Class: BTAPData

Inherits:
Object
  • Object
show all
Defined in:
lib/openstudio-standards/standards/necb/common/btap_data.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(model:, runner: nil, cost_result:, baseline_cost_equipment_total_cost_per_m_sq: -1.0,, baseline_cost_utility_neb_total_cost_per_m_sq: -1.0,, baseline_energy_eui_total_gj_per_m_sq: -1.0,, qaqc:, npv_start_year:, npv_end_year:, npv_discount_rate:) ⇒ BTAPData

Returns a new instance of BTAPData.



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 8

def initialize(model:, runner: nil, cost_result:, baseline_cost_equipment_total_cost_per_m_sq: -1.0,
               baseline_cost_utility_neb_total_cost_per_m_sq: -1.0, baseline_energy_eui_total_gj_per_m_sq: -1.0, qaqc:,
               npv_start_year:, npv_end_year:, npv_discount_rate:)
  @model = model
  @error_warning = []
  # sets sql file.
  set_sql_file(model.sqlFile)
  @standard = Standard.build('NECB2011')
  @standards_data = @standard.load_standards_database_new()
  @btap_data = {}
  @btap_results_version = 1.00
  @neb_prices_csv_file_name = File.join(__dir__, 'neb_end_use_prices.csv')
  @necb_reference_runs_csv_file_name = File.join(__dir__, 'necb_reference_runs.csv')

  # Conditioned floor area is used so much. May as well make it a object variable.
  # setup the queries
  command = "SELECT Value
                FROM TabularDataWithStrings
                WHERE ReportName='AnnualBuildingUtilityPerformanceSummary'
                AND ReportForString='Entire Facility'
                AND TableName='Building Area'
                AND RowName = 'Net Conditioned Building Area'
                AND ColumnName='Area'"
  area = @sqlite_file.get.execAndReturnFirstDouble(command)
  # make sure all the data are available
 if area.empty?
   @conditioned_floor_area_m_sq = 0.0
 else
   @conditioned_floor_area_m_sq = area.get
 end


  @btap_data['simulation_btap_data_version'] = '0.1'
  # @btap_data["simulation_openstudio_version"] = open("| \"#{OpenStudio.getOpenStudioCLI}\" openstudio_version").read().strip
  # @btap_data["simulation_energyplus_version"] = open("| \"#{OpenStudio.getOpenStudioCLI}\" energyplus_version").read().strip
  @btap_data['simulation_os_standards_revision'] = OpenstudioStandards.git_revision
  @btap_data['simulation_os_standards_version'] = OpenstudioStandards::VERSION
  @btap_data['simulation_date'] = Time.now
  @btap_data.merge!(building_data)
  @btap_data.merge!(building_costing_data(cost_result)) unless cost_result.nil?
  @btap_data.merge!(climate_data)
  @btap_data.merge!(service_water_heating_data)
  @btap_data.merge!(energy_eui_data(model))
  @btap_data.merge!(energy_peak_data)
  @btap_data.merge!(utility(model))
  @btap_data.merge!(unmet_hours(model))
  @btap_data.merge!outdoor_air_data(model)

  # Data in tables...
  @btap_data.merge!('measures_data_table' => measures_data_table(runner)) unless runner.nil?
  @btap_data.merge!('envelope_exterior_surface_table' => envelope_exterior_surface_table)
  @btap_data.merge!('space_table' => space_table(model, cost_result))
  @btap_data.merge!('space_type_table' => space_type_table(model))
  # This does not work with the new VRF or CCASHP systems. Commenting it for now.
  # @btap_data.merge!({'zone_table' => thermal_zones_table(model, cost_result)['table']})
  @btap_data.merge!('zone_equip_table' => thermal_zones_equipment_table(model))
  # This does not work with the new VRF or CCASHP systems. Commenting it for now.
  # @btap_data.merge!({'air_loop_table' => air_loops_table(model, cost_result)})
  # @btap_data.merge!({'sql_raw_data' => sql_data_tables(model)})
  @btap_data.merge!('eplusout_err_table' => eplusout_err_table(model))

  # Remainder of costing data in separate tables:
  @btap_data.merge!('envelope_construction_cost_table' => cost_result['envelope']['construction_costs']) unless cost_result.nil?
  @btap_data.merge!('lighting_fixture_cost_table' => cost_result['lighting']['fixture_report']) unless cost_result.nil?
  ideal_air = true
  model.getThermalZones.each do |zone|
    ideal_air = false if zone.useIdealAirLoads == false
  end
  unless ideal_air
    @btap_data.merge!('h_and_c_plant_equipment_cost_table' => cost_result['heating_and_cooling']['plant_equipment']) unless cost_result.nil?
    @btap_data.merge!('h_and_c_plant_zonal_systems_cost_table' => cost_result['heating_and_cooling']['zonal_systems']) unless cost_result.nil?
    # This does not work with the new VRF or CCASHP systems. Commenting it for now.
    # @btap_data.merge!('system_coils_cost_table' => coil_cost_table(cost_result))
    # This does not work with the new VRF or CCASHP systems. Commenting it for now.
    # @btap_data.merge!('terminal_VAV_cost_table' => terminal_VAV_cost_table(cost_result))
    # This does not work with the new VRF or CCASHP systems. Commenting it for now.
    # @btap_data.merge!('trunk_ducts_cost_table' => trunk_ducts_cost_table(cost_result))
  end
  # calculate energy demands and peak loads calculations as per PHIUS and NECB and compare them
  phius_performance_indicators(model)
  # The below method calculates energy performance indicators (i.e. TEDI and MEUI) as per BC Energy Step Code
  bc_energy_step_code_performance_indicators
  # calculate net present value
  net_present_value(npv_start_year, npv_end_year, npv_discount_rate) unless cost_result.nil?

  measure_metrics(qaqc)
  @btap_data
end

Instance Attribute Details

#btap_dataObject

Returns the value of attribute btap_data.



6
7
8
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 6

def btap_data
  @btap_data
end

#osa_fileObject

Returns the value of attribute osa_file.



2
3
4
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 2

def osa_file
  @osa_file
end

#osm_fileObject

Returns the value of attribute osm_file.



4
5
6
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 4

def osm_file
  @osm_file
end

#osw_fileObject

Returns the value of attribute osw_file.



3
4
5
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 3

def osw_file
  @osw_file
end

#sqlite_fileObject

Returns the value of attribute sqlite_file.



5
6
7
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 5

def sqlite_file
  @sqlite_file
end

Instance Method Details

#air_loops_table(model, cost_result) ⇒ Object



739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 739

def air_loops_table(model, cost_result)
  # Store Air Loop Information
  table = []
  model.getAirLoopHVACs.sort.each do |air_loop|
    air_loop_info = {}
    air_loop_info['name'] = air_loop.name.get
    sql_command = " SELECT Value FROM TabularDataWithStrings
                    WHERE ReportName='Standard62.1Summary'
                    AND ReportForString='Entire Facility'
                    AND TableName='System Ventilation Parameters'
                    AND ColumnName='Area Outdoor Air Rate - Ra'
                    AND Units='m3/s-m2'
                    AND RowName='#{air_loop.name.get.to_s.upcase}' "
    air_loop_info['area_outdoor_air_rate_m_cu_per_s_m_sq'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)

    air_loop_info['total_floor_area_served'] = 0.0
    air_loop_info['total_breathing_zone_outdoor_airflow_vbz'] = 0.0
    air_loop.thermalZones.sort.each do |zone|
      sql_command = " SELECT Value FROM TabularDataWithStrings
                      WHERE ReportName='Standard62.1Summary'
                      AND ReportForString='Entire Facility'
                      AND TableName='Zone Ventilation Parameters'
                      AND ColumnName='Breathing Zone Outdoor Airflow - Vbz'
                      AND Units='m3/s'
                      AND RowName='#{zone.name.get.to_s.upcase}' "
      vbz = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, 0)
      air_loop_info['total_breathing_zone_outdoor_airflow_vbz'] += vbz
      air_loop_info['total_floor_area_served'] += zone.floorArea
    end
    air_loop_info['outdoor_air_l_per_s'] = -1.0
    unless air_loop_info['area_outdoor_air_rate_m_cu_per_s_m_sq'] == -1.0
      air_loop_info['outdoor_air_l_per_s'] = air_loop_info['area_outdoor_air_rate_m_cu_per_s_m_sq'] * air_loop_info['total_floor_area_served'] * 1000
    end

    # SUpply Fan
    unless air_loop.supplyFan.empty?
      if air_loop.supplyFan.get.to_FanConstantVolume.is_initialized
        air_loop_info['supply_fan_type'] = 'CV'
        fan = air_loop.supplyFan.get.to_FanConstantVolume.get
      elsif air_loop.supplyFan.get.to_FanVariableVolume.is_initialized
        air_loop_info['supply_fan_type'] = 'VV'
        fan = air_loop.supplyFan.get.to_FanVariableVolume.get
      end
      air_loop_info['supply_fan_name'] = fan.name.get
      air_loop_info['supply_fan_efficiency'] = fan.fanEfficiency
      air_loop_info['supply_fan_motor_efficiency'] = fan.motorEfficiency
      air_loop_info['supply_fan_pressure_rise'] = fan.pressureRise
      air_loop_info['supply_fan_max_air_flow_rate_m_cu_per_s'] = -1.0
      sql_command = " SELECT RowName FROM TabularDataWithStrings
                      WHERE ReportName='EquipmentSummary'
                      AND ReportForString='Entire Facility'
                      AND TableName='Fans'
                      AND ColumnName='Max Air Flow Rate'
                      AND Units='m3/s' "
      max_air_flow_info = model.sqlFile.get.execAndReturnVectorOfString(sql_command)
      max_air_flow_info = validate_optional(max_air_flow_info, model, 'N/A')
      if max_air_flow_info != 'N/A'
        if max_air_flow_info.include?(air_loop_info['supply_fan_name'].to_s.upcase)
          sql_command = " SELECT Value FROM TabularDataWithStrings
                          WHERE ReportName='EquipmentSummary'
                          AND ReportForString='Entire Facility'
                          AND TableName='Fans'
                          AND ColumnName='Max Air Flow Rate'
                          AND Units='m3/s'
                          AND RowName='#{air_loop_info['supply_fan_name'].upcase}' "
          air_loop_info['supply_fan_max_air_flow_rate_m_cu_per_s'] = model.sqlFile.get.execAndReturnFirstDouble(sql_command).get
          sql_coommand = " SELECT Value FROM TabularDataWithStrings
                            WHERE ReportName='EquipmentSummary'
                            AND ReportForString='Entire Facility'
                            AND TableName='Fans'
                            AND ColumnName='Rated Electric Power'
                            AND Units='W'
                            AND RowName='#{air_loop_info['supply_fan_name'].upcase}' "
          air_loop_info['supply_fan_rated_electric_power_w'] = model.sqlFile.get.execAndReturnFirstDouble(sql_coommand).get
        else
          @error_warning << "#{air_loop_info['supply_fan_name']} does not exist in sql file WHERE ReportName='EquipmentSummary' AND ReportForString='Entire Facility' AND TableName='Fans' AND ColumnName='Max Air Flow Rate' AND Units='m3/s'"
        end
      else
        @error_warning << "max_air_flow_info is nil because the following sql statement returned nil: RowName FROM TabularDataWithStrings WHERE ReportName='EquipmentSummary' AND ReportForString='Entire Facility' AND TableName='Fans' AND ColumnName='Max Air Flow Rate' AND Units='m3/s' "
      end
    end

    # Fan
    unless air_loop.returnFan.empty?
      air_loop_info['return_fan'] = {}
      if air_loop.returnFan.get.to_FanConstantVolume.is_initialized
        air_loop_info['return_fan_type'] = 'CV'
        fan = air_loop.returnFan.get.to_FanConstantVolume.get
      elsif air_loop.returnFan.get.to_FanVariableVolume.is_initialized
        air_loop_info['return_fan_type'] = 'VV'
        fan = air_loop.returnFan.get.to_FanVariableVolume.get
      end
      air_loop_info['return_fan_name'] = fan.name.get
      air_loop_info['return_fan_efficiency'] = fan.fanEfficiency
      air_loop_info['return_fan_motor_efficiency'] = fan.motorEfficiency
      air_loop_info['return_fan_pressure_rise'] = fan.pressureRise
      air_loop_info['return_fan_max_air_flow_rate_m_cu_per_s'] = -1.0
      sql_command = " SELECT RowName FROM TabularDataWithStrings
                      WHERE ReportName='EquipmentSummary'
                      AND ReportForString='Entire Facility'
                      AND TableName='Fans'
                      AND ColumnName='Max Air Flow Rate'
                      AND Units='m3/s' "
      max_air_flow_info = model.sqlFile.get.execAndReturnVectorOfString(sql_command)
      max_air_flow_info = validate_optional(max_air_flow_info, model, 'N/A')
      if max_air_flow_info != 'N/A'
        if max_air_flow_info.include?(air_loop_info['return_fan_name'].to_s.upcase.to_s)
          sql_command = " SELECT Value FROM TabularDataWithStrings
                          WHERE ReportName='EquipmentSummary'
                          AND ReportForString='Entire Facility'
                          AND TableName='Fans'
                          AND ColumnName='Max Air Flow Rate'
                          AND Units='m3/s'
                          AND RowName='#{air_loop_info['return_fan_name'].upcase}' "
          air_loop_info['return_fan_max_air_flow_rate_m_cu_per_s'] = model.sqlFile.get.execAndReturnFirstDouble(sql_command).get
          sql_coommand = " SELECT Value FROM TabularDataWithStrings
                            WHERE ReportName='EquipmentSummary'
                            AND ReportForString='Entire Facility'
                            AND TableName='Fans'
                            AND ColumnName='Rated Electric Power'
                            AND Units='W'
                            AND RowName='#{air_loop_info['return_fan_name'].upcase}' "
          air_loop_info['return_fan_rated_electric_power_w'] = model.sqlFile.get.execAndReturnFirstDouble(sql_coommand).get
        else
          @error_warning << "#{air_loop_info['return_fan_name']} does not exist in sql file WHERE ReportName='EquipmentSummary' AND ReportForString='Entire Facility' AND TableName='Fans' AND ColumnName='Max Air Flow Rate' AND Units='m3/s'"
        end
      else
        @error_warning << "max_air_flow_info is nil because the following sql statement returned nil: RowName FROM TabularDataWithStrings WHERE ReportName='EquipmentSummary' AND ReportForString='Entire Facility' AND TableName='Fans' AND ColumnName='Max Air Flow Rate' AND Units='m3/s' "
      end
    end

    # economizer
    air_loop_info['economizer_name'] = air_loop.airLoopHVACOutdoorAirSystem.get.getControllerOutdoorAir.name.get
    air_loop_info['economizer_control_type'] = air_loop.airLoopHVACOutdoorAirSystem.get.getControllerOutdoorAir.getEconomizerControlType

    # Include air system costs from ventilation costs
    sysNum = air_loop_info['name'][4].to_i
    sysCostInfo = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym].detect { |currsysCostInfo| currsysCostInfo[:name].to_s.downcase == air_loop_info['name'].downcase }
    if sysCostInfo.nil? && sysNum == 4
      # 04-Nov-2019 JTB: CK says that system_4 is handled the same way as system_1 so may see "Sys_4" substrings in the name of a system_1 airloop!
      sysCostInfo = cost_result['ventilation']['system_1'.to_s.to_sym].detect { |currsysCostInfo| currsysCostInfo[:name].to_s.downcase == air_loop_info['name'].downcase }
      raise("System name \"#{air_loop_info['name']}\" not found in ventilation cost info for system_1") if sysCostInfo.nil?
    else
      raise("System name \"#{air_loop_info['name']}\" not found in ventilation cost info for System_#{sysNum}") if sysCostInfo.nil?
    end
    if !sysCostInfo.nil?
      air_loop_info['airloop_flow_m3_per_s'] = sysCostInfo[:airloop_flow_m3_per_s]
      air_loop_info['num_rooftop_units'] = sysCostInfo[:num_rooftop_units]
      # air_loop_info['ahu_counter'] = sysCostInfo[:ahu_counter]
      # air_loop_info['ahu_l_per_s'] = sysCostInfo[:ahu_l_per_s]
      air_loop_info['base_ahu_cost'] = sysCostInfo[:base_ahu_cost]
      air_loop_info['revised_base_ahu_cost'] = sysCostInfo[:revised_base_ahu_cost]
      # Promote hrv data from it's own hash, if it isn't empty!
      if sysCostInfo[:hrv].empty?
        air_loop_info['hrv_type'] = sysCostInfo[:hrv]
      else
        air_loop_info['hrv_type'] = sysCostInfo[:hrv][:hrv_type]
        air_loop_info['hrv_name'] = sysCostInfo[:hrv][:hrv_name]
        air_loop_info['hrv_size_m3ps'] = sysCostInfo[:hrv][:hrv_size_m3ps]
        air_loop_info['hrv_return_fan_size_m3ps'] = sysCostInfo[:hrv][:hrv_return_fan_size_m3ps]
        air_loop_info['hrv_cost'] = sysCostInfo[:hrv][:hrv_cost]
        air_loop_info['revised_hrv_cost'] = sysCostInfo[:hrv][:revised_hrv_cost]
      end
    end

    # Also include hrv_return_ducting information from ventilation costs.
    # Note that there can be multiple hrv return duct runs for the same air loop name
    # (on different floors) plus a system level trunk return duct section.
    hrv_retduct_byflr = cost_result['ventilation']['hrv_return_ducting'.to_sym].reject { |arr| arr[:floor].nil? }
    hrv_retduct_bysys = cost_result['ventilation']['hrv_return_ducting'.to_sym].reject { |arr| arr[:air_system].nil? }

