Module: OSut
- Extended by:
- OSlg
- Defined in:
- lib/osut/version.rb,
lib/osut/utils.rb
Overview
BSD 3-Clause License
Copyright © 2022-2024, Denis Bourgeois All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
-
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
-
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
-
Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Constant Summary collapse
- TOL =
default distance tolerance (m)
0.01
- TOL2 =
default area tolerance (m2)
TOL * TOL
- DBG =
see github.com/rd2/oslg
OSlg::DEBUG.dup
- INF =
see github.com/rd2/oslg
OSlg::INFO.dup
- WRN =
see github.com/rd2/oslg
OSlg::WARN.dup
- ERR =
see github.com/rd2/oslg
OSlg::ERROR.dup
- FTL =
see github.com/rd2/oslg
OSlg::FATAL.dup
- NS =
OpenStudio object identifier method
"nameString"
- HEAD =
standard 80“ door
2.032
- SILL =
standard 30“ window sill
0.762
- SIDZ =
General surface orientations (see facets method)
[:bottom, # e.g. ground-facing, exposed floors :top, # e.g. roof/ceiling :north, # NORTH :east, # EAST :south, # SOUTH :west # WEST ].freeze
- VERSION =
OSut version
"0.6.0".freeze
- @@mass =
Thermal mass categories (e.g. exterior cladding, interior finish, framing).
[ :none, # token for 'no user selection', resort to defaults :light, # e.g. 16mm drywall interior :medium, # e.g. 100mm brick cladding :heavy # e.g. 200mm poured concrete ].freeze
- @@mats =
Basic materials (StandardOpaqueMaterials only).
{ material: {}, # generic, e.g. lightweight cladding over furring, fibreboard sand: {}, concrete: {}, brick: {}, drywall: {}, # e.g. finished drywall, intermediate sheating mineral: {}, # e.g. light, semi-rigid rock wool insulation polyiso: {}, # e.g. polyisocyanurate panel (or similar) cellulose: {}, # e.g. blown, dry/stabilized fibre door: {} # single composite material (45mm insulated steel door) }.freeze
- @@film =
default inside + outside air film resistances (m2.K/W)
{ shading: 0.000, # NA partition: 0.150, # uninsulated wood- or steel-framed wall wall: 0.150, # un/insulated wall roof: 0.140, # un/insulated roof floor: 0.190, # un/insulated (exposed) floor basement: 0.120, # un/insulated basement wall slab: 0.160, # un/insulated basement slab or slab-on-grade door: 0.150, # standard, 45mm insulated steel (opaque) door window: 0.150, # vertical fenestration, e.g. glazed doors, windows skylight: 0.140 # e.g. domed 4' x 4' skylight }.freeze
- @@uo =
default (~1980s) envelope Uo (W/m2•K), based on surface type
{ shading: nil, # N/A partition: nil, # N/A wall: 0.384, # rated R14.8 hr•ft2F/Btu roof: 0.327, # rated R17.6 hr•ft2F/Btu floor: 0.317, # rated R17.9 hr•ft2F/Btu (exposed floor) basement: nil, slab: nil, door: 1.800, # insulated, unglazed steel door (single layer) window: 2.800, # e.g. patio doors (simple glazing) skylight: 3.500 # all skylight technologies }.freeze
Class Method Summary collapse
-
.extended(base) ⇒ Object
Callback when other modules extend OSlg.
Instance Method Summary collapse
-
#addSkyLights(spaces = [], opts = {}) ⇒ Float
Adds skylights to toplight selected OpenStudio (occupied, conditioned) spaces, based on requested skylight area, or a skylight-to-roof ratio (SRR%).
-
#addSubs(s = nil, subs = [], clear = false, bound = false, realign = false, bfr = 0.005) ⇒ Bool, false
Adds sub surfaces (e.g. windows, doors, skylights) to surface.
-
#airLoopsHVAC?(model = nil) ⇒ Bool, false
Validates if model has zones with HVAC air loops.
-
#alignedHeight(pts = nil, force = false) ⇒ Float, 0.0
Returns ‘height’ of a set of OpenStudio 3D points, once re/aligned.
-
#alignedWidth(pts = nil, force = false) ⇒ Float, 0.0
Returns ‘width’ of a set of OpenStudio 3D points, once re/aligned.
