systems # exclusion: for Outpatient: (1) both AHU1 and AHU2 in 'DOE Ref Pre-1980' and 'DOE Ref 1980-2004' # (2) AHU1 in 2004-2013 # TODO refactor: move building-type-specific code to Prototype classes if air_loop_hvac_multizone_vav_system?(air_loop_hvac) && !(air_loop_hvac.name.to_s.include? 'Outpatient F1') air_loop_hvac_adjust_minimum_vav_damper_positions(air_loop_hvac) end # Second time adjustment: # Only apply to 2010 and 2013 Outpatient (both AHU1 and AHU2) # TODO maybe apply to hospital as well? # TODO refactor: move building-type-specific code to Prototype classes if air_loop_hvac.name.to_s.include? 'Outpatient' air_loop_hvac_adjust_minimum_vav_damper_positions_outpatient(air_loop_hvac) end return true end |
#air_loop_hvac_dcv_required_when_erv(air_loop_hvac) ⇒ Object
Determine if the standard has an exception for demand control ventilation when an energy recovery device is present. For NREL ZNE Ready 2017, DCV and an ERV may be used in conjunction.
261 262 263 264 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 261 def air_loop_hvac_dcv_required_when_erv(air_loop_hvac) dcv_required_when_erv_present = true return dcv_required_when_erv_present end |
#air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac) ⇒ Array<Double>
Determines the OA flow rates above which an economizer is required. Two separate rates, one for systems with an economizer and another for systems without. are zero for both types.
252 253 254 255 256 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 252 def air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac) min_oa_without_economizer_cfm = 1500 # half of 90.1-2013 req min_oa_with_economizer_cfm = 375 # half of 90.1-2013 req return [min_oa_without_economizer_cfm, min_oa_with_economizer_cfm] end |
#air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>
Determine the limits for the type of economizer present on the AirLoopHVAC, if any.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 36 def air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone) drybulb_limit_f = nil enthalpy_limit_btu_per_lb = nil dewpoint_limit_f = nil # Get the OA system and OA controller oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem if oa_sys.is_initialized oa_sys = oa_sys.get else return [nil, nil, nil] # No OA system end oa_control = oa_sys.getControllerOutdoorAir economizer_type = oa_control.getEconomizerControlType case economizer_type when 'NoEconomizer' return [nil, nil, nil] when 'FixedDryBulb' case climate_zone when 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-5C', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B' drybulb_limit_f = 75 when 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A' drybulb_limit_f = 70 end when 'FixedEnthalpy' enthalpy_limit_btu_per_lb = 28 when 'FixedDewPointAndDryBulb' drybulb_limit_f = 75 dewpoint_limit_f = 55 end return [drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f] end |
#air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone) ⇒ Bool
Check the economizer type currently specified in the ControllerOutdoorAir object on this air loop is acceptable per the standard.
Returns false if the economizer type is not allowable.
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 97 def air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone) # EnergyPlus economizer types # 'NoEconomizer' # 'FixedDryBulb' # 'FixedEnthalpy' # 'DifferentialDryBulb' # 'DifferentialEnthalpy' # 'FixedDewPointAndDryBulb' # 'ElectronicEnthalpy' # 'DifferentialDryBulbAndEnthalpy' # Get the OA system and OA controller oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem if oa_sys.is_initialized oa_sys = oa_sys.get else return true # No OA system end oa_control = oa_sys.getControllerOutdoorAir economizer_type = oa_control.getEconomizerControlType # Return true if no economizer is present if economizer_type == 'NoEconomizer' return true end # Determine the prohibited types prohibited_types = [] case climate_zone when 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B' prohibited_types = ['FixedEnthalpy'] when 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A' prohibited_types = ['FixedDryBulb', 'DifferentialDryBulb'] when 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A', prohibited_types = [] end # Check if the specified type is allowed economizer_type_allowed = true if prohibited_types.include?(economizer_type) economizer_type_allowed = false end return economizer_type_allowed end |
#air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone) ⇒ Boolean
Determine if the system economizer must be integrated or not. All economizers must be integrated in NREL ZNE Ready 2017
86 87 88 89 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 86 def air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone) integrated_economizer_required = true return integrated_economizer_required end |
#air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>
Determine the air flow and number of story limits for whether motorized OA damper is required.