    # Floor level hrv return ducts...
    hrv_retduct_byflr.each do |arr1|
      flrNum = arr1[:floor].to_s[15].to_i
      airsys_byflr = arr1[:air_systems].select { |arr2| arr2[:air_system].to_s.downcase == air_loop_info['name'].to_s.downcase }
      airsys_byflr.each do |arr3|
        air_loop_info["flr#{flrNum}_floor_mult".to_sym] = arr3[:floor_mult]
        if !arr3[:hrv_ret_trunk].empty?
          # The hrv_ret_trunk embedded hash is not empty -- promote it
          air_loop_info["flr#{flrNum}_hrv_ret_trunk_len_m".to_sym] = arr3[:hrv_ret_trunk][:duct_length_m]
          air_loop_info["flr#{flrNum}_hrv_ret_trunk_dia_in".to_sym] = arr3[:hrv_ret_trunk][:dia_in]
          air_loop_info["flr#{flrNum}_hrv_ret_trunk_cost".to_sym] = arr3[:hrv_ret_trunk][:cost]
          # If not don't include anything!
        end
        # The individual thermal zone (by floor) ret duct distribution (tz_dist) added to zone_table
      end
    end
    # System level trunk hrv return ducts...
    hrv_retduct_bysys.each do |arr1|
      if arr1[:air_system].to_s.downcase == air_loop_info['name'].to_s.downcase
        air_loop_info[:hrv_building_trunk_length_m] = arr1[:hrv_building_trunk_length_m]
        air_loop_info[:hrv_building_trunk_dia_in] = arr1[:hrv_building_trunk_dia_in]
        air_loop_info["sys#{sysNum}_hrv_ret_duct_cost".to_sym] = arr1[:cost]
      end
    end

    table << air_loop_info
  end

  return table
end

#bc_energy_step_code_performance_indicatorsObject



1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1965

def bc_energy_step_code_performance_indicators
  # TEDI (Thermal Energy Demand Intensity) [kWh/(m2.year)]
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='EnergyMeters'
             AND ReportForString='Entire Facility'
             AND TableName='Annual and Peak Values - Other'
             AND RowName='Baseboard:EnergyTransfer'
             AND ColumnName='Annual Value'
             AND Units='GJ'"
  baseboard_energy_transfer_gj = @sqlite_file.get.execAndReturnFirstDouble(command)
  baseboard_energy_transfer_kwh = OpenStudio.convert(baseboard_energy_transfer_gj.to_f, 'GJ', 'kWh')
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='EnergyMeters'
             AND ReportForString='Entire Facility'
             AND TableName='Annual and Peak Values - Other'
             AND RowName='HeatingCoils:EnergyTransfer'
             AND ColumnName='Annual Value'
             AND Units='GJ'"
  heating_coils_energy_transfer_gj = @sqlite_file.get.execAndReturnFirstDouble(command)
  heating_coils_energy_transfer_kwh = OpenStudio.convert(heating_coils_energy_transfer_gj.to_f, 'GJ', 'kWh')
  tedi_kwh_per_m_sq = (baseboard_energy_transfer_kwh.to_f + heating_coils_energy_transfer_kwh.to_f) / @btap_data['bldg_conditioned_floor_area_m_sq']
  @btap_data.merge!('bc_step_code_tedi_kwh_per_m_sq' => tedi_kwh_per_m_sq)

  # MEUI (Mechanical Energy Use Intensity) [kWh/(m2.year)]
  meui_gj_per_m_sq = @btap_data['energy_eui_heating_gj_per_m_sq'].to_f +
                     @btap_data['energy_eui_cooling_gj_per_m_sq'].to_f +
                     @btap_data['energy_eui_fans_gj_per_m_sq'].to_f +
                     @btap_data['energy_eui_pumps_gj_per_m_sq'].to_f +
                     @btap_data['energy_eui_water systems_gj_per_m_sq'].to_f
  meui_kwh_per_m_sq = OpenStudio.convert(meui_gj_per_m_sq, 'GJ', 'kWh').to_f
  @btap_data.merge!('bc_step_code_meui_kwh_per_m_sq' => meui_kwh_per_m_sq)
end

#building_costing_data(cost_result) ⇒ Object



156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 156

def building_costing_data(cost_result)
  building_data = {}
  building_data['cost_rs_means_prov'] = cost_result['rs_means_prov']
  building_data['cost_rs_means_city'] = cost_result['rs_means_city']
  building_data['cost_equipment_envelope_total_cost_per_m_sq'] = (cost_result['totals']['envelope']) / @conditioned_floor_area_m_sq
  building_data['cost_equipment_thermal_bridging_total_cost_per_m_sq'] = (cost_result['totals']['thermal_bridging']) / @conditioned_floor_area_m_sq
  building_data['cost_equipment_lighting_total_cost_per_m_sq'] = (cost_result['totals']['lighting']) / @conditioned_floor_area_m_sq
  building_data['cost_equipment_heating_and_cooling_total_cost_per_m_sq'] = (cost_result['totals']['heating_and_cooling']) / @conditioned_floor_area_m_sq
  building_data['cost_equipment_shw_total_cost_per_m_sq'] = (cost_result['totals']['shw']) / @conditioned_floor_area_m_sq
  building_data['cost_equipment_ventilation_total_cost_per_m_sq'] = (cost_result['totals']['ventilation']) / @conditioned_floor_area_m_sq
  building_data['cost_equipment_renewables_total_cost_per_m_sq'] = (cost_result['totals']['renewables']) / @conditioned_floor_area_m_sq
  building_data['cost_equipment_total_cost_per_m_sq'] = (cost_result['totals']['grand_total']) / @conditioned_floor_area_m_sq
  # building_data.merge!(cost_result['envelope'].select{|k,v| k!='construction_costs' && k!='total_envelope_cost'})
  # building_data.merge!(cost_result['shw'].select{|k,v| k!='shw_total'})
  # building_data.merge!(flatten_mix(cost_result['ventilation'].select{|k,v| k=='mech_to_roof'.to_sym}))
  return building_data
end

#building_dataObject

General Building Data that there is alway either zero of 1 of.



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 135

def building_data
  # Store Building data.
  building_data = {}
  building_data['bldg_name'] = @model.building.get.name.get
  building_data['bldg_conditioned_floor_area_m_sq'] = @conditioned_floor_area_m_sq
  building_data['bldg_exterior_area_m_sq'] = @model.building.get.exteriorSurfaceArea # m_sq
  building_data['bldg_volume_m_cu'] = @model.building.get.airVolume # m_cu
  building_data['bldg_standards_template'] = @model.building.get.standardsTemplate.empty? ? nil : @model.building.get.standardsTemplate.get
  building_data['bldg_standards_building_type'] = @model.building.get.standardsBuildingType.empty? ? nil : @model.building.get.standardsBuildingType.get
  building_data['bldg_standards_number_of_stories'] = @model.building.get.standardsNumberOfStories.empty? ? nil : @model.building.get.standardsNumberOfStories.get
  building_data['bldg_standards_number_of_above_ground_stories'] = @model.building.get.standardsNumberOfAboveGroundStories.empty? ? nil : @model.building.get.standardsNumberOfAboveGroundStories.get
  building_data['bldg_standards_number_of_living_units'] = @model.building.get.standardsNumberOfLivingUnits.empty? ? nil : @model.building.get.standardsNumberOfAboveGroundStories.get
  building_data['bldg_nominal_floor_to_ceiling_height'] = @model.building.get.nominalFloortoCeilingHeight.empty? ? nil : @model.building.get.nominalFloortoCeilingHeight.get
  building_data['bldg_nominal_floor_to_floor_height'] = @model.building.get.nominalFloortoFloorHeight.empty? ? nil : @model.building.get.nominalFloortoFloorHeight.get
  building_data['bldg_surface_to_volume_ratio'] = @model.building.get.exteriorSurfaceArea / @model.building.get.airVolume
  building_data['bldg_fdwr'] = (BTAP::Geometry.get_fwdr(@model) * 100.0).round(1)
  building_data['bldg_srr'] = (BTAP::Geometry.get_srr(@model) * 100.0).round(1)

  return building_data
end

#climate_dataObject



499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 499

def climate_data
  # Store Geography Data
  geography_data = {}
  geography_data['location_necb_hdd'] = @standard.get_necb_hdd18(model: @model, necb_hdd: true)
  geography_data['location_weather_file'] = File.basename(@model.getWeatherFile.path.get.to_s)
  weather_file_path = @model.weatherFile.get.path.get.to_s
  stat_file_path = weather_file_path.gsub('.epw', '.stat')
  stat_file = OpenstudioStandards::Weather::StatFile.new(stat_file_path)
  geography_data['location_epw_cdd'] = stat_file.cdd18
  geography_data['location_epw_hdd'] = stat_file.hdd18
  geography_data['location_necb_climate_zone'] = @standard.get_climate_zone_name(geography_data['location_necb_hdd'])
  geography_data['location_city'] = @model.getWeatherFile.city
  geography_data['location_state_province_region'] = @model.getWeatherFile.stateProvinceRegion
  geography_data['location_country'] = @model.getWeatherFile.country
  geography_data['location_latitude'] = @model.getWeatherFile.latitude
  geography_data['location_longitude'] = @model.getWeatherFile.longitude
  return geography_data
end

#coil_cost_table(cost_result) ⇒ Object



1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1097

def coil_cost_table(cost_result)
  sys_coils_table = []
  (1..7).each do |sysNum|
    sys_table = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym].reject(&:empty?)
    sys_table.each do |sysHash|
      equip_info_table = sysHash[:equipment_info].reject(&:empty?)
      equip_info_table.each do |equipHash|
        sysCoilsInfo = {}
        sys_coils_table << sysCoilsInfo
        sysCoilsInfo[:sys_type] = sysNum
        sysCoilsInfo[:sys_name] = equipHash[:name]
        sysCoilsInfo[:eq_category] = equipHash[:eq_category]
        sysCoilsInfo[:heating_fuel] = equipHash[:heating_fuel]
        sysCoilsInfo[:cooling_type] = equipHash[:cooling_type]
        sysCoilsInfo[:capacity_kw] = equipHash[:capacity_kw]
        sysCoilsInfo[:coil_cost] = equipHash[:cost]
      end
    end
  end
  return sys_coils_table
end

#coil_tableObject



941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 941

def coil_table
  table = get_sql_table_to_json(model, 'CoilSizingDetails', 'Entire Facility', 'Coils')['table']
  model.getAirLoopHVACs.sort.each do |air_loop|
    air_loop.supplyComponents.each do |supply_comp|
      object = get_actual_child_object(supply_comp)
      coil_types = [
        'openstudio::model::CoilCoolingCooledBeam',
        'openstudio::model::CoilCoolingDXMultiSpeed',
        'openstudio::model::CoilCoolingDXSingleSpeed',
        'openstudio::model::CoilCoolingDXTwoSpeed',
        'openstudio::model::CoilCoolingDXTwoStageWithHumidityControlMode',
        'openstudio::model::CoilCoolingDXVariableSpeed',
        'openstudio::model::CoilCoolingFourPipeBeam',
        'openstudio::model::CoilCoolingLowTempRadiantConstFlow',
        'openstudio::model::CoilCoolingLowTempRadiantVarFlow',
        'openstudio::model::CoilHeatingDesuperheater',
        'openstudio::model::CoilHeatingDXMultiSpeed',
        'openstudio::model::CoilHeatingDXSingleSpeed',
        'openstudio::model::CoilHeatingDXVariableSpeed',
        'openstudio::model::CoilHeatingElectric',
        'openstudio::model::CoilHeatingFourPipeBeam',
        'openstudio::model::CoilHeatingGas',
        'openstudio::model::CoilHeatingGasMultiStage',
        'openstudio::model::CoilHeatingLowTempRadiantConstFlow',
        'openstudio::model::CoilHeatingLowTempRadiantVarFlow',
        'openstudio::model::CoilHeatingWaterBaseboard',
        'openstudio::model::CoilHeatingWaterBaseboardRadiant',
        'openstudio::model::CoilSystemCoolingDXHeatExchangerAssisted',
        'openstudio::model::CoilSystemCoolingWaterHeatExchangerAssisted',
        'openstudio::model::CoilWaterHeatingDesuperheater'
      ]
      # Is it a heating coil?
      if coil_types.include?(object.class.name) && object.class.name.include?('Heating')

        case object.class.name
        when 'CoilHeatingGas'
          coil = {}
          coil['name'] = object.get.name
          coil['type'] = 'Gas'
          coil['efficency'] = gas.gasBurnerEfficiency
          sql_command = "SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Heating Coils'
                        AND ColumnName='Nominal Total Capacity'
                        AND RowName='#{coil['name'].to_s.upcase}'"
          coil['nominal_total_capacity_w'] = validate_optional(@model.sqlFile.get.execAndReturnFirstDouble(sql_command), @model, -1.0)

        when 'CoilHeatingElectric'
        when 'CoilHeatingWater'
        end

        if supply_comp.to_CoilHeatingGas.is_initialized
          coil = {}
          air_loop_info['heating_coils']['coil_heating_gas'] << coil
          gas = supply_comp.to_CoilHeatingGas.get
          coil['name'] = gas.name.get
          coil['type'] = 'Gas'
          coil['efficency'] = gas.gasBurnerEfficiency
          sql_command = "SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Heating Coils'
                        AND ColumnName='Nominal Total Capacity'
                        AND RowName='#{coil['name'].to_s.upcase}'"
          coil['nominal_total_capacity_w'] = validate_optional(@model.sqlFile.get.execAndReturnFirstDouble(sql_command), @model, -1.0)
        end
        if supply_comp.to_CoilHeatingElectric.is_initialized
          coil = {}
          air_loop_info['heating_coils']['coil_heating_electric'] << coil
          electric = supply_comp.to_CoilHeatingElectric.get
          coil['name'] = electric.name.get
          coil['type'] = 'Electric'
          sql_command = "SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Heating Coils'
                        AND ColumnName='Nominal Total Capacity'
                        AND RowName='#{coil['name'].to_s.upcase}'"
          coil['nominal_total_capacity_w'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        end
        if supply_comp.to_CoilHeatingWater.is_initialized
          coil = {}
          air_loop_info['heating_coils']['coil_heating_water'] << coil
          water = supply_comp.to_CoilHeatingWater.get
          coil['name'] = water.name.get
          coil['type'] = 'Water'
          sql_command = "SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Heating Coils'
                        AND ColumnName='Nominal Total Capacity'
                        AND RowName='#{coil['name'].to_s.upcase}'"
          coil['nominal_total_capacity_w'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        end
      end

      # I dont think i need to get the type of heating coil from the sql file, because the coils are differentiated by class, and I have hard coded the information
      # model.sqlFile().get().execAndReturnFirstDouble("SELECT Value FROM TabularDataWithStrings WHERE ReportName='EquipmentSummary' AND ReportForString='Entire Facility' AND TableName= 'Heating Coils' AND ColumnName='Type' ").get #padmussen to complete #AND RowName='#{air_loop_info["heating_coils"]["name"].upcase}'
      #
      # Collect all the fans into the the array.
      air_loop.supplyComponents.each do |curr_supply_comp|
        if curr_supply_comp.to_CoilCoolingDXSingleSpeed.is_initialized
          coil = {}
          air_loop_info['cooling_coils']['dx_single_speed'] << coil
          single_speed = curr_supply_comp.to_CoilCoolingDXSingleSpeed.get
          coil['name'] = single_speed.name.get
          coil['cop'] = single_speed.getRatedCOP.get
          sql_command = "SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Cooling Coils'
                        AND ColumnName='Nominal Total Capacity'
                        AND RowName='#{coil['name'].to_s.upcase}'"
          coil['nominal_total_capacity_w'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        end
        if curr_supply_comp.to_CoilCoolingDXTwoSpeed.is_initialized
          coil = {}
          air_loop_info['cooling_coils']['dx_two_speed'] << coil
          two_speed = curr_supply_comp.to_CoilCoolingDXTwoSpeed.get
          coil['name'] = two_speed.name.get
          coil['cop_low'] = two_speed.getRatedLowSpeedCOP.get
          coil['cop_high'] = two_speed.getRatedHighSpeedCOP.get
          sql_command = "SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Cooling Coils'
                        AND ColumnName='Nominal Total Capacity'
                        AND RowName='#{coil['name'].to_s.upcase}'"
          coil['nominal_total_capacity_w'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        end
        if curr_supply_comp.to_CoilCoolingWater.is_initialized
          coil = {}
          air_loop_info['cooling_coils']['coil_cooling_water'] << coil
          coil_cooling_water = curr_supply_comp.to_CoilCoolingWater.get
          coil['name'] = coil_cooling_water.name.get
          sql_command = "SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Cooling Coils'
                        AND ColumnName='Nominal Total Capacity'
                        AND RowName='#{coil['name'].to_s.upcase}'"
          coil['nominal_total_capacity_w'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
          sql_command = "SELECT Value FROM TabularDataWithStrings
                       WHERE ReportName='EquipmentSummary'
                       AND ReportForString='Entire Facility'
                       AND TableName='Cooling Coils'
                       AND ColumnName='Nominal Sensible Heat Ratio'
                       AND RowName='#{coil['name'].upcase}' "
          coil['nominal_sensible_heat_ratio'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        end
      end
    end
  end
end