-
#availabilitySchedule(model = nil, avl = "") ⇒ OpenStudio::Model::Schedule?
Generates an HVAC availability schedule.
-
#blc(pts = nil) ⇒ OpenStudio::Point3dVector
Returns OpenStudio 3D points (min 3x) conforming to an BottomLeftCorner (BLC) convention.
-
#boundedBox(pts = nil) ⇒ OpenStudio::Point3dVector
Generates a BLC bounded box within a polygon.
-
#cast(p1 = nil, p2 = nil, ray = nil) ⇒ OpenStudio::Point3dVector
Casts an OpenStudio polygon onto the 3D plane of a 2nd polygon, relying on an independent 3D ray vector.
-
#clockwise?(pts = nil) ⇒ Bool, false
Validates whether OpenStudio 3D points are listed clockwise, assuming points have been pre-‘aligned’ - not just flattened along XY (i.e. Z = 0).
-
#coolingTemperatureSetpoints?(model = nil) ⇒ Bool, false
Validates if model has zones with valid cooling temperature setpoints.
-
#daylit?(space = nil, sidelit = true, toplit = true, baselit = true) ⇒ Bool, false
Validates whether space has outdoor-facing surfaces with fenestration.
-
#defaultConstructionSet(s = nil) ⇒ OpenStudio::Model::DefaultConstructionSet?
Returns a surface’s default construction set.
-
#facets(spaces = [], boundary = "all", type = "all", sides = []) ⇒ Array<OpenStudio::Model::Surface>
Returns an array of OpenStudio space surfaces or subsurfaces that match criteria, e.g.
-
#facingDown?(pts = nil) ⇒ Bool, false
Validates whether a polygon faces downwards, harmonized with OpenStudio Utilities’ “alignZPrime” function.
-
#facingUp?(pts = nil) ⇒ Bool, false
Validates whether a polygon faces upwards, harmonized with OpenStudio Utilities’ “alignZPrime” function.
-
#farthest(pts = nil, p01 = nil) ⇒ Integer?
Returns OpenStudio 3D point (in a set) farthest from a point of reference, e.g.
-
#fenestration?(s = nil) ⇒ Bool, false
Validates whether a sub surface is fenestrated.
-
#fits?(p1 = nil, p2 = nil, entirely = false) ⇒ Bool, false
Determines whether a 1st OpenStudio polygon fits in a 2nd polygon.
-
#flatten(pts = nil, axs = :z, val = 0) ⇒ OpenStudio::Point3dVector
Flattens OpenStudio 3D points vs X, Y or Z axes.
-
#genAnchors(s = nil, set = [], tag = :box) ⇒ Integer
Identifies ‘leader line anchors’, i.e.
-
#genConstruction(model = nil, specs = {}) ⇒ OpenStudio::Model::Construction?
Generates an OpenStudio multilayered construction, + materials if needed.
-
#genExtendedVertices(s = nil, set = [], tag = :vtx) ⇒ OpenStudio::Point3dVector
Extends (larger) polygon vertices to circumscribe one or more (smaller) subsets of vertices, based on previously-generated ‘leader line’ anchors.
-
#genInserts(s = nil, set = []) ⇒ OpenStudio::Point3dVector
Generates (1D or 2D) arrays of (smaller) rectangular collection of points, (e.g. arrays of polygon inserts) from subset parameters, within a (larger) set (e.g. parent polygon).
-
#genMass(sps = OpenStudio::Model::SpaceVector.new, ratio = 2.0) ⇒ Bool, false
Generates an internal mass definition and instances for target spaces.
-
#genShade(subs = OpenStudio::Model::SubSurfaceVector.new) ⇒ Bool, false
Generates a solar shade (e.g. roller, textile) for glazed OpenStudio SubSurfaces (v351+), controlled to minimize overheating in cooling months (May to October in Northern Hemisphere), when outdoor dry bulb temperature is above 18°C and impinging solar radiation is above 100 W/m2.
-
#genSlab(pltz = [], z = 0) ⇒ OpenStudio::Point3dVector
Generates an OpenStudio 3D point vector of a composite floor “slab”, a ‘union’ of multiple rectangular, horizontal floor “plates”.