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 269 def air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone) case climate_zone when 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', minimum_oa_flow_cfm = 300 maximum_stories = 999 # Any number of stories else minimum_oa_flow_cfm = 300 maximum_stories = 0 end return [minimum_oa_flow_cfm, maximum_stories] end |
#air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone) ⇒ Bool
Add exception logic for systems with AIA healthcare ventilation requirements dual duct systems
Determine if multizone vav optimization is required.
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 167 def air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone) multizone_opt_required = false # Not required for systems with fan-powered terminals num_fan_powered_terminals = 0 air_loop_hvac.demandComponents.each do |comp| if comp.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized || comp.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized num_fan_powered_terminals += 1 end end if num_fan_powered_terminals > 0 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone vav optimization is not required because the system has #{num_fan_powered_terminals} fan-powered terminals.") return multizone_opt_required end # Not required for systems that require an ERV if air_loop_hvac_energy_recovery?(air_loop_hvac) OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: multizone vav optimization is not required because the system has Energy Recovery.") return multizone_opt_required end # Get the OA intake controller_oa = nil controller_mv = nil oa_system = nil if air_loop_hvac.airLoopHVACOutdoorAirSystem.is_initialized oa_system = air_loop_hvac.airLoopHVACOutdoorAirSystem.get controller_oa = oa_system.getControllerOutdoorAir controller_mv = controller_oa.controllerMechanicalVentilation else OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone optimization is not applicable because system has no OA intake.") return multizone_opt_required end # Get the AHU design supply air flow rate dsn_flow_m3_per_s = nil if air_loop_hvac.designSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.designSupplyAirFlowRate.get elsif air_loop_hvac.autosizedDesignSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.autosizedDesignSupplyAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} design supply air flow rate is not available, cannot apply efficiency standard.") return multizone_opt_required end dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get # Get the minimum OA flow rate min_oa_flow_m3_per_s = nil if controller_oa.minimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.") return multizone_opt_required end min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get # Calculate the percent OA at design airflow pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s # Not required for systems where # exhaust is more than 70% of the total OA intake. if pct_oa > 0.7 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: multizone optimization is not applicable because system is more than 70% OA.") return multizone_opt_required end # TODO: Not required for dual-duct systems # if self.isDualDuct # OpenStudio::logFree(OpenStudio::Info, "openstudio.standards.AirLoopHVAC", "For #{controller_oa.name}: multizone optimization is not applicable because it is a dual duct system") # return multizone_opt_required # end # If here, multizone vav optimization is required multizone_opt_required = true return multizone_opt_required end |
#air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone) ⇒ Integer
Determine the number of stages that should be used as controls for single zone DX systems. NREL ZNE Ready matches 90.1-2013, and depends on the cooling capacity of the system.
293 294 295 296 297 298 299 300 301 302 303 304 305 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 293 def air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone) min_clg_cap_btu_per_hr = 65_000 clg_cap_btu_per_hr = OpenStudio.convert(air_loop_hvac_total_cooling_capacity(air_loop_hvac), 'W', 'Btu/hr').get if clg_cap_btu_per_hr >= min_clg_cap_btu_per_hr num_stages = 2 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr exceeds the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .") else num_stages = 1 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is not required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr is less than the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .") end return num_stages end |
#air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone) ⇒ Bool
Determine if the system required supply air temperature (SAT) reset. For NREL ZNE Ready 2017, SAT reset requirements are based the same climate zone requirements as 90.1-2013.