#energy_eui_data(model) ⇒ Object



1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1406

def energy_eui_data(model)
  data = {}
  # default to zero to start.
  ['energy_eui_fans_gj_per_m_sq',
   'energy_eui_heating_gj_per_m_sq',
   'energy_eui_cooling_gj_per_m_sq',
   'energy_eui_interior equipment_gj_per_m_sq',
   'energy_eui_natural_gas_gj_per_m_sq',
   'energy_eui_pumps_gj_per_m_sq',
   'energy_eui_total_gj_per_m_sq',
   'energy_eui_heat recovery_gj_per_m_sq',
   'energy_eui_water systems_gj_per_m_sq'].each { |end_use| data[end_use] = 0.0 }

  # Check if the HVAC of the model is GSHP
  plant_loops = model.getPlantLoops
  model_has_how_many_GSHP = 0.0
  plant_loops.each do |plantloop|
    if plantloop.name.to_s.upcase.include? "GLHX"
      model_has_how_many_GSHP += 1.0
    end
  end

  # Get E+ End use table from sql
  table = get_sql_table_to_json(@model, 'AnnualBuildingUtilityPerformanceSummary', 'Entire Facility', 'End Uses')['table']
  # Get rid of totals and averages rows.. I want just the
  table.delete_if { |row| !!(row['name'] =~ /Total|Average/) }
  table.each do |row|
    # skip name and water_m3 columns
    energy_columns = row.select { |k, v| (k != 'name') && (k != 'water_m3') }
    # Store eui by use name.
    data["energy_eui_#{row['name'].downcase}_gj_per_m_sq"] = energy_columns.inject(0) { |sum, tuple| sum += tuple[1] } / @conditioned_floor_area_m_sq
  end

  data['energy_eui_total_gj_per_m_sq'] = 0.0

  ['natural_gas_GJ', 'electricity_GJ', 'additional_fuel_GJ', 'district_cooling_GJ', 'district_heating_GJ'].each do |column|
    data["energy_eui_#{column.downcase}_per_m_sq"] = table.inject(0) { |sum, row| sum + (row[column].nil? ? 0.0 : row[column]) } / @conditioned_floor_area_m_sq
    data['energy_eui_total_gj_per_m_sq'] += data["energy_eui_#{column.downcase}_per_m_sq"] unless data["energy_eui_#{column.downcase}_per_m_sq"].nil?
  end

  # If the HVAC of the model is GSHP, district heating and cooling must be removed from EUIs for heating and cooling and total EUI
  # NOTE: it has been assumed that if a model has GSHP, that is the only HVAC type in the model. This assumption means that any district heating/cooling in the model is related to GSHP.
  if model_has_how_many_GSHP > 0.0
    data['energy_eui_heating_gj_per_m_sq'] -= data['energy_eui_district_heating_gj_per_m_sq']
    data['energy_eui_cooling_gj_per_m_sq'] -= data['energy_eui_district_cooling_gj_per_m_sq']
    data['energy_eui_total_gj_per_m_sq'] -= (data['energy_eui_district_heating_gj_per_m_sq'] + data['energy_eui_district_cooling_gj_per_m_sq'])
  end

  # Get total and net site energy use intensity
  # Note: 'Total Site Energy' is the "gross" energy used by a building.
  # Note: 'Net Site Energy' is the final energy used by the building after considering any on-site energy generation (e.g. PV).
  # Reference: https://unmethours.com/question/25416/what-is-the-difference-between-site-energy-and-source-energy/
  # Reference: https://designbuilder.co.uk/helpv6.0/Content/KPIs.htm
  data['total_site_eui_gj_per_m_sq'] = data['energy_eui_total_gj_per_m_sq'].to_f
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='AnnualBuildingUtilityPerformanceSummary'
             AND ReportForString='Entire Facility'
             AND TableName='Site and Source Energy'
             AND RowName='Net Site Energy'
             AND ColumnName='Energy Per Conditioned Building Area'
             AND Units='MJ/m2'"
  net_site_eui_mj_per_m_sq = @sqlite_file.get.execAndReturnFirstDouble(command)
  data['net_site_eui_gj_per_m_sq'] = OpenStudio.convert(net_site_eui_mj_per_m_sq.to_f, 'MJ', 'GJ').get
  return data
end

#energy_peak_dataObject



1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1331

def energy_peak_data
  # Primary heaing source
  data = {}
  command = "SELECT Value
                FROM TabularDataWithStrings
                WHERE ReportName='LEEDsummary'
                AND ReportForString='Entire Facility'
                AND TableName='Sec1.1A-General Information'
                AND RowName = 'Principal Heating Source'
                AND ColumnName='Data'"
  value = @sqlite_file.get.execAndReturnFirstString(command)
  # make sure all the data are availalbe

  data['energy_principal_heating_source'] = 'unknown'
  unless value.empty?
    data['energy_principal_heating_source'] = value.get
  end

  # Peaks
  electric_peak = @model.sqlFile.get.execAndReturnFirstDouble("SELECT Value FROM tabulardatawithstrings WHERE ReportName='EnergyMeters'" \
                                                                      " AND ReportForString='Entire Facility' AND TableName='Annual and Peak Values - Electricity' AND RowName='Electricity:Facility'" \
                                                                      " AND ColumnName='Electricity Maximum Value' AND Units='W'")
  natural_gas_peak = @model.sqlFile.get.execAndReturnFirstDouble("SELECT Value FROM tabulardatawithstrings WHERE ReportName='EnergyMeters'" \
                                                                         " AND ReportForString='Entire Facility' AND TableName='Annual and Peak Values - Natural Gas' AND RowName='NaturalGas:Facility'" \
                                                                         " AND ColumnName='Natural Gas Maximum Value' AND Units='W'")
  data['energy_peak_electric_w_per_m_sq'] = electric_peak.empty? ? 0.0 : electric_peak.get / @conditioned_floor_area_m_sq
  data['energy_peak_natural_gas_w_per_m_sq'] = natural_gas_peak.empty? ? 0.0 : natural_gas_peak.get / @conditioned_floor_area_m_sq

  # Peak heating load  # @todo IMPORTANT NOTE: Peak heating load must be updated if a combination of fuel types is used in a building model.
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='EnergyMeters'
             AND ReportForString='Entire Facility'
             AND TableName='Annual and Peak Values - Electricity'
             AND RowName='Heating:Electricity'
             AND ColumnName='Electricity Maximum Value'
             AND Units='W'"
  heating_peak_w_electricity = @sqlite_file.get.execAndReturnFirstDouble(command)
  command = "SELECT Value
            FROM TabularDataWithStrings
            WHERE ReportName='EnergyMeters'
            AND ReportForString='Entire Facility'
            AND TableName='Annual and Peak Values - Natural Gas'
            AND RowName='Heating:NaturalGas'
            AND ColumnName='Natural Gas Maximum Value'
            AND Units='W'"
  heating_peak_w_gas = @sqlite_file.get.execAndReturnFirstDouble(command)
  heating_peak_w = [heating_peak_w_electricity.to_f, heating_peak_w_gas.to_f].max
  data['heating_peak_w_per_m_sq'] = heating_peak_w / @conditioned_floor_area_m_sq

  # Peak cooling load    # @todo IMPORTANT NOTE: Peak cooling load must be updated if a combination of fuel types is used in a building model.
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='EnergyMeters'
             AND ReportForString='Entire Facility'
             AND TableName='Annual and Peak Values - Electricity'
             AND RowName='Cooling:Electricity'
             AND ColumnName='Electricity Maximum Value'
             AND Units='W'"
  cooling_peak_w_electricity = @sqlite_file.get.execAndReturnFirstDouble(command)
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='EnergyMeters'
             AND ReportForString='Entire Facility'
             AND TableName='Annual and Peak Values - Natural Gas'
             AND RowName='Cooling:Electricity'
             AND ColumnName='Electricity Maximum Value'
             AND Units='W'"
  cooling_peak_w_gas = @sqlite_file.get.execAndReturnFirstDouble(command)
  cooling_peak_w = [cooling_peak_w_electricity.to_f, cooling_peak_w_gas.to_f].max
  data['cooling_peak_w_per_m_sq'] = cooling_peak_w / @conditioned_floor_area_m_sq

  return data
end

#envelope(model) ⇒ Object



288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 288

def envelope(model)
  data = {}
  # Get OSM surface information
  surfaces = model.getSurfaces.sort
  interior_surfaces = BTAP::Geometry::Surfaces.filter_by_boundary_condition(surfaces, ['Surface', 'Adiabatic'])
  interior_floors = BTAP::Geometry::Surfaces.filter_by_surface_types(interior_surfaces, 'Floor')
  outdoor_surfaces = BTAP::Geometry::Surfaces.filter_by_boundary_condition(surfaces, 'Outdoors')
  outdoor_walls = BTAP::Geometry::Surfaces.filter_by_surface_types(outdoor_surfaces, 'Wall')
  outdoor_roofs = BTAP::Geometry::Surfaces.filter_by_surface_types(outdoor_surfaces, 'RoofCeiling')
  outdoor_floors = BTAP::Geometry::Surfaces.filter_by_surface_types(outdoor_surfaces, 'Floor')
  outdoor_subsurfaces = outdoor_surfaces.flat_map(&:subSurfaces)
  ground_surfaces = BTAP::Geometry::Surfaces.filter_by_boundary_condition(surfaces, ['Ground', 'Foundation'])
  ground_walls = BTAP::Geometry::Surfaces.filter_by_surface_types(ground_surfaces, 'Wall')
  ground_roofs = BTAP::Geometry::Surfaces.filter_by_surface_types(ground_surfaces, 'RoofCeiling')
  ground_floors = BTAP::Geometry::Surfaces.filter_by_surface_types(ground_surfaces, 'Floor')
  windows = BTAP::Geometry::Surfaces.filter_subsurfaces_by_types(outdoor_subsurfaces, ['FixedWindow', 'OperableWindow'])
  skylights = BTAP::Geometry::Surfaces.filter_subsurfaces_by_types(outdoor_subsurfaces, ['Skylight', 'TubularDaylightDiffuser', 'TubularDaylightDome'])
  doors = BTAP::Geometry::Surfaces.filter_subsurfaces_by_types(outdoor_subsurfaces, ['Door', 'GlassDoor'])
  overhead_doors = BTAP::Geometry::Surfaces.filter_subsurfaces_by_types(outdoor_subsurfaces, ['OverheadDoor'])

  # Get Areas
  data['outdoor_walls_area_m_sq'] = outdoor_walls.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier }
  data['outdoor_roofs_area_m_sq'] = outdoor_roofs.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier }
  data['outdoor_floors_area_m_sq'] = outdoor_floors.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier }
  data['ground_walls_area_m_sq'] = ground_walls.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier }
  data['ground_roofs_area_m_sq'] = ground_roofs.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier }
  data['ground_floors_area_m_sq'] = ground_floors.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier }
  data['interior_floors_area_m_sq'] = interior_floors.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier }

  # Subsurface areas
  data['windows_area_m_sq'] = windows.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier * e.multiplier }
  data['skylights_area_m_sq'] = skylights.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier * e.multiplier }
  data['doors_area_m_sq'] = doors.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier * e.multiplier }
  data['overhead_doors_area_m_sq'] = overhead_doors.inject(0) { |sum, e| sum + e.netArea * e.space.get.multiplier * e.multiplier }

  # Total Building Ground Surface Area.
  data['total_ground_area_m_sq'] = data['ground_walls_area_m_sq'] +
                                   data['ground_roofs_area_m_sq'] +
                                   data['ground_floors_area_m_sq']
  # Total Building Outdoor Surface Area.
  data['total_outdoor_area_m_sq'] = data['outdoor_walls_area_m_sq'] +
                                    data['outdoor_roofs_area_m_sq'] +
                                    data['outdoor_floors_area_m_sq'] +
                                    data['windows_area_m_sq'] +
                                    data['skylights_area_m_sq'] +
                                    data['doors_area_m_sq'] +
                                    data['overhead_doors_area_m_sq']

  # Average Conductances by surface Type
  data['outdoor_walls_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(outdoor_walls).round(4) if !outdoor_walls.empty?
  data['outdoor_roofs_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(outdoor_roofs).round(4) if !outdoor_roofs.empty?
  data['outdoor_floors_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(outdoor_floors).round(4) if !outdoor_floors.empty?
  data['ground_walls_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(ground_walls).round(4) if !ground_walls.empty?
  data['ground_roofs_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(ground_roofs).round(4) if !ground_roofs.empty?
  data['ground_floors_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(ground_floors).round(4) if !ground_floors.empty?
  data['windows_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(windows).round(4) if !windows.empty?
  data['skylights_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(skylights).round(4) if !skylights.empty?
  data['doors_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(doors).round(4) if !doors.empty?
  data['overhead_doors_average_conductance_w_per_m_sq_k'] = OpenstudioStandards::Constructions.surfaces_get_conductance(overhead_doors).round(4) if !overhead_doors.empty?

  # #Average Conductances for building whole weight factors
  !outdoor_walls.empty? ? o_wall_cond_weight = data['outdoor_walls_average_conductance_w_per_m_sq_k'] * data['outdoor_walls_area_m_sq'] : o_wall_cond_weight = 0
  !outdoor_roofs.empty? ? o_roof_cond_weight = data['outdoor_roofs_average_conductance_w_per_m_sq_k'] * data['outdoor_roofs_area_m_sq'] : o_roof_cond_weight = 0
  !outdoor_floors.empty? ? o_floor_cond_weight = data['outdoor_floors_average_conductance_w_per_m_sq_k'] * data['outdoor_floors_area_m_sq'] : o_floor_cond_weight = 0
  !ground_walls.empty? ? g_wall_cond_weight = data['ground_walls_average_conductance_w_per_m_sq_k'] * data['ground_walls_area_m_sq'] : g_wall_cond_weight = 0
  !ground_roofs.empty? ? g_roof_cond_weight = data['ground_roofs_average_conductance_w_per_m_sq_k'] * data['ground_roofs_area_m_sq'] : g_roof_cond_weight = 0
  !ground_floors.empty? ? g_floor_cond_weight = data['ground_floors_average_conductance_w_per_m_sq_k'] * data['ground_floors_area_m_sq'] : g_floor_cond_weight = 0
  !windows.empty? ? win_cond_weight = data['windows_average_conductance_w_per_m_sq_k'] * data['windows_area_m_sq'] : win_cond_weight = 0
  # doors.size > 0 ? sky_cond_weight = data["skylights_average_conductance_w_per_m_sq_k"] * data["skylights_area_m_sq"] : sky_cond_weight = 0
  if !doors.empty? && !data['skylights_average_conductance_w_per_m_sq_k'].nil? && !data['skylights_area_m_sq'].nil?
    sky_cond_weight = data['skylights_average_conductance_w_per_m_sq_k'] * data['skylights_area_m_sq']
  else
    sky_cond_weight = 0
  end
  !overhead_doors.empty? ? door_cond_weight = data['doors_average_conductance_w_per_m_sq_k'] * data['doors_area_m_sq'] : door_cond_weight = 0
  !overhead_doors.empty? ? overhead_door_cond_weight = data['overhead_doors_average_conductance_w_per_m_sq_k'] * data['overhead_doors_area_m_sq'] : overhead_door_cond_weight = 0

  # Building Average Conductance
  data['outdoor_average_conductance_w_per_m_sq_k'] = (
  o_floor_cond_weight +
      o_roof_cond_weight +
      o_wall_cond_weight +
      win_cond_weight +
      sky_cond_weight +
      door_cond_weight +
      overhead_door_cond_weight) / data['total_outdoor_area_m_sq']

  # Building Average Ground Conductance
  data['ground_average_conductance_w_per_m_sq_k'] = (
  g_floor_cond_weight +
      g_roof_cond_weight +
      g_wall_cond_weight) / data['total_ground_area_m_sq']

  # Building Average Conductance
  data['average_conductance_w_per_m_sq_k'] = (
  (data['average_conductance_w_per_m_sq_k'] * data['total_ground_area_m_sq']) +
      (data['outdoor_average_conductance_w_per_m_sq_k'] * data['total_outdoor_area_m_sq'])
) /
                                             (data['total_ground_area_m_sq'] + data['total_outdoor_area_m_sq'])
  prefix = 'envel_'
  return Hash[data.map { |k, v| ["#{prefix}_#{k}", v] }]
end

#envelope_exterior_surface_tableObject



404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 404

def envelope_exterior_surface_table
  surfaces = @model.getSurfaces.sort
  outdoor_surfaces = BTAP::Geometry::Surfaces.filter_by_boundary_condition(surfaces, 'Outdoors')
  ground_surfaces = BTAP::Geometry::Surfaces.filter_by_boundary_condition(surfaces, ['Ground', 'Foundation'])
  exterior_opaque_surfaces = outdoor_surfaces + ground_surfaces
  # outdoor_surfaces.each { |surface| puts surface.name}
  # get surface table from sql
  table = get_sql_table_to_json(@model, 'EnvelopeSummary', 'Entire Facility', 'Opaque Exterior')
  raise('Could not get opaque surface table from E+ sql') if table.empty?

  # add space name to table.
  table['table'].each do |row|
    surface = exterior_opaque_surfaces.detect { |curr_surface| curr_surface.name.get.downcase == row['name'].downcase }
    raise("Could not find surface  #{row['name'].downcase} in #{outdoor_surfaces.map { |curr_surface| curr_surface.name.get.downcase }}") if surface.nil?

    row['os_type'] = surface.surfaceType
    row['boundary_condition'] = surface.outsideBoundaryCondition
    space_includes_surface = @model.getSpaces.detect { |space| space.surfaces.include?(surface) }
    row['space_name'] = space_includes_surface.nil? || !space_includes_surface.name.is_initialized ? 'NA' : space_includes_surface.name.get
  end
  opaque = table

  # Fenestrations
  fenestrations = BTAP::Geometry::Surfaces.filter_subsurfaces_by_types(@model.getSubSurfaces.sort, ['GlassDoor', 'FixedWindow', 'OperableWindow', 'Skylight', 'TubularDaylightDiffuser', 'TubularDaylightDome'])
  # get surface table from sql
  table = get_sql_table_to_json(@model, 'EnvelopeSummary', 'Entire Facility', 'Exterior Fenestration')
  # Exclude totals and averages by deleting row with that in their name.
  table['table'].delete_if { |row| !!(row['name'] =~ /Total|Average/) }
  raise('Could not get fenestration surface table from E+ sql') if table.empty?