-
#getCollinears(pts = nil, n = 0) ⇒ OpenStudio::Point3dVector
Returns sequential collinear points in an OpenStudio 3D point vector.
-
#getHorizontalRidges(roofs = []) ⇒ Array
Identifies horizontal ridges along 2x sloped (roof?) surfaces (same space).
-
#getLineIntersection(s1 = [], s2 = []) ⇒ OpenStudio::Point3d?
Returns point of intersection of 2x 3D line segments.
-
#getNonCollinears(pts = nil, n = 0) ⇒ OpenStudio::Point3dVector
Returns sequential non-collinear points in an OpenStudio 3D point vector.
-
#getRealignedFace(pts = nil, force = false) ⇒ Hash
Generates re-‘aligned’ polygon vertices wrt main axis of symmetry of its largest bounded box.
-
#getRoofs(spaces = []) ⇒ Array<OpenStudio::Model::Surface>
Returns outdoor-facing, space-related roof surfaces.
-
#getSegments(pts = nil) ⇒ OpenStudio::Point3dVectorVector
Returns paired sequential points as (non-zero length) line segments.
-
#getTriads(pts = nil, co = false) ⇒ OpenStudio::Point3dVectorVector
Returns points as (non-zero length) ‘triads’, i.e.
-
#getUniques(pts = nil, n = 0) ⇒ OpenStudio::Point3dVector
Returns unique OpenStudio 3D points from an OpenStudio 3D point vector.
-
#glazingAirFilmRSi(usi = 5.85) ⇒ Float, 0.1216
Returns total air film resistance of a fenestrated construction (m2•K/W).
-
#grossRoofArea(spaces = []) ⇒ Object
Returns the “gross roof area” above selected conditioned, occupied spaces.
-
#heatingTemperatureSetpoints?(model = nil) ⇒ Bool, false
Validates if model has zones with valid heating temperature setpoints.
-
#height(pts = nil) ⇒ Float, 0.0
Returns ‘height’ of a set of OpenStudio 3D points.
-
#holds?(pts = nil, p1 = nil) ⇒ Bool, false
Returns true if an OpenStudio 3D point is part of a set of 3D points.
-
#holdsConstruction?(set = nil, bse = nil, gr = false, ex = false, tp = "") ⇒ Bool, false
Validates if a default construction set holds a base construction.
-
#insulatingLayer(lc = nil) ⇒ Hash
Identifies a layered construction’s (opaque) insulating layer.
-
#lineIntersects?(l = [], s = []) ⇒ Bool, false
Validates whether 3D line segment intersects 3D segments (e.g. polygon).
-
#maxHeatScheduledSetpoint(zone = nil) ⇒ Hash
Returns MAX zone heating temperature schedule setpoint [°C] and whether zone has an active dual setpoint thermostat.
-
#medialBox(pts = nil) ⇒ OpenStudio::Point3dVector
Generates a BLC box bounded within a triangle (midpoint theorem).
-
#midpoint(p1 = nil, p2 = nil) ⇒ OpenStudio::Point3d?
Returns midpoint coordinates of line segment.
-
#minCoolScheduledSetpoint(zone = nil) ⇒ Hash
Returns MIN zone cooling temperature schedule setpoint [°C] and whether zone has an active dual setpoint thermostat.
-
#nearest(pts = nil, p01 = nil) ⇒ Integer?
Returns OpenStudio 3D point (in a set) nearest to a point of reference, e.g.
-
#nextUp(pts = nil, pt = nil) ⇒ OpenStudio::Point3d?
Returns next sequential point in an OpenStudio 3D point vector.
-
#offset(p1 = nil, w = 0, v = 0) ⇒ OpenStudio::Point3dVector
Generates offset vertices (by width) for a 3- or 4-sided, convex polygon.
-
#outline(a = [], bfr = 0, flat = true) ⇒ OpenStudio::Point3dVector
Generates a ULC OpenStudio 3D point vector (a bounding box) that surrounds multiple (smaller) OpenStudio 3D point vectors.
-
#overlap(p1 = nil, p2 = nil, flat = false) ⇒ OpenStudio::Point3dVector
Returns intersection of overlapping polygons, empty if non intersecting.
-
#overlaps?(p1 = nil, p2 = nil, flat = false) ⇒ Bool, false
Determines whether OpenStudio polygons overlap.