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirLoopHVAC.rb', line 313 def air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone) is_sat_reset_required = false # Only required for multizone VAV systems unless air_loop_hvac_multizone_vav_system?(air_loop_hvac) return is_sat_reset_required end case climate_zone when 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A' OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is not required per 6.5.3.4 Exception 1, the system is located in climate zone #{climate_zone}.") return is_sat_reset_required when 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-5C', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B' is_sat_reset_required = true OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is required.") return is_sat_reset_required end end |
#air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, building_type, zone_oa_per_area) ⇒ Bool
Set the initial minimum damper position based on OA rate of the space and the template. Zones with low OA per area get lower initial guesses. Final position will be adjusted upward as necessary by Standards.AirLoopHVAC.apply_minimum_vav_damper_positions
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.AirTerminalSingleDuctVAVReheat.rb', line 11 def air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, building_type, zone_oa_per_area) vav_name = air_terminal_single_duct_vav_reheat.name.get min_damper_position = case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat) when 'HotWater' 0.2 when 'Electricity', 'NaturalGas' 0.3 end # High OA zones # Determine whether or not to use the high minimum guess. # Cutoff was determined by correlating apparent minimum guesses # to OA rates in prototypes since not well documented in papers. if zone_oa_per_area > 0.001 # 0.001 m^3/s*m^2 = .196 cfm/ft2 if building_type == 'Outpatient' min_damper_position = 1.0 elsif building_type == 'Hospital' if vav_name.include? 'PatRoom' min_damper_position = 0.5 else min_damper_position = 1.0 min_damper_position = 1.0 end else min_damper_position = 0.7 end end # Set the minimum flow fraction air_terminal_single_duct_vav_reheat.setConstantMinimumAirFlowFraction(min_damper_position) return true end |
#air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false) ⇒ Object
Specifies the minimum damper position for VAV dampers. For terminals with hot water heat and DDC, the minimum is 20%, otherwise the minimum is 30%.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.AirTerminalSingleDuctVAVReheat.rb', line 9 def air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false) min_damper_position = nil case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat) when 'HotWater' min_damper_position = if has_ddc 0.2 else 0.3 end when 'Electricity', 'NaturalGas' min_damper_position = 0.3 end return min_damper_position end |
#cooling_tower_variable_speed_apply_efficiency_and_curves(cooling_tower_variable_speed) ⇒ Object
Apply the efficiency, plus Multicell heat rejection with VSD per 90.1-2013 6.5.2.2
9 10 11 12 13 14 15 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.CoolingTowerVariableSpeed.rb', line 9 def cooling_tower_variable_speed_apply_efficiency_and_curves(cooling_tower_variable_speed) cooling_tower_apply_minimum_power_per_flow(cooling_tower_variable_speed) cooling_tower_variable_speed.setCellControl('MaximalCell') return true end |
#fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume) ⇒ Double
Determine the prototype fan pressure rise for a constant volume fan on an AirLoopHVAC based on the airflow of the system. to the logic from ASHRAE 90.1-2004 prototypes.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.FanConstantVolume.rb', line 8 def fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_constant_volume.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_constant_volume.maximumFlowRate.get elsif fan_constant_volume.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_constant_volume.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanConstantVolume', "For #{fan_constant_volume.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437 2.5 else # Over 7,437 cfm 4.09 end return pressure_rise_in_h2o end |
#fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off) ⇒ Double
Determine the prototype fan pressure rise for an on off fan on an AirLoopHVAC or inside a unitary system based on the airflow of the system. to the logic from ASHRAE 90.1-2004 prototypes.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.FanOnOff.rb', line 9 def fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_on_off.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_on_off.maximumFlowRate.get elsif fan_on_off.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_on_off.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanOnOff', "For #{fan_on_off.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437 2.5 else # Over 7,437 cfm 4.09 end return pressure_rise_in_h2o end |
#fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume) ⇒ Double
Determine the prototype fan pressure rise for a variable volume fan on an AirLoopHVAC based on the airflow of the system. to the logic from ASHRAE 90.1-2004 prototypes.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.FanVariableVolume.rb', line 8 def fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_variable_volume.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_variable_volume.maximumFlowRate.get elsif fan_variable_volume.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_variable_volume.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanVariableVolume', "For #{fan_variable_volume.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 4648 4.0 else # Over 7,437 cfm 5.58 end return pressure_rise_in_h2o end |
#fan_variable_volume_part_load_fan_power_limitation_capacity_limit(fan_variable_volume) ⇒ Double
The threhold capacity below which part load control is not required. Per 90.1-2013, table 6.5.3.2.1: the cooling capacity threshold is 75000 instead of 110000 as of 1/1/2014
29 30 31 32 33 34 35 36 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.FanVariableVolume.rb', line 29 def fan_variable_volume_part_load_fan_power_limitation_capacity_limit(fan_variable_volume) cap_limit_btu_per_hr = case fan_variable_volume_cooling_system_type(fan_variable_volume) when 'dx' 110_000 end return cap_limit_btu_per_hr end |
#fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume) ⇒ Double
The threhold horsepower below which part load control is not required. Per 90.1-2013, table 6.5.3.2.1: the fan motor size for chiller-water and evaporative cooling is 0.25 hp as of 1/1/2014 instead of 5 hp
10 11 12 13 14 15 16 17 18 19 20 21 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.FanVariableVolume.rb', line 10 def fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume) hp_limit = case fan_variable_volume_cooling_system_type(fan_variable_volume) when 'dx' 0.0 when 'chw' 0.25 when 'evap' 0.25 end return hp_limit end |
#heat_exchanger_air_to_air_sensible_and_latent_minimum_efficiency(heat_exchanger_air_to_air_sensible_and_latent) ⇒ Object
Defines the minimum sensible and latent effectiveness of the heat exchanger. Assumed to apply to sensible and latent effectiveness at all flow rates. For NREL ZNE Ready 2017, assume 70% effectiveness, as this is higher than the typical 90.1 minimum of 50%, and is easily achievable with an enthalpy wheel.