  # add space name to table.
  table['table'].each do |row|
    subsurface = fenestrations.detect { |surface| surface.name.get.downcase == row['name'].downcase }
    raise("Could not find surface  #{row['name'].downcase} in #{fenestrations.map { |surface| surface.name.get.downcase }}") if subsurface.nil?

    row['os_type'] = subsurface.subSurfaceType
    row['boundary_condition'] = subsurface.outsideBoundaryCondition
    parent_surface = subsurface.surface.get
    space_includes_surface = @model.getSpaces.detect { |space| space.surfaces.include?(parent_surface) }
    row['space_name'] = space_includes_surface.nil? || !space_includes_surface.name.is_initialized ? 'NA' : space_includes_surface.name.get
  end
  glazing = table

  # return as a single table.

  return glazing['table'] + opaque['table']
end

#envelope_summary(qaqc) ⇒ Object



391
392
393
394
395
396
397
398
399
400
401
402
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 391

def envelope_summary(qaqc)
  @btap_data['envelope-outdoor_walls_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:outdoor_walls_average_conductance_w_per_m2_k]
  @btap_data['envelope-outdoor_roofs_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:outdoor_roofs_average_conductance_w_per_m2_k]
  @btap_data['envelope-outdoor_floors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:outdoor_floors_average_conductance_w_per_m2_k]
  @btap_data['envelope-ground_walls_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:ground_walls_average_conductance_w_per_m2_k]
  @btap_data['envelope-ground_roofs_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:ground_roofs_average_conductance_w_per_m2_k]
  @btap_data['envelope-ground_floors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:ground_floors_average_conductance_w_per_m2_k]
  @btap_data['envelope-outdoor_windows_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:windows_average_conductance_w_per_m2_k]
  @btap_data['envelope-outdoor_doors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:doors_average_conductance_w_per_m2_k]
  @btap_data['envelope-outdoor_overhead_doors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:overhead_doors_average_conductance_w_per_m2_k]
  @btap_data['envelope-skylights_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:skylights_average_conductance_w_per_m2_k]
end

#eplusout_err_table(model) ⇒ Object



1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1310

def eplusout_err_table(model)
  table = []
  warnings = model.sqlFile.get.execAndReturnVectorOfString("SELECT ErrorMessage FROM Errors WHERE ErrorType='0' ")
  warnings = validate_optional(warnings, model, 'N/A')
  unless warnings == 'N/A'
    messages = model.sqlFile.get.execAndReturnVectorOfString("SELECT ErrorMessage FROM Errors WHERE ErrorType='0' ").get
    messages.each do |message|
      table << { 'error_type' => 'warning', 'message' => message }
    end
    messages = model.sqlFile.get.execAndReturnVectorOfString("SELECT ErrorMessage FROM Errors WHERE ErrorType='1' ").get
    messages.each do |message|
      table << { 'error_type' => 'severe', 'message' => message }
    end
    messages = model.sqlFile.get.execAndReturnVectorOfString("SELECT ErrorMessage FROM Errors WHERE ErrorType='2' ").get
    messages.each do |message|
      table << { 'error_type' => 'fatal', 'message' => message }
    end
  end
  return table
end

#flatten_mix(hash) ⇒ Object

Oct-2019 JTB: This function must be passed a hash and will flatten mixtures of hashes and arrays of hashes. Embedded arrays are enumerated (starting at 1).



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 99

def flatten_mix(hash)
  hash.each_with_object({}) do |(k, v), h|
    if v.is_a?(Hash)
      flatten_mix(v).map do |h_k, h_v|
        h["#{k}.#{h_k}".to_sym] = h_v
      end
    elsif v.is_a?(Array)
      v.map.with_index do |e, ndx|
        if e.is_a?(Hash)
          flatten_mix(e).map do |e_k, e_v|
            h["#{k}.#{e_k}.#{ndx + 1}".to_sym] = e_v
          end
          # if there is another array within the array v, flatten more
          # but this is as deep as we go with embedded arrays!
        elsif e.is_a?(Array)
          e.map.with_index do |e1, ndx1|
            if e1.is_a?(Hash)
              flatten_mix(e1).map do |e1_k, e1_v|
                h["#{k}.#{e1_k}.#{ndx1 + 1}".to_sym] = e1_v
              end
            else
              # Stop flattening here!
              h[k] = v
            end
          end
        else
          h[k] = v
        end
      end
    else
      h[k] = v
    end
  end
end

#get_actual_child_object(object) ⇒ Object

TODO:

SQL command units may have been converted wrong.



1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1823

def get_actual_child_object(object)
  # monkey patch class to have a decendants static method to return all possible subclasses of the object.
  object.class.class_eval do
    def self.descendants
      ObjectSpace.each_object(Class).select { |k| k < self } << self
    end
  end
  # Dont try and match the class that the object is already in! So get decendants that are not of the current object class
  subclass_array = object.class.descendants.map { |classtype| classtype if classtype != object.class }.reject(&:nil?)
  subclass_array.each do |class_type|
    # convert class name to not have prefix.
    matches = class_type.name.match(/OpenStudio::Model::(?<object_name>.*)/)
    new_object = nil
    # Use eval (I know this is the devil) to try to cast to a subclass.
    eval_info = "new_object = object.to_#{matches['object_name']}"
    eval(eval_info)
    # if it does then clean it up and return it.
    if new_object.is_initialized
      new_object = new_object.get
      return get_actual_child_object(new_object)
    end
  end
  # It is not cast-able to any subclass.. so returning original object.
  return object
end

#get_sql_table_to_json(model, report_name, report_for_string, table_name) ⇒ Object

This should be done last.



1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1720

def get_sql_table_to_json(model, report_name, report_for_string, table_name)
  table = []
  query_row_names = "
   SELECT DISTINCT
      RowName
   FROM
      tabulardatawithstrings
    WHERE
      ReportName='#{report_name}'
    AND
      ReportForString='#{report_for_string}'
    AND
      TableName='#{table_name}'"
  row_names = model.sqlFile.get.execAndReturnVectorOfString(query_row_names).get

  # get Columns
  query_col_names = "
   SELECT DISTINCT
      ColumnName
   FROM tabulardatawithstrings
    WHERE ReportName='#{report_name}'
    AND ReportForString='#{report_for_string}'
    AND TableName='#{table_name}'"
  col_names = model.sqlFile.get.execAndReturnVectorOfString(query_col_names).get

  # get units
  query_unit_names = "
   SELECT DISTINCT
      Units
   FROM tabulardatawithstrings
    WHERE ReportName='#{report_name}'
    AND ReportForString='#{report_for_string}'
    AND TableName='#{table_name}'"
  unit_names = model.sqlFile.get.execAndReturnVectorOfString(query_unit_names).get

  row_names.each do |row|
    next if row.nil? || row == ''

    row_hash = {}
    row_hash['name'] = row
    col_names.each do |col|
      unit_names.each do |unit|
        query = "
      SELECT
        Value
      FROM
        tabulardatawithstrings
      WHERE
        ReportName='#{report_name}'
      AND
        ReportForString='#{report_for_string}'
      AND
        TableName='#{table_name}'
      AND
        RowName='#{row}'
      AND
        ColumnName='#{col}'
      AND
        Units='#{unit}'
"
        column_name = col.to_s.gsub(/\s+/, '_').downcase
        column_name += "_#{unit}" if unit != ''
        value = model.sqlFile.get.execAndReturnFirstString(query)
        next if value.empty? || value.get.nil?

        value = value.get.strip
        # check is value is a number. The last chunk checks if the string includes an E, if not return true since it
        # is a regular number, if not it checks if it is in the E+ exponent format and returns the bool result of that.
        if (begin
              Float(value)
            rescue StandardError
              false
            end) && value.to_f != 0 && (value.include?('E') || value.include?('e') ? value =~ /\d*\.\d*E[+|-]\d*/ : true)
          row_hash[column_name] = value.to_f
          # Check if value is a date
        elsif unit == '' && value =~ /\d\d-\D\D\D-\d\d:\d\d/
          row_hash[column_name] = DateTime.parse(value)
          # skip if value in an empty string or a zero value
        elsif value != '' && value != '0.00'
          row_hash[column_name] = value
        end
      end
    end
    if row_hash.size > 1
      table << row_hash
    end
  end
  result = { 'report_name' => report_name, 'report_for_string' => report_for_string, 'table_name' => table_name, 'table' => table }
  return result
end

#get_utility_ghg_kg_per_gj(province:, fuel_type:) ⇒ Object



1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1899

def get_utility_ghg_kg_per_gj(province:, fuel_type:)
  ghg_data = [
    # Obtained from Portfolio Manager https://portfoliomanager.energystar.gov/pdf/reference/Emissions.pdf 10/10/2020
    { "province": 'AB', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 53.24, "CO2eq Emissions (g/m3)": 1939.0 },
    { "province": 'BC', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 53.19, "CO2eq Emissions (g/m3)": 1937.0 },
    { "province": 'MB', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.09, "CO2eq Emissions (g/m3)": 1897.0 },
    { "province": 'NB', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.50, "CO2eq Emissions (g/m3)": 1912.0 },
    { "province": 'NL', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.50, "CO2eq Emissions (g/m3)": 1912.0 },
    { "province": 'NT', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.50, "CO2eq Emissions (g/m3)": 1912.0 },
    { "province": 'NS', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.50, "CO2eq Emissions (g/m3)": 1912.0 },
    { "province": 'NU', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.50, "CO2eq Emissions (g/m3)": 1912.0 },
    { "province": 'ON', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.14, "CO2eq Emissions (g/m3)": 1912.0 },
    { "province": 'PE', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.50, "CO2eq Emissions (g/m3)": 1912.0 },
    { "province": 'QC', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.12, "CO2eq Emissions (g/m3)": 1898.0 },
    { "province": 'SK', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 50.53, "CO2eq Emissions (g/m3)": 1840.0 },
    { "province": 'YT', "fuel_type": 'NaturalGas', "CO2eq Emissions (kg/MBtu)": 52.50, "CO2eq Emissions (g/m3)": 1912.0 },

    { "province": 'AB', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'BC', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'MB', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'NB', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'NL', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'NT', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'NS', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'NU', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'ON', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'PE', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'QC', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'SK', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },
    { "province": 'YT', "fuel_type": 'FuelOilNo2', "CO2eq Emissions (kg/MBtu)": 75.13, "CO2eq Emissions (g/m3)": 2763.0 },

    { "province": 'AB', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'BC', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'MB', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'NB', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'NL', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'NT', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'NS', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'NU', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'ON', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'PE', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'QC', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'SK', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },
    { "province": 'YT', "fuel_type": 'Propane', "CO2eq Emissions (kg/MBtu)": 64.25, "CO2eq Emissions (g/m3)": 1548.00 },

    { "province": 'AB', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 202.23, "CO2eq Emissions (g/m3)": 690.0 },
    { "province": 'BC', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 3.84, "CO2eq Emissions (g/m3)": 13.1 },
    { "province": 'MB', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 0.41, "CO2eq Emissions (g/m3)": 1.4 },
    { "province": 'NB', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 84.99, "CO2eq Emissions (g/m3)": 290.0 },
    { "province": 'NL', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 7.91, "CO2eq Emissions (g/m3)": 27.0 },
    { "province": 'NT', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 46.89, "CO2eq Emissions (g/m3)": 160.0 },
    { "province": 'NS', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 216.88, "CO2eq Emissions (g/m3)": 740.0 },
    { "province": 'NU', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 260.84, "CO2eq Emissions (g/m3)": 890.0 },
    { "province": 'ON', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 8.79, "CO2eq Emissions (g/m3)": 30.0 },
    { "province": 'PE', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 84.99, "CO2eq Emissions (g/m3)": 290.0 },
    { "province": 'QC', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 0.47, "CO2eq Emissions (g/m3)": 1.6 },
    { "province": 'SK', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 219.81, "CO2eq Emissions (g/m3)": 750.0 },
    { "province": 'YT', "fuel_type": 'Electricity', "CO2eq Emissions (kg/MBtu)": 23.15, "CO2eq Emissions (g/m3)": 79.0 }
  ]
  mbtu_to_gj = 1.05505585
  factor = ghg_data.detect { |item| (item[:province] == province) && (item[:fuel_type] == fuel_type) }
  raise "could not find ghg factor for province name #{province} and fuel_type #{fuel_type}" if factor.nil?

  return factor[:"CO2eq Emissions (kg/MBtu)"] / mbtu_to_gj
end

#measure_metrics(qaqc) ⇒ Object



1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1853

def measure_metrics(qaqc)
  # Store mesure metric data that will be used in analysis tools.
  @btap_data['env_outdoor_walls_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:outdoor_walls_average_conductance_w_per_m2_k]
  @btap_data['env_outdoor_roofs_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:outdoor_roofs_average_conductance_w_per_m2_k]
  @btap_data['env_outdoor_floors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:outdoor_floors_average_conductance_w_per_m2_k]
  @btap_data['env_ground_walls_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:ground_walls_average_conductance_w_per_m2_k]
  @btap_data['env_ground_roofs_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:ground_roofs_average_conductance_w_per_m2_k]
  @btap_data['env_ground_floors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:ground_floors_average_conductance_w_per_m2_k]
  @btap_data['env_outdoor_windows_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:windows_average_conductance_w_per_m2_k]
  @btap_data['env_outdoor_doors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:doors_average_conductance_w_per_m2_k]
  @btap_data['env_outdoor_overhead_doors_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:overhead_doors_average_conductance_w_per_m2_k]
  @btap_data['env_skylights_average_conductance-w_per_m_sq_k'] = qaqc[:envelope][:skylights_average_conductance_w_per_m2_k]
  @btap_data['env_fdwr'] = (BTAP::Geometry.get_fwdr(@model) * 100.0).round(1)
  @btap_data['env_srr'] = (BTAP::Geometry.get_srr(@model) * 100.0).round(1)
  unless @btap_data['measures_data_table'].nil?
    if @btap_data['measures_data_table'].detect { |item| item['measure_name'] == 'btap_standard_building_type_geometry' }.nil?
      @btap_data['env_x_scale'] = 1.0
      @btap_data['env_y_scale'] = 1.0
      @btap_data['env_z_scale'] = 1.0
      @btap_data['env_rotation'] = 0.0
    else
      @btap_data['env_x_scale'] = @btap_data['measures_data_table'].detect { |item| item['measure_name'] == 'btap_standard_building_type_geometry' && item['arg_name'] == 'x_scale' }['value']
      @btap_data['env_y_scale'] = @btap_data['measures_data_table'].detect { |item| item['measure_name'] == 'btap_standard_building_type_geometry' && item['arg_name'] == 'y_scale' }['value']
      @btap_data['env_z_scale'] = @btap_data['measures_data_table'].detect { |item| item['measure_name'] == 'btap_standard_building_type_geometry' && item['arg_name'] == 'z_scale' }['value']
      @btap_data['env_rotation'] = @btap_data['measures_data_table'].detect { |item| item['measure_name'] == 'btap_standard_building_type_geometry' && item['arg_name'] == 'relative_building_rotation' }['value']
    end
  end

  # This does not work with the new VRF or CCASHP systems. Commenting it for now.
  # Determine dominant system type by air loop

  #    systems = {}
  #    @btap_data["air_loop_table"].each do |loop|
  # Get system name part from regex
  #      system_name = loop["name"].match(/(^.{0,6}).*/)[1]
  #      systems[system_name] = 0.0 if systems[system_name] == nil
  #      systems[system_name] += loop["total_floor_area_served"]
  #    end
  #    if systems.empty?
  #      @btap_data["mm_hvac_dominant_system_type"] = "Unknown/IdealHVAC"
  #    else
  #      @btap_data["mm_hvac_dominant_system_type"] = systems.key(systems.values.max)
  #    end
  return @btap_data
end

#measures_data_table(runner) ⇒ Object

This measure will return an array of hashes with the varialbles used in the previous measures.