-
#parallel?(p1 = nil, p2 = nil) ⇒ Bool, false
Validates whether 2 polygons are parallel, regardless of their direction.
-
#plenum?(space = nil) ⇒ Bool, false
Validates whether a space is an indirectly-conditioned plenum.
-
#pointAlongSegment?(p0 = nil, sg = []) ⇒ Bool, false
Validates whether a 3D point lies ~along a 3D point segment, i.e.
-
#pointAlongSegments?(p0 = nil, sgs = []) ⇒ Bool, false
Validates whether a 3D point lies anywhere ~along a set of 3D point segments, i.e.
-
#pointWithinPolygon?(p0 = nil, s = [], entirely = false) ⇒ Bool, false
Validates whether 3D point is within a 3D polygon.
-
#poly(pts = nil, vx = false, uq = false, co = false, tt = false, sq = :no) ⇒ OpenStudio::Point3dVector
Returns an OpenStudio 3D point vector as basis for a valid OpenStudio 3D polygon.
-
#rectangular?(pts = nil) ⇒ Bool, false
Validates whether an OpenStudio polygon is a rectangle (4x sides + 2x diagonals of equal length, meeting at midpoints).
-
#refrigerated?(space = nil) ⇒ Bool, false
Validates whether a space can be considered as REFRIGERATED.
-
#roof?(pts = nil) ⇒ Bool, false
Validates whether a polygon can be considered a valid ‘roof’ surface, as per ASHRAE 90.1 & Canadian NECBs, i.e.
-
#rsi(lc = nil, film = 0.0, t = 0.0) ⇒ Float, 0.0
Returns a construction’s ‘standard calc’ thermal resistance (m2•K/W), which includes air film resistances.
-
#same?(s1 = nil, s2 = nil, indexed = true) ⇒ Bool, false
Returns true if 2 sets of OpenStudio 3D points are nearly equal.
-
#scalar(v = OpenStudio::Vector3d.new, m = 0) ⇒ OpenStudio::Vector3d
Returns a scalar product of an OpenStudio Vector3d.
-
#scheduleCompactMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values of a schedule (compact).
-
#scheduleConstantMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values of a schedule (constant).
-
#scheduleIntervalMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values for schedule (interval).
-
#scheduleRulesetMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values of a schedule (ruleset).
-
#segment?(pts = nil) ⇒ Bool, false
Determines if a set of 3D points if a valid segment.
-
#semiheated?(space = nil) ⇒ Bool, false
Validates whether a space can be considered as SEMIHEATED as per NECB 2020 1.2.1.2.
-
#setpoints(space = nil) ⇒ Hash
Retrieves a space’s (implicit or explicit) heating/cooling setpoints.
-
#sloped?(pts = nil) ⇒ Bool, false
Validates whether surface can be considered ‘sloped’ (i.e. not ~flat, as per OpenStudio Utilities’ “alignZPrime”).
-
#spandrel?(s = nil) ⇒ Bool, false
Validates whether opaque surface can be considered as a curtain wall (or similar technology) spandrel, regardless of construction layers, by looking up AdditionalProperties or its identifier.
-
#square?(pts = nil) ⇒ Bool, false
Validates whether an OpenStudio polygon is a square (rectangular, 4x ~equal sides).
-
#standardOpaqueLayers?(lc = nil) ⇒ Bool, false
Validates if every material in a layered construction is standard & opaque.
-
#thickness(lc = nil) ⇒ Float, 0.0
Returns total (standard opaque) layered construction thickness (m).
-
#to_p3Dv(pts = nil) ⇒ OpenStudio::Point3dVector
Returns OpenStudio 3D points as an OpenStudio point vector, validating points in the process (if Array).
-
#toToplit(spaces = [], opts = {}) ⇒ Array<OpenStudio::Model::Space>
Preselects ideal spaces to toplight, based on ‘addSkylights’ options and key building model geometry attributes.
-
#transforms(group = nil) ⇒ Hash
Returns OpenStudio site/space transformation & rotation angle [0,2PI) rads.
-
#triad?(pts = nil) ⇒ Bool, false
Determines if a set of 3D points if a valid triad.
-
#triadBox(pts = nil) ⇒ Set<OpenStudio::Point3D>
Generates a BLC box from a triad (3D points).