11 12 13 14 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.HeatExchangerSensLat.rb', line 11 def heat_exchanger_air_to_air_sensible_and_latent_minimum_efficiency(heat_exchanger_air_to_air_sensible_and_latent) min_effct = 0.7 return min_effct end |
#model_cw_loop_cooling_tower_fan_type(model) ⇒ String
Determine which type of fan the cooling tower will have. Variable Speed Fan for NREL ZNE Ready 2017.
7 8 9 10 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.hvac_systems.rb', line 7 def model_cw_loop_cooling_tower_fan_type(model) fan_type = 'Variable Speed Fan' return fan_type end |
#model_economizer_type(model, climate_zone) ⇒ String
Determine the prototypical economizer type for the model.
‘NoEconomizer’ ‘FixedDryBulb’ ‘FixedEnthalpy’ ‘DifferentialDryBulb’ ‘DifferentialEnthalpy’ ‘FixedDewPointAndDryBulb’ ‘ElectronicEnthalpy’ ‘DifferentialDryBulbAndEnthalpy’
17 18 19 20 21 22 23 24 25 26 27 28 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.Model.rb', line 17 def model_economizer_type(model, climate_zone) economizer_type = case climate_zone when 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A' 'DifferentialEnthalpy' else 'DifferentialDryBulb' end return economizer_type end |
#model_elevator_fan_pwr(model, vent_rate_cfm) ⇒ Double
Determines the power of the elevator ventilation fan. Same as 90.1-2013, which has a requirement for ventilation fan efficiency.
17 18 19 20 21 22 23 24 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.Model.elevators.rb', line 17 def model_elevator_fan_pwr(model, vent_rate_cfm) vent_pwr_per_flow_w_per_cfm = 0.33 vent_pwr_w = vent_pwr_per_flow_w_per_cfm * vent_rate_cfm # addendum 90.1-2007 aj has requirement on efficiency vent_pwr_w = vent_pwr_w * 0.29 / 0.70 return vent_pwr_w end |
#model_elevator_lighting_pct_incandescent(model) ⇒ Object
Determines the percentage of the elevator cab lighting that is incandescent. The remainder is assumed to be LED. Defaults to 0% incandescent (100% LED), representing newer elevators.
8 9 10 11 |
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/nrel_nze_ready_2017/nrel_zne_ready_2017.Model.elevators.rb', line 8 def model_elevator_lighting_pct_incandescent(model) pct_incandescent = 0.0 # 100% LED return pct_incandescent end |
#space_daylighted_area_window_width(space) ⇒ String
Determines the method used to extend the daylighted area horizontally next to a window. If the method is ‘fixed’, 2 ft is added to the width of each window. If the method is ‘proportional’, a distance equal to half of the head height of the window is added. If the method is ‘none’, no additional width is added.