1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1681

def measures_data_table(runner)
  # Array to store hash row data.
  measure_variables_table = []
  # Go through each workstep.
  runner.workflow.workflowSteps.each do |step|
    # Check if the ws is a measure.
    if step.to_MeasureStep.is_initialized
      measure_step = step.to_MeasureStep.get
      # Set measure name using either the folder name or the measureStep name if possible.
      measure_name = measure_step.name.is_initialized ? measure_step.name.get : measure_step.measureDirName
      measures_to_skip = ['openstudio_results']
      unless measures_to_skip.include?(measure_name.to_s)
        # Check if the 'result' (?) is initialized?
        if measure_step.result.is_initialized
          result = measure_step.result.get
          # Iterate through the result object stepValues to obtain the arg values. I am assuming this is for arg, var. pivot, continous...
          result.stepValues.each do |arg|
            # Store the row /hash for the table.
            units = arg.units.empty? ? nil : arg.units
            value = nil
            case arg.variantType.value
            when 0
              value = arg.valueAsBoolean
            when 1..2
              value = arg.valueAsDouble
            when 3
              value = arg.valueAsString
            end
            measure_variables_table << { 'measure_name' => measure_name, 'arg_name' => arg.name, 'value' => value, 'units' => units, 'type' => arg.variantType.value }
          end
        end
      end
    end
  end
  return measure_variables_table
end

#merge_recursively(a, b) ⇒ Object



1811
1812
1813
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1811

def merge_recursively(a, b)
  a.merge(b) { |key, a_item, b_item| merge_recursively(a_item, b_item) }
end

#net_present_value(npv_start_year, npv_end_year, npv_discount_rate) ⇒ Object



174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 174

def net_present_value(npv_start_year, npv_end_year, npv_discount_rate)

  # Find end year in the neb data
  neb_header = CSV.read(@neb_prices_csv_file_name, headers: true).headers
  neb_header.delete_if { |item| ["building_type", "province", "fuel_type"].include?(item) } # remove "building_type", "province", "fuel_type" from neb_header in order to have only years in neb_header
  neb_header.map(&:to_f)  #convert years to float
  year_max = neb_header.max

  # Convert a string to a float
  if npv_start_year.instance_of?(String) && npv_start_year != 'NECB_Default' && npv_start_year != 'none'
    npv_start_year = npv_start_year.to_f
  end
  if npv_end_year.instance_of?(String) && npv_end_year != 'NECB_Default' && npv_end_year != 'none'
    npv_end_year = npv_end_year.to_f
  end
  if npv_discount_rate.instance_of?(String) && npv_discount_rate != 'NECB_Default' && npv_discount_rate != 'none'
    npv_discount_rate = npv_discount_rate.to_f
  end

  # Set default npv_start_year as 2022, npv_end_year as 2041, npv_discount_rate as 3%
  if npv_start_year == 'NECB_Default' || npv_start_year == nil || npv_start_year == 'none'
    npv_start_year = 2022
  end
  if npv_end_year == 'NECB_Default' || npv_end_year == nil || npv_end_year == 'none'
    npv_end_year = 2041
  end
  if npv_discount_rate == 'NECB_Default' || npv_discount_rate == nil || npv_discount_rate == 'none'
    npv_discount_rate = 0.03
  end

  # Set npv_end_year as year_max if users' input > neb's end year
  if npv_end_year > year_max.to_f
    npv_end_year = year_max.to_f
    warn "WARNING: Your npv_end_year for the calculation of net present value is larger than that in Canada Energy Regulator (CER) (i.e. #{year_max}). So, npv_end_year has been reset as #{year_max}."
  end
  # puts "npv_start_year is #{npv_start_year}"
  # puts "npv_end_year is #{npv_end_year}"
  # puts "npv_discount_rate is #{npv_discount_rate}"

  # Get energy end-use prices (CER data from https://apps.cer-rec.gc.ca/ftrppndc/dflt.aspx?GoCTemplateCulture=en-CA)
  @neb_prices_csv_file_name = "#{File.dirname(__FILE__)}/neb_end_use_prices.csv"

  # Create a hash of the neb data.
  neb_data = CSV.parse(File.read(@neb_prices_csv_file_name), headers: true, converters: :numeric).map(&:to_h)

  # Find which province the proposed building is located in
  building_type = 'Commercial'
  geography_data = climate_data
  province_abbreviation = geography_data['location_state_province_region']
  province = @standards_data['province_map'][province_abbreviation]

  # Note: If there is on-site energy generation (e.g. PV), it should be considered in the calculation of EUI for the calculation of energy use cost and NPV.
  # To do so, it has been assumed that on-site energy generation is only for electricity.
  # Electricity EUI of a building is re-calculated for NPV. It will be: ['energy_eui_electricity_gj_per_m_sq' - ('total_site_eui_gj_per_m_sq' - 'net_site_eui_gj_per_m_sq')]
  # Note that if there is no on-site energy generation, 'total_site_eui_gj_per_m_sq' and 'net_site_eui_gj_per_m_sq' will be equal.
  # Note: 'total_site_eui_gj_per_m_sq' is the gross energy consumed by the building (REF: https://unmethours.com/question/25416/what-is-the-difference-between-site-energy-and-source-energy/)
  # Note: 'net_site_eui_gj_per_m_sq' is the final energy consumed by the building after accounting for on-site energy generations (e.g. PV) (REF: https://unmethours.com/question/25416/what-is-the-difference-between-site-energy-and-source-energy/)

  # Calculate npv of electricity
  onsite_elec_generation = @btap_data['total_site_eui_gj_per_m_sq'] - @btap_data['net_site_eui_gj_per_m_sq']
  if onsite_elec_generation > 0.0
    eui_elec = @btap_data['energy_eui_electricity_gj_per_m_sq'] - onsite_elec_generation
  else
    eui_elec = @btap_data['energy_eui_electricity_gj_per_m_sq']
  end
  # puts "onsite_elec_generation is #{onsite_elec_generation}"
  # puts "eui_elec is #{eui_elec}"
  row = neb_data.detect do |data|
    (data['building_type'] == building_type) && (data['province'] == province) && (data['fuel_type'] == 'Electricity')
  end
  npv_elec = 0.0
  year_index = 1.0
  if eui_elec > 0.0
    for year in npv_start_year.to_int..npv_end_year.to_int
      # puts "year, #{year}, #{row[year.to_s]}, year_index, #{year_index}"
      npv_elec += (eui_elec * row[year.to_s]) / (1+npv_discount_rate)**year_index
      year_index += 1.0
    end
  end
  # puts "npv_elec is #{npv_elec}"

  # Calculate npv of natural gas
  eui_ngas= @btap_data['energy_eui_natural_gas_gj_per_m_sq']
  row = neb_data.detect do |data|
    (data['building_type'] == building_type) && (data['province'] == province) && (data['fuel_type'] == 'Natural Gas')
  end
  npv_ngas = 0.0
  year_index = 1.0
  for year in npv_start_year.to_int..npv_end_year.to_int
    npv_ngas += (eui_ngas * row[year.to_s]) / (1+npv_discount_rate)**year_index
    year_index += 1.0
  end
  # puts "npv_ngas is #{npv_ngas}"

  # Calculate npv of oil
  eui_oil= @btap_data['energy_eui_additional_fuel_gj_per_m_sq']
  row = neb_data.detect do |data|
    (data['building_type'] == building_type) && (data['province'] == province) && (data['fuel_type'] == 'Oil')
  end
  npv_oil = 0.0
  year_index = 1.0
  for year in npv_start_year.to_int..npv_end_year.to_int
    npv_oil += (eui_oil * row[year.to_s]) / (1+npv_discount_rate)**year_index
    year_index += 1.0
  end
  # puts "npv_oil is #{npv_oil}"

  # Calculate total npv
  npv_total = @btap_data['cost_equipment_total_cost_per_m_sq'] + npv_elec + npv_ngas + npv_oil

  @btap_data.merge!('npv_total_per_m_sq' => npv_total)

end

#outdoor_air_data(model) ⇒ Object

The below method (outdoor_air_data extract a couple of outputs related to outdoor air from the .html output file)



1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1526

def outdoor_air_data(model)
  # Store outdoor air data
  outdoor_air_data = {}
  #===============================================================================================================
  airloops_total_outdoor_air_mechanical_ventilation_m3 = 0.0
  airloops_total_outdoor_air_natural_ventilation_m3 = 0.0
  zones_total_outdoor_air_mechanical_ventilation_m3 = 0.0
  zones_total_outdoor_air_natural_ventilation_m3 = 0.0
  zones_total_outdoor_air_infiltration_m3 = 0.0
  #===============================================================================================================
  # Total outdoor air by airLoop
  model.getAirLoopHVACs.sort.each do |air_loop|
    air_loop_name = air_loop.name.get.upcase

    # Mechanical ventilation of all airloops
    command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='OutdoorAirDetails'
             AND ReportForString='Entire Facility'
             AND TableName='Total Outdoor Air by AirLoop'
             AND RowName='#{air_loop_name}'
             AND ColumnName='Mechanical Ventilation'
             AND Units='m3'"
    airloops_total_outdoor_air_mechanical_ventilation_m3 += @sqlite_file.get.execAndReturnFirstDouble(command).to_f

    # Natural ventilation of all airloops
    command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='OutdoorAirDetails'
             AND ReportForString='Entire Facility'
             AND TableName='Total Outdoor Air by AirLoop'
             AND RowName='#{air_loop_name}'
             AND ColumnName='Natural Ventilation'
             AND Units='m3'"
    airloops_total_outdoor_air_natural_ventilation_m3 += @sqlite_file.get.execAndReturnFirstDouble(command).to_f

  end

  # Not-normalized mechanical/natural.
  outdoor_air_data['airloops_total_outdoor_air_mechanical_ventilation_m3'] = airloops_total_outdoor_air_mechanical_ventilation_m3
  outdoor_air_data['airloops_total_outdoor_air_natural_ventilation_m3'] = airloops_total_outdoor_air_natural_ventilation_m3

  # Normalized mechanical/natural: ACH (air changes per hour)
  outdoor_air_data['airloops_total_outdoor_air_mechanical_ventilation_ach_1_per_hr'] = airloops_total_outdoor_air_mechanical_ventilation_m3 / (@btap_data['bldg_volume_m_cu'] * 365 * 24)
  outdoor_air_data['airloops_total_outdoor_air_natural_ventilation_ach_1_per_hr'] = airloops_total_outdoor_air_natural_ventilation_m3 / (@btap_data['bldg_volume_m_cu'] * 365 * 24)

  # Normalized mechanical/natural: normalized by conditioned floor area
  outdoor_air_data['airloops_total_outdoor_air_mechanical_ventilation_flow_per_conditioned_floor_area_m3_per_s_m2'] = airloops_total_outdoor_air_mechanical_ventilation_m3 / (@conditioned_floor_area_m_sq * 365 * 24 * 3600)
  outdoor_air_data['airloops_total_outdoor_air_natural_ventilation_flow_per_conditioned_floor_area_m3_per_s_m2'] = airloops_total_outdoor_air_natural_ventilation_m3 / (@conditioned_floor_area_m_sq * 365 * 24 * 3600)

  # Normalized mechanical/natural: normalized by exterior area
  outdoor_air_data['airloops_total_outdoor_air_mechanical_ventilation_flow_per_exterior_area_m3_per_s_m2'] = airloops_total_outdoor_air_mechanical_ventilation_m3 / (@btap_data['bldg_exterior_area_m_sq'] * 365 * 24 * 3600)
  outdoor_air_data['airloops_total_outdoor_air_natural_ventilation_flow_per_exterior_area_m3_per_s_m2'] = airloops_total_outdoor_air_natural_ventilation_m3 / (@btap_data['bldg_exterior_area_m_sq'] * 365 * 24 * 3600)

  #===============================================================================================================
  # Total outdoor air by zone
  total_outdoor_air_mechanical_ventilation_zones_m3 = 0.0
  model.getThermalZones.sort.each do |zone|
    zone_name = zone.name.get.upcase

    # Mechanical ventilation of all zones
    command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='OutdoorAirDetails'
             AND ReportForString='Entire Facility'
             AND TableName='Total Outdoor Air by Zone'
             AND RowName='#{zone_name}'
             AND ColumnName='Mechanical Ventilation'
             AND Units='m3'"
    zones_total_outdoor_air_mechanical_ventilation_m3 += @sqlite_file.get.execAndReturnFirstDouble(command).to_f

    # Natural ventilation of all zones
    command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='OutdoorAirDetails'
             AND ReportForString='Entire Facility'
             AND TableName='Total Outdoor Air by Zone'
             AND RowName='#{zone_name}'
             AND ColumnName='Natural Ventilation'
             AND Units='m3'"
    zones_total_outdoor_air_natural_ventilation_m3 += @sqlite_file.get.execAndReturnFirstDouble(command).to_f

    # Infiltration of all zones
    command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='OutdoorAirDetails'
             AND ReportForString='Entire Facility'
             AND TableName='Total Outdoor Air by Zone'
             AND RowName='#{zone_name}'
             AND ColumnName='Infiltration'
             AND Units='m3'"
    zones_total_outdoor_air_infiltration_m3 += @sqlite_file.get.execAndReturnFirstDouble(command).to_f

  end

  # Not-normalized mechanical/natural/infiltration.
  outdoor_air_data['zones_total_outdoor_air_mechanical_ventilation_m3'] = zones_total_outdoor_air_mechanical_ventilation_m3
  outdoor_air_data['zones_total_outdoor_air_natural_ventilation_m3'] = zones_total_outdoor_air_natural_ventilation_m3
  outdoor_air_data['zones_total_outdoor_air_infiltration_m3'] = zones_total_outdoor_air_infiltration_m3

  # Normalized mechanical/natural/infiltration: ACH (air changes per hour)
  outdoor_air_data['zones_total_outdoor_air_mechanical_ventilation_ach_1_per_hr'] = zones_total_outdoor_air_mechanical_ventilation_m3 / (@btap_data['bldg_volume_m_cu'] * 365 * 24)
  outdoor_air_data['zones_total_outdoor_air_natural_ventilation_ach_1_per_hr'] = zones_total_outdoor_air_natural_ventilation_m3 / (@btap_data['bldg_volume_m_cu'] * 365 * 24)
  outdoor_air_data['zones_total_outdoor_air_infiltration_ach_1_per_hr'] = zones_total_outdoor_air_infiltration_m3 / (@btap_data['bldg_volume_m_cu'] * 365 * 24)

  # Normalized mechanical/natural/infiltration: normalized by conditioned floor area
  outdoor_air_data['zones_total_outdoor_air_mechanical_ventilation_flow_per_conditioned_floor_area_m3_per_s_m2'] = zones_total_outdoor_air_mechanical_ventilation_m3 / (@conditioned_floor_area_m_sq * 365 * 24 * 3600)
  outdoor_air_data['zones_total_outdoor_air_natural_ventilation_flow_per_conditioned_floor_area_m3_per_s_m2'] = zones_total_outdoor_air_natural_ventilation_m3 / (@conditioned_floor_area_m_sq * 365 * 24 * 3600)
  outdoor_air_data['zones_total_outdoor_air_infiltration_flow_per_conditioned_floor_area_m3_per_s_m2'] = zones_total_outdoor_air_infiltration_m3 / (@conditioned_floor_area_m_sq * 365 * 24 * 3600)

  # Normalized mechanical/natural/infiltration: normalized by exterior area
  outdoor_air_data['zones_total_outdoor_air_mechanical_ventilation_flow_per_exterior_area_m3_per_s_m2'] = zones_total_outdoor_air_mechanical_ventilation_m3 / (@btap_data['bldg_exterior_area_m_sq'] * 365 * 24 * 3600)
  outdoor_air_data['zones_total_outdoor_air_natural_ventilation_flow_per_exterior_area_m3_per_s_m2'] = zones_total_outdoor_air_natural_ventilation_m3 / (@btap_data['bldg_exterior_area_m_sq'] * 365 * 24 * 3600)
  outdoor_air_data['zones_total_outdoor_air_infiltration_flow_per_exterior_area_m3_per_s_m2'] = zones_total_outdoor_air_infiltration_m3 / (@btap_data['bldg_exterior_area_m_sq'] * 365 * 24 * 3600)
  #===============================================================================================================

  return outdoor_air_data
end

#phius_performance_indicators(model) ⇒ Object

The below method calculates energy demands and peak loads calculations as per PHIUS and NECB; and compares them to see if NECB meets PHIUS’ performance criteria. References: (1) PHIUS 2021 Passive Building Standard Standard-Setting Documentation. Available at www.phius.org/phius-certification-for-buildings-products/project-certification/phius-2021-emissions-down-scale-up (2) Wright, L. (2019). Setting the Heating/Cooling Performance Criteria for the PHIUS 2018 Passive Building Standard. In ASHRAE Topical Conference Proceedings, pp. 399-409



2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 2004

def phius_performance_indicators(model)
  ### Envelope to Floor Area ratio (EnvFlr)
  ### Note: 'Floor Area' has been considered as iCFA (interior conditioned floor area) as per REF: Wright (2019)
  bldg_exterior_area_m_sq = @btap_data['bldg_exterior_area_m_sq']
  bldg_conditioned_floor_area_m_sq = @btap_data['bldg_conditioned_floor_area_m_sq']
  bldg_conditioned_floor_area_ft_sq = OpenStudio.convert(bldg_conditioned_floor_area_m_sq, 'm^2', 'ft^2').get
  envelope_to_floor_area_ratio = bldg_exterior_area_m_sq / bldg_conditioned_floor_area_m_sq