-
#trueNormal(s = nil, r = 0) ⇒ OpenStudio::Vector3d?
Returns the site/true outward normal vector of a surface.
-
#ulc(pts = nil) ⇒ OpenStudio::Point3dVector
Returns OpenStudio 3D points (min 3x) conforming to an UpperLeftCorner (ULC) convention.
-
#unconditioned?(space = nil) ⇒ Bool, false
Validates if a space is UNCONDITIONED.
-
#verticalPlane(p1 = nil, p2 = nil) ⇒ OpenStudio::Plane?
Returns a vertical 3D plane from 2x 3D points, right-hand rule.
-
#vestibule?(space = nil) ⇒ Bool, false
Validates whether space is a vestibule.
-
#width(pts = nil) ⇒ Float, 0.0
Returns ‘width’ of a set of OpenStudio 3D points.
-
#xyz?(pts = nil, axs = :z, val = 0) ⇒ Bool, false
Validates whether 3D points share X, Y or Z coordinates.
Class Method Details
.extended(base) ⇒ Object
Callback when other modules extend OSlg
7778 7779 7780 |
# File 'lib/osut/utils.rb', line 7778 def self.extended(base) base.send(:include, self) end |
Instance Method Details
#addSkyLights(spaces = [], opts = {}) ⇒ Float
Adds skylights to toplight selected OpenStudio (occupied, conditioned) spaces, based on requested skylight area, or a skylight-to-roof ratio (SRR%). If the user selects 0m2 as the requested :area (or 0 as the requested :srr), while setting the option :clear as true, the method simply purges all pre-existing roof fenestrated subsurfaces of selected spaces, and exits while returning 0 (without logging an error or warning). Pre-existing skylight wells are not cleared however. Pre-toplit spaces are otherwise ignored. Boolean options :attic, :plenum, :sloped and :sidelit further restrict candidate spaces to toplight. If applicable, options :attic and :plenum add skylight wells. Option :patterns restricts preset skylight allocation layouts in order of preference; if left empty, all preset patterns are considered, also in order of preference (see examples).
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 |
# File 'lib/osut/utils.rb', line 6234 def addSkyLights(spaces = [], opts = {}) mth = "OSut::#{__callee__}" clear = true srr = nil area = nil frame = nil # FrameAndDivider object f = 0.0 # FrameAndDivider frame width gap = 0.1 # min 2" around well (2x == 4"), as well as max frame width gap2 = 0.2 # 2x gap gap4 = 0.4 # minimum skylight 16" width/depth (excluding frame width) bfr = 0.005 # minimum array perimeter buffer (no wells) w = 1.22 # default 48" x 48" skylight base w2 = w * w # m2 # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Excerpts of ASHRAE 90.1 2022 definitions: # # "ROOF": # # "the upper portion of the building envelope, including opaque areas and # fenestration, that is horizontal or tilted at an angle of less than 60 # degrees from horizontal. For the purposes of determining building # envelope requirements, the classifications are defined as follows # (inter alia): # # - attic and other roofs: all other roofs, including roofs with # insulation ENTIRELY BELOW (inside of) the roof structure (i.e., # attics, cathedral ceilings, and single-rafter ceilings), roofs with # insulation both above and BELOW the roof structure, and roofs # without insulation but excluding metal building roofs. [...]" # # "ROOF AREA, GROSS": # # "the area of the roof measured from the EXTERIOR faces of walls or from # the centerline of party walls." # # # For the simple case below (steep 4-sided hip roof, UNENCLOSED ventilated # attic), 90.1 users typically choose between either: # 1. modelling the ventilated attic explicitly, or # 2. ignoring the ventilated attic altogether. # # If skylights were added to the model, option (1) would require one or more # skylight wells (light shafts leading to occupied spaces below), with # insulated well walls separating CONDITIONED spaces from an UNENCLOSED, # UNCONDITIONED space (i.e. attic). # # Determining which roof surfaces (or which portion of roof surfaces) need # to be considered when calculating "GROSS ROOF AREA" may be subject to some # interpretation. From the above definitions: # # - the uninsulated, tilted hip-roof attic surfaces are considered "ROOF" # surfaces, provided