11 12 13 14 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.Space.rb', line 11 def space_daylighted_area_window_width(space) method = 'proportional' return method end |
#space_daylighting_control_required?(space, areas) ⇒ Array<Bool>
Determine if the space requires daylighting controls for toplighting, primary sidelighting, and secondary sidelighting. Defaults to false for all types.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.Space.rb', line 23 def space_daylighting_control_required?(space, areas) req_top_ctrl = true req_pri_ctrl = true req_sec_ctrl = true # Get the LPD of the space space_lpd_w_per_m2 = space.lightingPowerPerFloorArea # Primary Sidelighting # Check if the primary sidelit area contains less than 150W of lighting if areas['primary_sidelighted_area'] == 0.0 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.1(e).") req_pri_ctrl = false elsif areas['primary_sidelighted_area'] * space_lpd_w_per_m2 < 150.0 OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because less than 150W of lighting are present in the primary daylighted area per 9.4.1.1(e).") req_pri_ctrl = false else # Check the size of the windows if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.") req_pri_ctrl = false end end # Secondary Sidelighting # Check if the primary and secondary sidelit areas contains less than 300W of lighting if areas['secondary_sidelighted_area'] == 0.0 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because secondary sidelighted area = 0ft2 per 9.4.1.1(e).") req_sec_ctrl = false elsif (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) * space_lpd_w_per_m2 < 300 OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because less than 300W of lighting are present in the combined primary and secondary daylighted areas per 9.4.1.1(e).") req_sec_ctrl = false else # Check the size of the windows if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.") req_sec_ctrl = false end end # Toplighting # Check if the toplit area contains less than 150W of lighting if areas['toplighted_area'] == 0.0 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.1(f).") req_top_ctrl = false elsif areas['toplighted_area'] * space_lpd_w_per_m2 < 150 OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because less than 150W of lighting are present in the toplighted area per 9.4.1.1(f).") req_top_ctrl = false end return [req_top_ctrl, req_pri_ctrl, req_sec_ctrl] end |
#space_daylighting_fractions_and_windows(space, areas, sorted_windows, sorted_skylights, req_top_ctrl, req_pri_ctrl, req_sec_ctrl) ⇒ Object
Determine the fraction controlled by each sensor and which window each sensor should go near.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.Space.rb', line 85 def space_daylighting_fractions_and_windows(space, areas, sorted_windows, sorted_skylights, req_top_ctrl, req_pri_ctrl, req_sec_ctrl) sensor_1_frac = 0.0 sensor_2_frac = 0.0 sensor_1_window = nil sensor_2_window = nil # Get the area of the space space_area_m2 = space.floorArea if req_top_ctrl && req_pri_ctrl && req_sec_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] # Sensor 2 controls primary + secondary area sensor_2_frac = (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) / space_area_m2 sensor_2_window = sorted_windows[0] elsif !req_top_ctrl && req_pri_ctrl && req_sec_ctrl # Sensor 1 controls primary area sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2 sensor_1_window = sorted_windows[0] # Sensor 2 controls secondary area sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2) sensor_2_window = sorted_windows[0] elsif req_top_ctrl && !req_pri_ctrl && req_sec_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] # Sensor 2 controls secondary area sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2) sensor_2_window = sorted_windows[0] elsif req_top_ctrl && !req_pri_ctrl && !req_sec_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] elsif !req_top_ctrl && req_pri_ctrl && !req_sec_ctrl # Sensor 1 controls primary area sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2 sensor_1_window = sorted_windows[0] elsif !req_top_ctrl && !req_pri_ctrl && req_sec_ctrl # Sensor 1 controls secondary area sensor_1_frac = areas['secondary_sidelighted_area'] / space_area_m2 sensor_1_window = sorted_windows[0] end return [sensor_1_frac, sensor_2_frac, sensor_1_window, sensor_2_window] end |
#space_infiltration_rate_75_pa(space) ⇒ Double
Determine the base infiltration rate at 75 PA.
defaults to no infiltration.
142 143 144 145 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.Space.rb', line 142 def space_infiltration_rate_75_pa(space) basic_infil_rate_cfm_per_ft2 = 0.5 # Half of 90.1-2013 return basic_infil_rate_cfm_per_ft2 end |
#thermal_zone_demand_control_ventilation_limits(thermal_zone) ⇒ Array<Double>
Determine the area and occupancy level limits for demand control ventilation.
and the minimum occupancy density in m^2/person. Returns nil if there is no requirement.
11 12 13 14 15 16 17 18 19 20 21 22 |
# File 'lib/openstudio-standards/standards/ashrae_90_1/nrel_zne_ready_2017/nrel_zne_ready_2017.ThermalZone.rb', line 11 def thermal_zone_demand_control_ventilation_limits(thermal_zone) min_area_ft2 = 500 min_occ_per_1000_ft2 = 12 # half of 90.1-2013 # Convert to SI min_area_m2 = OpenStudio.convert(min_area_ft2, 'ft^2', 'm^2').get min_occ_per_ft2 = min_occ_per_1000_ft2 / 1000.0 min_ft2_per_occ = 1.0 / min_occ_per_ft2 min_m2_per_occ = OpenStudio.convert(min_ft2_per_occ, 'ft^2', 'm^2').get return [min_area_m2, min_m2_per_occ] end |