  ### UnitDens: Unit density (1/ft2) (inverse of the floor area per unit) in PHIUS, 2021
  # Note: if commercial buildings, set the number of units to 1 and divide by the floor area
  # This is the list of building types considered as some sort of residential buildings when the whole building method is used
  building_type_names_necb_2011 = ['Dormitory', 'Hospital', 'Hotel', 'Motel', 'Multi-unit residential', 'Penitentiary']
  building_type_names_necb_2015 = ['Dormitory', 'Health care clinic', 'Hospital', 'Hotel/Motel', 'Long-term care - dwelling units', 'Long-term care - other', 'Multi-unit residential building', 'Penitentiary']
  building_type_names_necb_2017 = ['Dormitory', 'Health care clinic', 'Hospital', 'Hotel/Motel', 'Long-term care - dwelling units', 'Long-term care - other', 'Multi-unit residential building', 'Penitentiary']
  building_type_names_list = building_type_names_necb_2011 + building_type_names_necb_2015 + building_type_names_necb_2017
  building_type_names_list = building_type_names_list.uniq
  # This is the list of space types considered as some sort of residential spaces when the space type method is used
  space_type_names_necb_2011 = ['Dormitory - living quarters', 'Dwelling Unit(s)', 'Hotel/Motel - rooms', 'Hway lodging - rooms']
  space_type_names_necb_2015 = ['Guest room', 'Dormitory living quarters', 'Dwelling units general', 'Dwelling units long-term', 'Fire station sleeping quarters', 'Health care facility patient room', 'Health care facility recovery room']
  space_type_names_necb_2017 = ['Guest room', 'Dormitory living quarters', 'Dwelling units general', 'Dwelling units long-term', 'Fire station sleeping quarters', 'Health care facility patient room', 'Health care facility recovery room']
  space_type_names_list = space_type_names_necb_2011 + space_type_names_necb_2015 + space_type_names_necb_2017
  space_type_names_list = space_type_names_list.uniq
  sum_handle = 0.0
  number_of_dwelling_units = 0.0
  @btap_data['space_table'].each do |space_info|
    building_type_name = space_info['building_type'].sub! 'building', ''
    building_type_name = building_type_name.strip unless building_type_name.nil?
    space_type_name = space_info['space_type_name']
    if !space_type_name.include?('WholeBuilding')
      # puts "This_is_the_space_type_method"
      space_type_name = space_info['space_type_name'].sub! 'Space Function ', '' # This removes 'Space Function' from space type name
      if space_type_names_list.include?(space_type_name)
        number_of_dwelling_units += 1.0 * space_info['multiplier']
        sum_handle += OpenStudio.convert(space_info['floor_area_m2'], 'm^2', 'ft^2').get * space_info['multiplier']
      end
    elsif space_type_name.include?('WholeBuilding') && building_type_names_list.include?(building_type_name) && space_info['is_conditioned'] == 'Yes'
      # puts "This_is_the_whole_building_method"
      number_of_dwelling_units += 1.0 * space_info['multiplier']
      sum_handle += OpenStudio.convert(space_info['floor_area_m2'], 'm^2', 'ft^2').get * space_info['multiplier']
    end
  end
  # Calculate what percentage of conditioned floor area has space types of the 'space_type_names_list' list.
  # This percentage is used to determine if most of a building model is sort of dwelling type or not.
  # The threshold for this percentage has been set to 60% based on the below reference:
  # GSA (2012), Circulation: Defining and planning, U.S. General Services Administration, Available at Https://Www.Gsa.Gov/
  # The above reference says: 'As a general planning rule of thumb, Circulation Area comprises roughly 25 to 40% of the total Usable Area.'
  # Moreover, ~63% and ~41% of the SmallHotel and LargeHotel archetype, respectively, are guest rooms. So, the threshold has been chosen as 40%.
  percentage_dwelling = 100.0 * sum_handle / bldg_conditioned_floor_area_ft_sq
  # now, calculate UnitDens depending on whether a building model is sort of dwelling type or not
  if percentage_dwelling >= 40.0 && number_of_dwelling_units > 0.0
    unit_density_per_ft_sq = 1.0 / (sum_handle / number_of_dwelling_units)
  else # i.e. if commercial buildings, set the number of units to 1 and divide by the floor area
    unit_density_per_ft_sq = 1.0 / bldg_conditioned_floor_area_ft_sq
  end

  ### Get weather file
  weather_file_path = model.weatherFile.get.path.get.to_s
  epw_file = model.weatherFile.get.file.get
  stat_file_path = weather_file_path.gsub('.epw', '.stat')
  stat_file = OpenstudioStandards::Weather::StatFile.new(stat_file_path)

  ### Cooling Degree Days, base 50degF
  cdd10_degree_c_days = stat_file.cdd10
  cdd50_degree_f_days = cdd10_degree_c_days * 9.0 / 5.0

  ### Heating Degree Days, base 65degF (note that base temperature of 18degC has been considered)
  hdd18_degree_c_days = stat_file.hdd18
  hdd65_degree_f_days = hdd18_degree_c_days * 9.0 / 5.0

  ### Dehumidification degree days
  ### ('Dehumidification degree-days, base 0.010' in REF: Wright (2019))
  dehumidification_degree_days = OpenstudioStandards::Weather.epw_file_get_dehumidification_degree_days(epw_file)

  ### annual global horizontal irradiance (GHI)

  # Workaround for case when the weather file contains the February from a leap year but that February only has 28
  # days of data.
  has_leap_day = false

  # Find the first day in February
  feb_index = epw_file.data.find_index { |entry| entry.date.monthOfYear.value == 2 }

  # Find the year for February
  feb_year = epw_file.data[feb_index].year
  # Determine if February's year is a leap year
  leap_year = false
  if (feb_year % 100) > 0
    leap_year = true if (feb_year % 4) == 0
  else
    leap_year = true if (feb_year % 400) == 0
  end
  # If the February is from a leap year determine if it contains a leap day
  if leap_year

    day = epw_file.data[feb_index].date.dayOfMonth
    inc = 0

    while epw_file.data[feb_index].date.dayOfMonth == day
      feb_index += 1
      inc       += 1
    end

    has_leap_day = epw_file.data[feb_index + (inc * 28)].date.dayOfMonth == 29
  end

  # If the February is from a leap year and there is no leap day then do not use the faulty OpenStudio Epw
  # .getTimeSeries method.  Otherwise, use the method.
  if has_leap_day || !leap_year
    ghi_timeseries = epw_file.getTimeSeries('Global Horizontal Radiation').get.values
  else
    # Access the data directly instead of using the OpenStudio API to avoid the faulty OpenStudioEpw
    # .getTimeSeries method.

    # Open the weather file
    regex_csv = /[^,]+/
    regex_num = /[0-9]/
    f         = File.open(epw_file.path.to_s, 'r')
    i         = 0

    # Skip the header
    i += 1 until f.readline[0] =~ regex_num

    # Get all of the hourly weather data
    lines         = IO.readlines(f)[i..-1]

    # Get hourly weather data for a specific column
    ghi_timeseries = lines.map {|line| Float(line.scan(regex_csv)[13])}
  end

  annual_ghi_kwh_per_m_sq = ghi_timeseries.sum / 1000.0

  ### THD-1 Temperature at the colder of the two heating design conditions in PHIUS, 2021
  ### ('Heating design temperature' in REF: Wright (2019))
  thd_degree_c = stat_file.heating_design_info[1]
  thd_degree_f = OpenStudio.convert(thd_degree_c, 'C', 'F').get

  ### TCD  Temperature at the cooling design condition in PHIUS, 2021
  ### ('Cooling design temperature' in REF: Wright (2019))
  tcd_degree_c = stat_file.cooling_design_info[2]
  tcd_degree_f = OpenStudio.convert(tcd_degree_c.to_f, 'C', 'F').get

  ### IGHL (Irradiance, Global, at the heating design condition) (Btu/h.ft2) in PHIUS, 2021
  average_daily_global_irradiance_w_per_m2_array = []
  model.getDesignDays.each do |design_day|
    next unless design_day.dayType == 'WinterDesignDay'

    average_daily_global_irradiance_w_per_m2 = OpenstudioStandards::Weather.design_day_average_global_irradiance(design_day)
    average_daily_global_irradiance_w_per_m2_array << average_daily_global_irradiance_w_per_m2
  end
  solar_irradiance_on_heating_design_day_w_per_m_sq = average_daily_global_irradiance_w_per_m2_array.min
  solar_irradiance_on_heating_design_day_btu_per_hr_ft_sq = OpenStudio.convert(solar_irradiance_on_heating_design_day_w_per_m_sq.to_f, 'W/m^2', 'Btu/ft^2*h').get

  ### IGCL (Irradiance, Global, at the cooling design condition) (Btu/h.ft2) in PHIUS, 2021
  average_daily_global_irradiance_w_per_m2_array = []
  model.getDesignDays.each do |design_day|
    next unless design_day.dayType == 'SummerDesignDay'

    average_daily_global_irradiance_w_per_m2 = OpenstudioStandards::Weather.design_day_average_global_irradiance(design_day)
    average_daily_global_irradiance_w_per_m2_array << average_daily_global_irradiance_w_per_m2
  end
  solar_irradiance_on_cooling_design_day_w_per_m_sq = average_daily_global_irradiance_w_per_m2_array.max
  solar_irradiance_on_cooling_design_day_btu_per_hr_ft_sq = OpenStudio.convert(solar_irradiance_on_cooling_design_day_w_per_m_sq.to_f, 'W/m^2', 'Btu/ft^2*h').get

  ### occupant density (persons per ft2 of floor area)
  sum_handle = 0.0
  @btap_data['space_type_table'].each do |space_info|
    unless space_info['occ_per_m_sq'].nil?
      sum_handle += space_info['floor_m_sq'] * space_info['occ_per_m_sq']
    end
  end
  occ_density_person_per_m_sq = sum_handle / bldg_conditioned_floor_area_m_sq
  occ_density_person_per_ft_sq = OpenStudio.convert(occ_density_person_per_m_sq, 'ft^2', 'm^2').get

  ### marginal electricity price ($/kWh)
  ### ('Electricity price' in REF: Wright (2019))
  electricity_price_per_gj = @btap_data['cost_utility_neb_electricity_cost_per_m_sq'] / @btap_data['energy_eui_electricity_gj_per_m_sq']
  electricity_price_per_kwh = OpenStudio.convert(electricity_price_per_gj, 'kWh', 'GJ').get # note: this is not GJ to kWh since 1/GJ should be converted to 1/kWh.

  ### Calculate annual heating and cooling energy demands based on PHIUS
  # REF: page 27 of PHIUS 2021 Passive Building Standard Standard-Setting Documentation. Available at https://www.phius.org/phius-certification-for-buildings-products/project-certification/phius-2021-emissions-down-scale-up
  annual_heating_demand_kbtu_per_ft_sq_phius = 3.2606827206 +
                                               1.1634499236 * envelope_to_floor_area_ratio +
                                               904.39163818 * unit_density_per_ft_sq +
                                               0.000604853 * hdd65_degree_f_days +
                                               -0.001645777 * annual_ghi_kwh_per_m_sq +
                                               -11.87299596 * electricity_price_per_kwh +
                                               (envelope_to_floor_area_ratio - 1.766) * (envelope_to_floor_area_ratio - 1.766) * 0.8314860529 +
                                               (envelope_to_floor_area_ratio - 1.766) * (hdd65_degree_f_days - 5860.0833333) * 0.0002310823 +
                                               (hdd65_degree_f_days - 5860.0833333) * (hdd65_degree_f_days - 5860.0833333) * -5.736435e-8 +
                                               (hdd65_degree_f_days - 5860.0833333) * (annual_ghi_kwh_per_m_sq - 1451.0633333) * -3.260379e-7 +
                                               (envelope_to_floor_area_ratio - 1.766) * (electricity_price_per_kwh - -0.2029193333) * -3.851052937 +
                                               (hdd65_degree_f_days - 5860.0833333) * (electricity_price_per_kwh - -0.2029193333) * -0.001897043
  annual_heating_demand_kwh_per_m_sq_phius = OpenStudio.convert(annual_heating_demand_kbtu_per_ft_sq_phius, 'kBtu/ft^2', 'kWh/m^2').get
  @btap_data.merge!('phius_annual_heating_demand_kwh_per_m_sq' => annual_heating_demand_kwh_per_m_sq_phius)

  # REF: page 28 of PHIUS 2021 Passive Building Standard Standard-Setting Documentation. Available at https://www.phius.org/phius-certification-for-buildings-products/project-certification/phius-2021-emissions-down-scale-up
  annual_cooling_demand_kbtu_per_ft_sq_phius = -6.510791255 +
                                               -0.749993351 * envelope_to_floor_area_ratio +
                                               0.0004550801 * cdd50_degree_f_days +
                                               0.004990109 * annual_ghi_kwh_per_m_sq +
                                               7.9460878688 * dehumidification_degree_days +
                                               (envelope_to_floor_area_ratio - 1.766) * (envelope_to_floor_area_ratio - 1.766) * 1.6367059356 +
                                               (cdd50_degree_f_days - 4104.8333333) * (cdd50_degree_f_days - 4104.8333333) * 8.6952014e-8 +
                                               (envelope_to_floor_area_ratio - 1.766) * (annual_ghi_kwh_per_m_sq - 1451.0633333) * 0.001671947 +
                                               (cdd50_degree_f_days - 4104.8333333) * (annual_ghi_kwh_per_m_sq - 1451.0633333) * 0.0000013639 +
                                               (unit_density_per_ft_sq - 0.0008646735) * (dehumidification_degree_days - 0.3233057481) * 5547.7542211 +
                                               (dehumidification_degree_days - 0.3233057481) * (electricity_price_per_kwh - 0.2029193333) * -15.67511944 +
                                               1624.6144639 * unit_density_per_ft_sq
  annual_cooling_demand_kwh_per_m_sq_phius = OpenStudio.convert(annual_cooling_demand_kbtu_per_ft_sq_phius, 'kBtu/ft^2', 'kWh/m^2').get
  @btap_data.merge!('phius_annual_cooling_demand_kwh_per_m_sq' => annual_cooling_demand_kwh_per_m_sq_phius)

  ### Calculate peak heating and cooling loads based on PHIUS
  # REF: page 29 of PHIUS 2021 Passive Building Standard Standard-Setting Documentation. Available at https://www.phius.org/phius-certification-for-buildings-products/project-certification/phius-2021-emissions-down-scale-up
  peak_heating_load_btu_per_hr_ft_sq_phius = 4.6700403241 +
                                             0.6774809481 * envelope_to_floor_area_ratio +
                                             239.08369574 * occ_density_person_per_ft_sq +
                                             596.681543 * unit_density_per_ft_sq +
                                             -0.000177742 * hdd65_degree_f_days +
                                             -0.076727655 * thd_degree_f +
                                             -0.03316804 * solar_irradiance_on_heating_design_day_btu_per_hr_ft_sq +
                                             -4.140193817 * electricity_price_per_kwh +
                                             (envelope_to_floor_area_ratio - 1.766) * (envelope_to_floor_area_ratio - 1.766) * 0.8449921713 +
                                             (hdd65_degree_f_days - 5860.0833333) * (hdd65_degree_f_days - 5860.0833333) * 2.8376386e-8 +
                                             (envelope_to_floor_area_ratio - 1.766) * (thd_degree_f - 14.7102) * -0.013821021 +
                                             (unit_density_per_ft_sq - 0.0008646735) * (thd_degree_f - 14.7102) * -20.10551451 +
                                             (hdd65_degree_f_days - 5860.0833333) * (thd_degree_f - 14.7102) * 5.1870203e-6 +
                                             (thd_degree_f - 14.7102) * (electricity_price_per_kwh - 0.2029193333) * 0.1264922802
  peak_heating_load_w_per_m_sq_phius = OpenStudio.convert(peak_heating_load_btu_per_hr_ft_sq_phius, 'Btu/ft^2*h', 'W/m^2').get
  @btap_data.merge!('phius_peak_heating_load_w_per_m_sq' => peak_heating_load_w_per_m_sq_phius)

  # REF: page 30 of PHIUS 2021 Passive Building Standard Standard-Setting Documentation. Available at https://www.phius.org/phius-certification-for-buildings-products/project-certification/phius-2021-emissions-down-scale-up
  peak_cooling_load_btu_per_hr_ft_sq_phius = -7.289806442 +
                                             98.245977611 * occ_density_person_per_ft_sq +
                                             236.93351876 * unit_density_per_ft_sq +
                                             0.0967328928 * tcd_degree_f +
                                             0.010777725 * solar_irradiance_on_cooling_design_day_btu_per_hr_ft_sq +
                                             (cdd50_degree_f_days - 4104.8333333) * (cdd50_degree_f_days - 4104.8333333) * 1.7699655e-8 +
                                             (cdd50_degree_f_days - 4104.8333333) * (tcd_degree_f - 78.127) * 6.5268802e-6 +
                                             (tcd_degree_f - 78.127) * (envelope_to_floor_area_ratio - 1.766) * 0.0165401721 +
                                             (tcd_degree_f - 78.127) * (occ_density_person_per_ft_sq - 0.0027218) * 8.0465528305 +
                                             (cdd50_degree_f_days - 4104.8333333) * (envelope_to_floor_area_ratio - 1.766) * 0.0000322288 +
                                             (envelope_to_floor_area_ratio - 1.766) * (envelope_to_floor_area_ratio - 1.766) * 0.6579032913
  peak_cooling_load_w_per_m_sq_phius = OpenStudio.convert(peak_cooling_load_btu_per_hr_ft_sq_phius, 'Btu/ft^2*h', 'W/m^2').get
  @btap_data.merge!('phius_peak_cooling_load_w_per_m_sq' => peak_cooling_load_w_per_m_sq_phius)

  ### Gather annual heating and cooling energy demands based on NECB

  annual_heating_demand_kwh_per_m_sq_necb = OpenStudio.convert(@btap_data['energy_eui_heating_gj_per_m_sq'], 'GJ', 'kWh') unless @btap_data['energy_eui_heating_gj_per_m_sq'].nil?
  annual_cooling_demand_kwh_per_m_sq_necb = OpenStudio.convert(@btap_data['energy_eui_cooling_gj_per_m_sq'], 'GJ', 'kWh') unless @btap_data['energy_eui_cooling_gj_per_m_sq'].nil?