they 'shelter' insulation below (i.e. insulated # attic floor). # - however, only the 'projected' portion of such "ROOF" surfaces, i.e. # areas between axes AA` and BB` (along exterior walls)) would be # considered. # - the portions above uninsulated soffits (illustrated on the right) # would be excluded from the "GROSS ROOF AREA" as they are beyond the # exterior wall projections. # # A B # | | # _________ # / \ /| |\ # / \ / | | \ # /_ ________ _\ = > /_ | | _\ ... excluded portions # | | # |__________| # . . # A` B` # # If the unoccupied space (directly under the hip roof) were instead an # INDIRECTLY-CONDITIONED plenum (not an attic), then there would be no need # to exclude portions of any roof surface: all plenum roof surfaces (in # addition to soffit surfaces) would need to be insulated). The method takes # such circumstances into account, which requires vertically casting of # surfaces onto others, as well as overlap calculations. If successful, the # method returns the "GROSS ROOF AREA" (in m2), based on the above rationale. # # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Excerpts of similar NECB requirements (unchanged from 2011 through 2020): # # 3.2.1.4. 2). "The total skylight area shall be less than 2% of the GROSS # ROOF AREA as determined in Article 3.1.1.6." (5% in earlier versions) # # 3.1.1.6. 5). "In the calculation of allowable skylight area, the GROSS # ROOF AREA shall be calculated as the sum of the areas of insulated # roof including skylights." # # There are NO additional details or NECB appendix notes on the matter. It # is unclear if the NECB's looser definition of GROSS ROOF AREA includes # (uninsulated) sloped roof surfaces above (insulated) flat ceilings (e.g. # attics), as with 90.1. It would be definitely odd if it didn't. For # instance, if the GROSS ROOF AREA were based on insulated ceiling surfaces, # there would be a topological disconnect between flat ceiling and sloped # skylights above. Should NECB users first 'project' (sloped) skylight rough # openings onto flat ceilings when calculating SRR%? Without much needed # clarification, the (clearer) 90.1 rules equally apply here to NECB cases. # If skylight wells are indeed required, well wall edges are always vertical # (i.e. never splayed), requiring a vertical ray. origin = OpenStudio::Point3d.new(0,0,0) zenith = OpenStudio::Point3d.new(0,0,1) ray = zenith - origin # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Accept a single 'OpenStudio::Model::Space' (vs an array of spaces). if spaces.respond_to?(:spaceType) || spaces.respond_to?(:to_a) spaces = spaces.respond_to?(:to_a) ? spaces.to_a : [spaces] spaces = spaces.select { |space| space.respond_to?(:spaceType) } spaces = spaces.select { |space| space.partofTotalFloorArea } spaces = spaces.reject { |space| unconditioned?(space) } return empty("spaces", mth, DBG, 0) if spaces.empty? else return mismatch("spaces", spaces, Array, mth, DBG, 0) end mdl = spaces.first.model # Exit if mismatched or invalid options. return mismatch("opts", opts, Hash, mth, DBG, 0) unless opts.is_a?(Hash) # Validate Frame & Divider object, if provided. if opts.key?(:frame) frame = opts[:frame] if frame.respond_to?(:frameWidth) frame = nil if v < 321 frame = nil if f.frameWidth.round(2) < 0 frame = nil if f.frameWidth.round(2) > gap f = f.frameWidth if frame log(WRN, "Skip Frame&Divider (#{mth})") unless frame else frame = nil log(ERR, "Skip invalid Frame&Divider object (#{mth})") end end # Validate skylight size, if provided. if opts.key?(:size) if opts[:size].respond_to?(:to_f) w = opts[:size].to_f w2 = w * w return invalid(size, mth, 0, ERR, 0) if w.round(2) < gap4 else return mismatch("size", opts[:size], Numeric, mth, DBG, 0) end end f2 = 2 * f w0 = w + f2 w02 = w0 * w0 wl = w0 + gap wl2 = wl * wl # Validate requested skylight-to-roof ratio (or overall area). if opts.key?(:area) if opts[:area].respond_to?(:to_f) area = opts[:area].to_f log(WRN, "Area reset to 0.0m2 (#{mth})") if area < 0 else return mismatch("area", opts[:area], Numeric, mth, DBG, 0) end elsif opts.key?