  ### Gather peak heating and cooling loads based on NECB
  peak_heating_load_w_per_m_sq_necb = @btap_data['heating_peak_w_per_m_sq']
  peak_cooling_load_w_per_m_sq_necb = @btap_data['cooling_peak_w_per_m_sq']
  @btap_data.merge!('peak_heating_load_w_per_m_sq_necb' => peak_heating_load_w_per_m_sq_necb)
  @btap_data.merge!('peak_cooling_load_w_per_m_sq_necb' => peak_cooling_load_w_per_m_sq_necb)

  ### Compare annual heating and cooling energy demands of NECB with PHIUS to see if NECB meets PHIUS
  if annual_heating_demand_kwh_per_m_sq_necb.to_f <= annual_heating_demand_kwh_per_m_sq_phius.to_f
    @btap_data.merge!('phius_necb_meet_heating_demand' => 'True')
  else
    @btap_data.merge!('phius_necb_meet_heating_demand' => 'False')
  end
  if annual_cooling_demand_kwh_per_m_sq_necb.to_f <= annual_cooling_demand_kwh_per_m_sq_phius.to_f
    @btap_data.merge!('phius_necb_meet_cooling_demand' => 'True')
  else
    @btap_data.merge!('phius_necb_meet_cooling_demand' => 'False')
  end

  ### Compare peak heating and cooling loads of NECB with PHIUS to see if NECB meets PHIUS
  if peak_heating_load_w_per_m_sq_necb.to_f <= peak_heating_load_w_per_m_sq_phius.to_f
    @btap_data.merge!('phius_necb_meet_heating_peak_load' => 'True')
  else
    @btap_data.merge!('phius_necb_meet_heating_peak_load' => 'False')
  end
  if peak_cooling_load_w_per_m_sq_necb.to_f <= peak_cooling_load_w_per_m_sq_phius.to_f
    @btap_data.merge!('phius_necb_meet_cooling_peak_load' => 'True')
  else
    @btap_data.merge!('phius_necb_meet_cooling_peak_load' => 'False')
  end
  # def phius_metrics(model)
end

#plant_loop_table(model) ⇒ Object



1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1183

def plant_loop_table(model)
  table = []
  model.getPlantLoops.sort.each do |plant_loop|
    plant_loop_info = {}
    table << plant_loop_info
    plant_loop_info['name'] = plant_loop.name.get

    sizing = plant_loop.sizingPlant
    plant_loop_info['design_loop_exit_temperature'] = sizing.getDesignLoopExitTemperature.value
    plant_loop_info['loop_design_temperature_difference'] = sizing.getLoopDesignTemperatureDifference.value

    # Create Container for plant equipment arrays.
    plant_loop_info['pumps'] = []
    plant_loop_info['boilers'] = []
    plant_loop_info['chiller_electric_eir'] = []
    plant_loop_info['cooling_tower_single_speed'] = []
    plant_loop_info['water_heater_mixed'] = []
    plant_loop.supplyComponents.each do |supply_comp|
      # Collect Constant Speed
      if supply_comp.to_PumpConstantSpeed.is_initialized
        pump = supply_comp.to_PumpConstantSpeed.get
        pump_info = {}
        plant_loop_info['pumps'] << pump_info
        pump_info['name'] = pump.name.get
        pump_info['type'] = 'Pump:ConstantSpeed'
        sql_command = " SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Pumps'
                        AND ColumnName='Head'
                        AND RowName='#{pump_info['name'].upcase}' "
        pump_info['head_pa'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        sql_command = " SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Pumps'
                        AND ColumnName='Water Flow'
                        AND RowName='#{pump_info['name'].upcase}' "
        pump_info['water_flow_m_cu_per_s'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        sql_command = " SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Pumps'
                        AND ColumnName='Electric Power'
                        AND RowName='#{pump_info['name'].upcase}' "
        pump_info['electric_power_w'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        pump_info['motor_efficency'] = pump.getMotorEfficiency.value
      end

      # Collect Variable Speed
      if supply_comp.to_PumpVariableSpeed.is_initialized
        pump = supply_comp.to_PumpVariableSpeed.get
        pump_info = {}
        plant_loop_info['pumps'] << pump_info
        pump_info['name'] = pump.name.get
        pump_info['type'] = 'Pump:VariableSpeed'
        sql_command = " SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Pumps'
                        AND ColumnName='Head'
                        AND RowName='#{pump_info['name'].upcase}' "
        pump_info['head_pa'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        sql_command = " SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Pumps'
                        AND ColumnName='Water Flow'
                        AND RowName='#{pump_info['name'].upcase}' "
        pump_info['water_flow_m_cu_per_s'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        sql_command = " SELECT Value FROM TabularDataWithStrings
                        WHERE ReportName='EquipmentSummary'
                        AND ReportForString='Entire Facility'
                        AND TableName='Pumps'
                        AND ColumnName='Electric Power'
                        AND RowName='#{pump_info['name'].upcase}' "
        pump_info['electric_power_w'] = validate_optional(model.sqlFile.get.execAndReturnFirstDouble(sql_command), model, -1.0)
        pump_info['motor_efficency'] = pump.getMotorEfficiency.value
      end

      # Collect HotWaterBoilers
      if supply_comp.to_BoilerHotWater.is_initialized
        boiler = supply_comp.to_BoilerHotWater.get
        boiler_info = {}
        plant_loop_info['boilers'] << boiler_info
        boiler_info['name'] = boiler.name.get
        boiler_info['type'] = 'Boiler:HotWater'
        boiler_info['fueltype'] = boiler.fuelType
        boiler_info['nominal_capacity'] = validate_optional(boiler.nominalCapacity, model, -1.0)
      end

      # Collect ChillerElectricEIR
      if supply_comp.to_ChillerElectricEIR.is_initialized
        chiller = supply_comp.to_ChillerElectricEIR.get
        chiller_info = {}
        plant_loop_info['chiller_electric_eir'] << chiller_info
        chiller_info['name'] = chiller.name.get
        chiller_info['type'] = 'Chiller:Electric:EIR'
        chiller_info['reference_capacity'] = validate_optional(chiller.referenceCapacity, model, -1.0)
        chiller_info['reference_leaving_chilled_water_temperature'] = chiller.referenceLeavingChilledWaterTemperature
      end

      # Collect CoolingTowerSingleSpeed
      if supply_comp.to_CoolingTowerSingleSpeed.is_initialized
        coolingTower = supply_comp.to_CoolingTowerSingleSpeed.get
        coolingTower_info = {}
        plant_loop_info['cooling_tower_single_speed'] << coolingTower_info
        coolingTower_info['name'] = coolingTower.name.get
        coolingTower_info['type'] = 'CoolingTower:SingleSpeed'
        coolingTower_info['fan_power_at_design_air_flow_rate'] = validate_optional(coolingTower.fanPoweratDesignAirFlowRate, model, -1.0)
      end

      # Collect WaterHeaterMixed
      if supply_comp.to_WaterHeaterMixed.is_initialized
        waterHeaterMixed = supply_comp.to_WaterHeaterMixed.get
        waterHeaterMixed_info = {}
        plant_loop_info['water_heater_mixed'] << waterHeaterMixed_info
        waterHeaterMixed_info['name'] = waterHeaterMixed.name.get
        waterHeaterMixed_info['type'] = 'WaterHeater:Mixed'
        waterHeaterMixed_info['heater_thermal_efficiency'] = waterHeaterMixed.heaterThermalEfficiency.get unless waterHeaterMixed.heaterThermalEfficiency.empty?
        waterHeaterMixed_info['heater_fuel_type'] = waterHeaterMixed.heaterFuelType
      end
    end
  end
  return table
end

#service_water_heating_dataObject



1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1499

def service_water_heating_data
  service_water_heating = {}
  service_water_heating['shw_total_nominal_occupancy'] = -1
  # service_water_heating["total_nominal_occupancy"][email protected]().get().execAndReturnVectorOfDouble("SELECT Value FROM TabularDataWithStrings WHERE ReportName='OutdoorAirSummary' AND ReportForString='Entire Facility' AND TableName='Average Outdoor Air During Occupied Hours' AND ColumnName='Nominal Number of Occupants'").get.inject(0, :+)
  service_water_heating['shw_total_nominal_occupancy'] = get_total_nominal_capacity(@model)

  service_water_heating['shw_electricity_per_year'] = @model.sqlFile.get.execAndReturnFirstDouble("SELECT Value FROM TabularDataWithStrings WHERE ReportName='AnnualBuildingUtilityPerformanceSummary' AND ReportForString='Entire Facility' AND TableName='End Uses' AND ColumnName='Electricity' AND RowName='Water Systems'")
  service_water_heating['shw_electricity_per_year'] = validate_optional(service_water_heating['shw_electricity_per_year'], @model, -1)

  service_water_heating['shw_electricity_per_day'] = service_water_heating['shw_electricity_per_year'] / 365.5
  service_water_heating['shw_electricity_per_day_per_occupant'] = service_water_heating['shw_electricity_per_day'] / service_water_heating['shw_total_nominal_occupancy']

  service_water_heating['shw_natural_gas_per_year'] = @model.sqlFile.get.execAndReturnFirstDouble("SELECT Value FROM TabularDataWithStrings WHERE ReportName='AnnualBuildingUtilityPerformanceSummary' AND ReportForString='Entire Facility' AND TableName='End Uses' AND ColumnName='Natural Gas' AND RowName='Water Systems'")
  service_water_heating['shw_natural_gas_per_year'] = validate_optional(service_water_heating['shw_natural_gas_per_year'], @model, -1)

  service_water_heating['shw_additional_fuel_per_year'] = @model.sqlFile.get.execAndReturnFirstDouble("SELECT Value FROM TabularDataWithStrings WHERE ReportName='AnnualBuildingUtilityPerformanceSummary' AND ReportForString='Entire Facility' AND TableName='End Uses' AND ColumnName='Additional Fuel' AND RowName='Water Systems'")
  service_water_heating['shw_additional_fuel_per_year'] = validate_optional(service_water_heating['shw_additional_fuel_per_year'], @model, -1)

  service_water_heating['shw_water_m_cu_per_year'] = @model.sqlFile.get.execAndReturnFirstDouble("SELECT Value FROM TabularDataWithStrings WHERE ReportName='AnnualBuildingUtilityPerformanceSummary' AND ReportForString='Entire Facility' AND TableName='End Uses' AND ColumnName='Water' AND RowName='Water Systems'")
  service_water_heating['shw_water_m_cu_per_year'] = validate_optional(service_water_heating['shw_water_m_cu_per_year'], @model, -1)

  service_water_heating['shw_water_m_cu_per_day'] = service_water_heating['shw_water_m_cu_per_year'] / 365.5
  service_water_heating['shw_water_m_cu_per_day_per_occupant'] = service_water_heating['shw_water_m_cu_per_day'] / service_water_heating['shw_total_nominal_occupancy']
  return service_water_heating
end

#set_sql_file(file) ⇒ Object



1849
1850
1851
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1849

def set_sql_file(file)
  @sqlite_file = file
end

#space_table(model, cost_result) ⇒ Object



452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 452

def space_table(model, cost_result)
  # Store Space data.
  table = []
  model.getSpaces.sort.each do |space|
    spaceinfo = {}
    table << spaceinfo
    spaceinfo['thermal_zone_name'] = space.thermalZone.empty? ? 'None' : space.thermalZone.get.name.get # should be assigned a thermalzone name.
    spaceinfo['space_name'] = space.name.get # name should be defined test
    spaceinfo['multiplier'] = space.multiplier
    spaceinfo['volume'] = space.volume # should be greater than zero
    spaceinfo['exterior_wall_area'] = space.exteriorWallArea # just for information.
    spaceinfo['space_type_name'] = space.spaceType.get.name.get unless space.spaceType.empty? # should have a space types name defined.
    spaceinfo['breathing_zone_outdoor_airflow_vbz'] = -1
    spaceinfo['infiltration_flow_per_m_sq'] = space.infiltrationDesignFlowPerExteriorSurfaceArea
    spaceinfo['floor_area_m2'] = space.floorArea
    spaceinfo['building_type'] = space.spaceType.get.standardsBuildingType.empty? ? 'None' : space.spaceType.get.standardsBuildingType.get
    spaceinfo['is_conditioned'] = space.thermalZone.get.isConditioned.get unless space.thermalZone.empty? or space.thermalZone.get.isConditioned.empty?
    # shw
    spaceinfo['shw_peak_flow_rate_m_cu_per_s'] = 0
    spaceinfo['shw_peak_flow_rate_per_floor_area_m_cu_per_s_per_m_sq'] = 0
    space.waterUseEquipment.each do |equipment|
      spaceinfo['shw_peak_flow_rate_m_cu_per_s'] += equipment.waterUseEquipmentDefinition.peakFlowRate
      spaceinfo['shw_peak_flow_rate_per_floor_area_m_cu_per_s_per_m_sq'] += equipment.waterUseEquipmentDefinition.peakFlowRate / space.floorArea
      area_per_occ = space.spaceType.get.getFloorAreaPerPerson(space.floorArea)
      #                             Watt per person =             m_cu/s/m_cu                * 1000W/kW * (specific heat * dT) * m_sq/person
      spaceinfo['shw_watts_per_person'] = spaceinfo['shw_peak_flow_rate_per_floor_area_m_cu_per_s_per_m_sq'] * 1000 * (4.19 * 44.4) * 1000 * area_per_occ
    end
    unless cost_result.nil?
      # Including space level lighting costs in the existing space table...
      spaceLgtInfo = cost_result['lighting']['space_report'].detect { |curr_spaceLgtInfo| curr_spaceLgtInfo['zone'].downcase == spaceinfo['thermal_zone_name'].downcase }
      raise("Could not find zone name \"#{spaceinfo['thermal_zone_name']}\" in lighting space_report") if spaceLgtInfo.nil?

      spaceinfo['space_type'] = spaceLgtInfo['space_type']
      spaceinfo['fixture_type'] = spaceLgtInfo['fixture_type']
      # Note spelling mistake of "description" in cost_result hash fixed below in copy
      spaceinfo['fixture_description'] = spaceLgtInfo['fixture_desciption']
      spaceinfo['height_avg_ft'] = spaceLgtInfo['height_avg_ft']
      spaceinfo['floor_area_ft2'] = spaceLgtInfo['floor_area_ft2']
      spaceinfo['lighting_cost'] = spaceLgtInfo['cost']
      spaceinfo['lighting_cost_per_ft2'] = spaceLgtInfo['cost_per_ft2']
      spaceinfo['lighting_note'] = spaceLgtInfo['note']
    end
  end
  table.sort_by! { |spaceinfo| [spaceinfo['thermal_zone_name'], spaceinfo['space_name']] }
  return table
end

#space_type_table(model) ⇒ Object



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 601

def space_type_table(model)
  table = []
  model.getSpaceTypes.sort.each do |spaceType|
    next if spaceType.floorArea == 0

    # data for space type breakdown
    display = spaceType.name.get
    floor_area_si = 0
    # loop through spaces so I can skip if not included in floor area
    spaceType.spaces.sort.each do |space|
      next if !space.partofTotalFloorArea

      floor_area_si += space.floorArea * space.multiplier
    end
    space_type_info = {}
    space_type_info['name'] = spaceType.name.get
    space_type_info['floor_m_sq'] = floor_area_si
    space_type_info['percent_area'] = (floor_area_si / @conditioned_floor_area_m_sq * 100.0).round(2)
    space_type_info['occ_per_m_sq'] = !spaceType.peoplePerFloorArea.empty? ? spaceType.peoplePerFloorArea.get : nil
    space_type_info['occ_schedule'] = !spaceType.defaultScheduleSet.empty? && !spaceType.defaultScheduleSet.get.numberofPeopleSchedule.empty? ? spaceType.defaultScheduleSet.get.numberofPeopleSchedule.get.name.get : nil
    space_type_info['lighting_w_per_m_sq'] = !spaceType.lightingPowerPerFloorArea.empty? ? spaceType.lightingPowerPerFloorArea.get : nil
    space_type_info['electric_w_per_m_sq'] = !spaceType.electricEquipmentPowerPerFloorArea.empty? ? spaceType.electricEquipmentPowerPerFloorArea.get : nil
    space_type_info['gas_w_per_m_sq'] = !spaceType.gasEquipmentPowerPerFloorArea.empty? ? spaceType.gasEquipmentPowerPerFloorArea.get : nil
    table << space_type_info
  end
  return table
end

#sql_data_tables(model) ⇒ Object



1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1645

def sql_data_tables(model)
  puts 'Getting SQL Data into json...'
  start = Time.now
  sql_data = []

  [
    ['AnnualBuildingUtilityPerformanceSummary', 'Entire Facility', 'End Uses']
    # ["AnnualBuildingUtilityPerformanceSummary", "Entire Facility", "Site and Source Energy"],
    # ["AnnualBuildingUtilityPerformanceSummary", "Entire Facility", "On-Site Thermal Sources"],
    # ["AnnualBuildingUtilityPerformanceSummary", "Entire Facility", "Comfort and Setpoint Not Met Summary"],
    # ["InputVerificationandResultsSummary", "Entire Facility", "Window-Wall Ratio"],
    # ["InputVerificationandResultsSummary", "Entire Facility", "Conditioned Window-Wall Ratio"],
    # ["InputVerificationandResultsSummary", "Entire Facility", "Skylight-Roof Ratio"],
    # ["DemandEndUseComponentsSummary", "Entire Facility", "End Uses"],
    # ["ComponentSizingSummary", "Entire Facility", "AirLoopHVAC"],
    # ["EnergyMeters", "Entire Facility", 'Annual and Peak Values - Natural Gas'],
    # ["EnergyMeters", "Entire Facility", 'Annual and Peak Values - Electricity'],
    # ["EnergyMeters", "Entire Facility", 'Annual and Peak Values - FuelOilNo2'],
    # ["EnergyMeters", "Entire Facility", 'Annual and Peak Values - Other'],
    # ["LEEDsummary", "Entire Facility", "EAp2-7. Energy Cost Summary"],
    # ["Standard62.1Summary", "Entire Facility", "Zone Ventilation Parameters"],
    # ["EquipmentSummary", "Entire Facility", "Fans"],
    # ["EquipmentSummary", "Entire Facility", "Heating Coils"],
    # ["EquipmentSummary", "Entire Facility", "Cooling Coils"],
    # ["EquipmentSummary", "Entire Facility", "Pumps"],
    # ["CoilSizingDetails", "Entire Facility", "Coils"] # Do not use! Takes very long to parse.
  ].each do |table|
    start = Time.now
    puts "Parsing #{table[0]}-#{table[1]}-#{table[2]}"
    sql_data << get_sql_table_to_json(model, table[0], table[1], table[2])
    finish = Time.now
    puts "....finish parsing in #{finish - start} seconds and stored in sql_data_tables hash."
  end
end

#terminal_VAV_cost_table(cost_result) ⇒ Object



1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1119

def terminal_VAV_cost_table(cost_result)
  terminal_VAV_table = []
  (1..7).each do |sysNum|
    ndx = 0
    until cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx].nil?
      ndx1 = 0
      until cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1].nil?
        sysTerminalInfo = {}
        terminal_VAV_table << sysTerminalInfo
        sysTerminalInfo[:sys_type] = sysNum
        sysTerminalInfo[:sys_name] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:name]
        sysTerminalInfo[:terminal] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:terminal]
        sysTerminalInfo[:zone_mult] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:zone_mult]
        sysTerminalInfo[:box_type] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:box_type]
        sysTerminalInfo[:box_name] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:box_name]
        sysTerminalInfo[:unit_size_kw] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:unit_info][:size_kw]
        sysTerminalInfo[:unit_air_flow_m3_per_s] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:unit_info][:air_flow_m3_per_s]
        sysTerminalInfo[:unit_pipe_dist_m] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:unit_info][:pipe_dist_m]
        sysTerminalInfo[:unit_elect_dist_m] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:unit_info][:elect_dist_m]
        sysTerminalInfo[:unit_num_units] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:unit_info][:num_units]
        sysTerminalInfo[:cost] = cost_result['ventilation']["system_#{sysNum}".to_s.to_sym][ndx][:reheat_recool][ndx1][:cost]
        ndx1 += 1
      end
      ndx += 1
    end
  end
  return terminal_VAV_table
end

#thermal_zones_equipment_table(model) ⇒ Object



714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 714

def thermal_zones_equipment_table(model)
  # Store Thermal zone data
  table = []
  model.getThermalZones.sort.each do |zone|
    zone.equipmentInHeatingOrder.each do |equipment|
      item = {}
      item['air_loop_name'] = nil
      model.getAirLoopHVACs.sort.each do |air_loop|
        if air_loop.thermalZones.include?(zone)
          item['air_loop_name'] = air_loop.name.empty? ? 'None' : air_loop.name.get
        else
          item['air_loop_name'] =  'None'
        end
      end
      item['thermal_zone_name'] = zone.name.empty? ? 'None' : zone.name.get
      item['zone_equipment_name'] = equipment.name.empty? ? 'None' : equipment.name.get
      item['type'] = get_actual_child_object(equipment).class.name
      table << item
    end
  end

  table.sort_by! { |item| [item['air_loop_name'], item['thermal_zone_name'], item['zone_equipment_name']] }
  return table
end

#thermal_zones_table(model, cost_result) ⇒ Object



629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 629

def thermal_zones_table(model, cost_result)
  # Get E+ zone table.
  zones = @model.getThermalZones
  # get surface table from sql
  table = get_sql_table_to_json(@model, 'InputVerificationandResultsSummary', 'Entire Facility', 'Zone Summary')
  # Get rid of totals and averages.
  table['table'].delete_if { |row| !!(row['name'] =~ /Total|Average/) }
  raise('Could not get zone table from E+ sql') if table.empty?

  # Go through zone objects
  zones.each do |zone|
    # get E+ zone row
    row = table['table'].detect { |curr_row| zone.name.get.downcase == curr_row['name'].downcase }
    raise("Could not find zone  #{row['name']} in #{zones.map { |curr_zone| curr_zone.name.get }}") if row.nil?

    row['is_ideal_air_loads'] = zone.useIdealAirLoads
    row['heating_sizing_factor'] = zone.sizingZone.zoneHeatingSizingFactor.empty? ? -1.0 : zone.sizingZone.zoneHeatingSizingFactor.get
    row['cooling_sizing_factor'] = zone.sizingZone.zoneCoolingSizingFactor.empty? ? -1.0 : zone.sizingZone.zoneCoolingSizingFactor.get
    row['zone_heating_design_supply_air_temperature'] = zone.sizingZone.zoneHeatingDesignSupplyAirTemperature
    row['zone_cooling_design_supply_air_temperature'] = zone.sizingZone.zoneCoolingDesignSupplyAirTemperature
    # Get Air loop that it is connected to if possible
    row['air_loop_name'] = nil
    model.getAirLoopHVACs.sort.each do |air_loop|
      row['air_loop_name'] = air_loop.name.get if air_loop.thermalZones.include?(zone)
    end
    # Get Breathing zone outdoor air flow.
    sql_command = "
      SELECT Value FROM TabularDataWithStrings
      WHERE ReportName='Standard62.1Summary'
      AND ReportForString='Entire Facility'
      AND TableName='Zone Ventilation Parameters'
      AND ColumnName='Breathing Zone Outdoor Airflow - Vbz'
      AND Units='m3/s'
      AND RowName='#{row['name']}'
    "
    breathing_zone_outdoor_airflow_vbz = model.sqlFile.get.execAndReturnFirstDouble(sql_command)
    row['breathing_zone_outdoor_airflow_vbz'] = breathing_zone_outdoor_airflow_vbz.empty? ? nil : breathing_zone_outdoor_airflow_vbz.get

    if zone.useIdealAirLoads == false
      # Including ventilation tz_distribution cost data into zone_table
      zoneName = row['name'].downcase
      storyHash = cost_result['ventilation']['tz_distribution'.to_sym][0].detect { |currstoryHash| zoneName.include?(currstoryHash[:Story].to_s.downcase) }
      if storyHash
        tzHash = storyHash[:thermal_zones].detect { |currtzHash| zoneName == currtzHash[:ThermalZone].to_s.downcase && tzHash[:ducting_direction].to_s.downcase == 'supply' }
        if tzHash
          row['ducting_direction'] = tzHash[:ducting_direction]
          row['tz_mult'] = tzHash[:tz_mult]
          row['airflow_m3ps'] = tzHash[:airflow_m3ps]
          row['num_diff'] = tzHash[:num_diff]
          row['ducting_lbs'] = tzHash[:ducting_lbs]
          row['duct_insulation_ft2'] = tzHash[:duct_insulation_ft2]
          row['flex_duct_sz_in'] = tzHash[:flex_duct_sz_in]
          row['flex_duct_length_ft'] = tzHash[:flex_duct_length_ft]
          row['duct_cost'] = tzHash[:cost]
          # Check if there is a return duct hash and, if so, modify ducting direction & cost to include
          # Return duct. Note that all other return duct costing values are identical to Supply duct
          tzHash1 = storyHash[:thermal_zones].detect { |currtzHash1| zoneName == currtzHash1[:ThermalZone].to_s.downcase && currtzHash1[:ducting_direction].to_s.downcase == 'return' }
          if !tzHash1.nil?
            row['ducting_direction'] = 'Supply & Return'
            row['duct_cost'] += tzHash1[:cost]
          end
        end
      end

      # Including thermal zone HRV return ducting distribution cost information
      floorHash = cost_result['ventilation']['hrv_return_ducting'.to_sym].detect { |currfloorHash| zoneName.include?(currfloorHash[:floor].to_s.downcase) }
      if floorHash
        airSysArr = floorHash[:air_systems].select { |airSys| airSys[:air_system].to_s.downcase == row['air_loop_name'].downcase }
        if !airSysArr.empty?
          airSysArr.each do |airSysHash|
            airSys_tz_hash = airSysHash[:tz_dist].detect { |curr_airSys_tz_hash| curr_airSys_tz_hash[:tz].to_s.downcase == zoneName }
            if airSys_tz_hash
              row['hrv_ret_dist_m'] = airSys_tz_hash[:hrv_ret_dist_m]
              row['hrv_ret_size_in'] = airSys_tz_hash[:hrv_ret_size_in]
              row['hrv_ret_duct_cost'] = airSys_tz_hash[:cost]
            end
          end
        end
      end
    end
  end

  return table
end

#trunk_ducts_cost_table(cost_result) ⇒ Object



1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1148

def trunk_ducts_cost_table(cost_result)
  # Create a trunk ducts cost table that combines the building trunk duct with the floor trunk ducts
  trunk_ducts_table = []
  ndx = 0
  insert_bld_trunk_duct = true
  until cost_result['ventilation']['floor_trunk_ducts'.to_sym][0][ndx].nil?
    if insert_bld_trunk_duct
      trunkDuctsInfo = {}
      trunk_ducts_table << trunkDuctsInfo
      trunkDuctsInfo[:Floor] = 'building_trunk'
      trunkDuctsInfo[:Predominant_space_type] = 'n/a'
      trunkDuctsInfo[:SupplyDuctSize_in] = cost_result['ventilation']['trunk_duct'.to_sym][ndx][:DuctSize_in]
      trunkDuctsInfo[:SupplyDuctLength_m] = cost_result['ventilation']['trunk_duct'.to_sym][ndx][:DuctLength_m]
      if cost_result['ventilation']['trunk_duct'.to_sym][ndx][:NumberRuns] == 2
        trunkDuctsInfo[:ReturnDuctSize_in] = cost_result['ventilation']['trunk_duct'.to_sym][ndx][:DuctSize_in]
        trunkDuctsInfo[:ReturnDuctLength_m] = cost_result['ventilation']['trunk_duct'.to_sym][ndx][:DuctLength_m]
      else
        trunkDuctsInfo[:ReturnDuctSize_in] = 0
        trunkDuctsInfo[:ReturnDuctLength_m] = 0
      end
      trunkDuctsInfo[:TotalDuctCost] = cost_result['ventilation']['trunk_duct'.to_sym][ndx][:DuctCost]
      trunkDuctsInfo[:Multiplier] = 1.0
      insert_bld_trunk_duct = false
    else
      trunkDuctsInfo = {}
      trunk_ducts_table << trunkDuctsInfo
      cost_result['ventilation']['floor_trunk_ducts'.to_sym][0][ndx].each do |k, v|
        trunkDuctsInfo[k] = v
      end
      ndx += 1
    end
  end
  return trunk_ducts_table
end

#unmet_hours(model) ⇒ Object



1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1473

def unmet_hours(model)
  # Store unmet hour data
  unmet_hours = {}
  unmet_hours['unmet_hours_cooling'] = model.getFacility.hoursCoolingSetpointNotMet.get unless model.getFacility.hoursCoolingSetpointNotMet.empty?
  unmet_hours['unmet_hours_heating'] = model.getFacility.hoursHeatingSetpointNotMet.get unless model.getFacility.hoursHeatingSetpointNotMet.empty?
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='AnnualBuildingUtilityPerformanceSummary'
             AND ReportForString='Entire Facility'
             AND TableName='Comfort and Setpoint Not Met Summary'
             AND RowName='Time Setpoint Not Met During Occupied Cooling'
             AND ColumnName='Facility'
             AND Units='Hours'"
  unmet_hours['unmet_hours_cooling_during_occupied'] = @sqlite_file.get.execAndReturnFirstDouble(command).to_f
  command = "SELECT Value
             FROM TabularDataWithStrings
             WHERE ReportName='AnnualBuildingUtilityPerformanceSummary'
             AND ReportForString='Entire Facility'
             AND TableName='Comfort and Setpoint Not Met Summary'
             AND RowName='Time Setpoint Not Met During Occupied Heating'
             AND ColumnName='Facility'
             AND Units='Hours'"
  unmet_hours['unmet_hours_heating_during_occupied'] = @sqlite_file.get.execAndReturnFirstDouble(command).to_f
  return unmet_hours
end

#utility(model) ⇒ Object



518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 518

def utility(model)
  economics_data = {}
  building_type = 'Commercial'
  province = @standards_data['province_map'][model.getWeatherFile.stateProvinceRegion]
  neb_eplus_fuel_map = {'Natural Gas' => {eplus_fuel_name: 'NaturalGas',
                                          eplus_table_name: 'Annual and Peak Values - Natural Gas',
                                          eplus_row_name: 'NaturalGas:Facility',
                                          eplus_column_name: 'Natural Gas Annual Value'},
                        'Electricity' => {eplus_fuel_name: 'Electricity',
                                          eplus_table_name: 'Annual and Peak Values - Electricity',
                                          eplus_row_name: 'Electricity:Facility',
                                          eplus_column_name: 'Electricity Annual Value'},
                        'Oil' => {eplus_fuel_name: 'FuelOilNo2',
                                  eplus_table_name: 'Annual and Peak Values - Other',
                                  eplus_row_name: 'FuelOilNo2:Facility',
                                  eplus_column_name: 'Annual Value'}
                        }
  economics_data['cost_utility_neb_total_cost_per_m_sq'] = 0.0
  economics_data['cost_utility_ghg_total_kg_per_m_sq'] = 0.0
  # Create a hash of the neb data.
  neb_data = CSV.parse(File.read(@neb_prices_csv_file_name), headers: true, converters: :numeric).map(&:to_h)

  neb_eplus_fuel_map.each do |neb_fuel, ep_fuel|
    row = neb_data.detect do |data|
      (data['building_type'] == building_type) &&
        (data['province'] == province) &&
        (data['fuel_type'] == neb_fuel)
    end
    neb_fuel_cost = row['2021']
    fuel_consumption_gj = 0.0
    sql_command = "SELECT Value FROM tabulardatawithstrings
                   WHERE ReportName='EnergyMeters'
                   AND ReportForString='Entire Facility'
                   AND TableName='#{ep_fuel[:eplus_table_name]}'
                   AND RowName='#{ep_fuel[:eplus_row_name]}'
                   AND ColumnName='#{ep_fuel[:eplus_column_name]}'
                   AND Units='GJ'"
    fuel_consumption_gj = model.sqlFile.get.execAndReturnFirstDouble(sql_command).is_initialized ? model.sqlFile.get.execAndReturnFirstDouble(sql_command).get : 0.0

    # Determine costs in $$
    economics_data["cost_utility_neb_#{neb_fuel.downcase}_cost_per_m_sq"] = fuel_consumption_gj * neb_fuel_cost.to_f / @conditioned_floor_area_m_sq
    economics_data['cost_utility_neb_total_cost_per_m_sq'] += economics_data["cost_utility_neb_#{neb_fuel.downcase}_cost_per_m_sq"]
    # Determine cost in GHG kg of CO2
    economics_data["cost_utility_ghg_#{neb_fuel.downcase}_kg_per_m_sq"] = fuel_consumption_gj * get_utility_ghg_kg_per_gj(province: model.getWeatherFile.stateProvinceRegion, fuel_type: ep_fuel[:eplus_fuel_name]) / @conditioned_floor_area_m_sq
    economics_data['cost_utility_ghg_total_kg_per_m_sq'] += economics_data["cost_utility_ghg_#{neb_fuel.downcase}_kg_per_m_sq"]
  end
  # Commenting out block charge rates for now....

  # Fuel cost based local utility rates
  #    sql_command = "SELECT RowName FROM TabularDataWithStrings
  #                    WHERE ReportName='LEEDsummary'
  #                    AND ReportForString='Entire Facility'
  #                    AND TableName='EAp2-7. Energy Cost Summary'
  #                    AND ColumnName='Total Energy Cost'"
  #    costing_rownames = model.sqlFile().get().execAndReturnVectorOfString(sql_command)

  #==> ["Electricity", "Natural Gas", "Additional", "Total"]
  #    costing_rownames = validate_optional(costing_rownames, model, "N/A")
  #    unless costing_rownames == "N/A"
  #      costing_rownames.each do |rowname|
  #        sql_command = "SELECT Value FROM TabularDataWithStrings
  #                        WHERE ReportName='LEEDsummary'
  #                        AND ReportForString='Entire Facility'
  #                        AND TableName='EAp2-7. Energy Cost Summary'
  #                        AND ColumnName='Total Energy Cost'
  #                        AND RowName='#{rowname}'"
  #        case rowname
  #        when "Electricity"
  #          economics_data["cost_utility_block_electricity_cost_per_m_sq"] = model.sqlFile().get().execAndReturnFirstDouble(sql_command).get / @conditioned_floor_area_m_sq
  #        when "Natural Gas"
  #          economics_data["cost_utility_block_natural_gas_cost_per_m_sq"] = model.sqlFile().get().execAndReturnFirstDouble(sql_command).get / @conditioned_floor_area_m_sq
  #        when "Additional"
  #          economics_data["cost_utility_block_additional_cost_per_m_sq"] = model.sqlFile().get().execAndReturnFirstDouble(sql_command).get / @conditioned_floor_area_m_sq
  #        when "Total"
  #          economics_data["cost_utility_block_total_cost_per_m_sq"] = model.sqlFile().get().execAndReturnFirstDouble(sql_command).get / @conditioned_floor_area_m_sq
  #        end
  #      end
  #    else
  #      @error_warning << "costing is unavailable because the sql statement is nil RowName FROM TabularDataWithStrings WHERE ReportName='LEEDsummary' AND ReportForString='Entire Facility' AND TableName='EAp2-7. Energy Cost Summary' AND ColumnName='Total Energy Cost'"
  #    end
  return economics_data
end

#validate_optional(var, model, return_value = 'N/A') ⇒ Object



1815
1816
1817
1818
1819
# File 'lib/openstudio-standards/standards/necb/common/btap_data.rb', line 1815

def validate_optional(var, model, return_value = 'N/A')
  return return_value if var.nil? || var.empty?

  return var.get
end