(:srr) if opts[:srr].respond_to?(:to_f) srr = opts[:srr].to_f log(WRN, "SRR (#{srr.round(2)}) reset to 0% (#{mth})") if srr < 0 log(WRN, "SRR (#{srr.round(2)}) reset to 90% (#{mth})") if srr > 0.90 srr = srr.clamp(0.00, 0.10) else return mismatch("srr", opts[:srr], Numeric, mth, DBG, 0) end else return hashkey("area", opts, :area, mth, ERR, 0) end # Validate purge request, if provided. if opts.key?(:clear) clear = opts[:clear] unless [true, false].include?(clear) log(WRN, "Purging existing skylights by default (#{mth})") clear = true end end # Purge if requested. getRoofs(spaces).each { |s| s.subSurfaces.map(&:remove) } if clear # Safely exit, e.g. if strictly called to purge existing roof subsurfaces. return 0 if area && area.round(2) == 0 return 0 if srr && srr.round(2) == 0 m2 = 0 # total existing skylight rough opening area rm2 = grossRoofArea(spaces) # excludes e.g. overhangs # Tally existing skylight rough opening areas. spaces.each do |space| m = space.multiplier facets(space, "Outdoors", "RoofCeiling").each do |roof| roof.subSurfaces.each do |sub| next unless fenestration?(sub) id = sub.nameString xm2 = sub.grossArea if sub.allowWindowPropertyFrameAndDivider unless sub.windowPropertyFrameAndDivider.empty? fw = sub.windowPropertyFrameAndDivider.get.frameWidth vec = offset(sub.vertices, fw, 300) aire = OpenStudio.getArea(vec) if aire.empty? log(ERR, "Skipping '#{id}': invalid Frame&Divider (#{mth})") else xm2 = aire.get end end end m2 += xm2 * sub.multiplier * m end end end # Required skylight area to add. sm2 = area ? area : rm2 * srr - m2 # Warn/skip if existing skylights exceed or ~roughly match targets. if sm2.round(2) < w02.round(2) if m2 > 0 log(INF, "Skipping: existing skylight area > request (#{mth})") return rm2 else log(INF, "Requested skylight area < min size (#{mth})") end elsif 0.9 * rm2.round(2) < sm2.round(2) log(INF, "Skipping: requested skylight area > 90% of GRA (#{mth})") return rm2 end opts[:ration] = true unless opts.key?(:ration) # By default, seek ideal candidate spaces/roofs. Bail out if unsuccessful. unless opts[:ration] == false spaces = toToplit(spaces, opts) return rm2 if spaces.empty? end # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # The method seeks to insert a skylight array within the largest rectangular # 'bounded box' that neatly 'fits' within a given roof surface. This equally # applies to any vertically-cast overlap between roof and plenum (or attic) # floor, which in turn generates skylight wells. Skylight arrays are # inserted from left-to-right & top-to-bottom (as illustrated below), once a # roof (or cast 3D overlap) is 'aligned' in 2D. # # Depending on geometric complexity (e.g. building/roof concavity, # triangulation), the total area of bounded boxes may be significantly less # than the calculated "GROSS ROOF AREA", which can make it challenging to # attain the requested skylight area. If :patterns are left unaltered, the # method will select those that maximize the likelihood of attaining the # requested target, to the detriment of spatial daylighting distribution. # # The default skylight module size is 1.22m x 1.22m (4' x 4'), which can be # overridden by the user, e.g. 2.44m x 2.44m (8' x 8'). However, skylight # sizes usually end up either contracted or inflated to exactly meet a # request skylight area or SRR%, # # Preset skylight allocation patterns (in order of precedence): # # 1. "array" # _____________________ # | _ _ _ | - ?x columns ("cols") >= ?x rows (min 2x2) # | |_| |_| |_| | - SRR ~5% (1.22m x 1.22m), as illustrated # | | - SRR ~19% (2.44m x 2.44m) # | _ _ _ | - +suitable for wide spaces (storage, retail) # | |_| |_| |_| | - ~1.4x height + skylight width 'ideal' rule # |_____________________| - better daylight distribution, many wells # # 2. "strips" # _____________________ # | _ _ _ | - ?x columns (min 2), 1x row # | | | | | | | | - ~doubles %SRR ... # | | | | | | | | - SRR ~10% (1.22m x ?1.22m), as illustrated # | | | | | | | | - SRR ~19% (2.44m x ?1.22m) # | |_| |_| |_| | - ~roof monitor layout # |_____________________| - fewer wells # # 3. "strip" # ____________________ # | | - 1x column, 1x row (min 1x) # | ______________ | - SRR ~11% (1.22m x ?1.22m) # | | ............ | | - SRR ~22% (2.44m x ?1.22m), as illustrated # | |______________| | - +suitable for elongated bounded boxes # | | - 1x well # |____________________| # # @todo: Support strips/strip patterns along ridge of paired roof surfaces. layouts = ["array", "strips", "strip"] patterns = [] # Validate skylight placement patterns, if provided. if opts.key?(:patterns) if opts[:patterns].is_a?(Array) opts[:patterns].each_with_index do |pattern, i| pattern = trim(pattern).downcase if pattern.empty? invalid("pattern #{i+1}", mth, 0, ERR) next end patterns << pattern if layouts.include?(pattern) end else mismatch("patterns", opts[:patterns], Array, mth, DBG) end end patterns = layouts if patterns.empty? # The method first attempts to add skylights in ideal candidate spaces: # - large roof surface areas (e.g. retail, classrooms ... not corridors) # - not sidelit (favours core spaces) # - having flat roofs (avoids sloped roofs) # - neither under plenums, nor attics (avoids wells) # # This ideal (albeit stringent) set of conditions is "combo a". # # If the requested skylight area has not yet been achieved (after initially # applying "combo a"), the method decrementally drops selection criteria and # starts over, e.g.: # - then considers sidelit spaces # - then considers sloped roofs # - then considers skylight wells # # A maximum number of skylights are allocated to roof surfaces matching a # given combo, all the while giving priority to larger roof areas. An error # message is logged if the target isn't ultimately achieved. # # Through filters, users may in advance restrict candidate roof surfaces: # b. above occupied sidelit spaces ('false' restricts to core spaces) # c. that are sloped ('false' restricts to flat roofs) # d. above INDIRECTLY CONDITIONED spaces (e.g. plenums, uninsulated wells) # e. above UNCONDITIONED spaces (e.g. attics, insulated wells) filters = ["a", "b", "bc", "bcd", "bcde"] # Prune filters, based on user-selected options. [:sidelit, :sloped, :plenum, :attic].each do |opt| next unless opts.key?(opt) next unless opts[opt] == false case opt when :sidelit then filters.map! { |f| f.include?("b") ? f.delete("b") : f } when :sloped then filters.map! { |f| f.include?("c") ? f.delete("c") : f } when :plenum then filters.map! { |f| f.include?("d") ? f.delete("d") : f } when :attic then filters.map! { |f| f.include?("e") ? f.delete("e") : f } end end filters.reject! { |f| f.empty? } filters.uniq! # Remaining filters may be further pruned automatically after space/roof # processing, depending on geometry, e.g.: # - if there are no sidelit spaces: filter "b" will be pruned away # - if there are no sloped roofs : filter "c" will be pruned away # - if no plenums are identified : filter "d" will be pruned away # - if no attics are identified : filter "e" will be pruned away # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Break down spaces (and connected spaces) into groups. sets = [] # collection of skylight arrays to deploy rooms = {} # occupied CONDITIONED spaces to toplight plenums = {} # unoccupied (INDIRECTLY-) CONDITIONED spaces above rooms attics = {} # unoccupied UNCONDITIONED spaces above rooms ceilings = {} # of occupied CONDITIONED space (if plenums/attics) # Candidate 'rooms' to toplit - excludes plenums/attics. spaces.each do |space| id = space.nameString if daylit?(space, false, true, false) log(WRN, "#{id} is already toplit, skipping (#{mth})") next end # When unoccupied spaces are involved (e.g. plenums, attics), the occupied # space (to toplight) may not share the same local transformation as its # unoccupied space(s) above. Fetching site transformation. t0 = transforms(space) next unless t0[:t] # Calculate space height. hMIN = 10000 hMAX = 0 surfs = facets(space) surfs.each { |surf| hMAX = [hMAX, surf.vertices.max_by(&:z).z].max } surfs.each { |surf| hMIN = [hMIN, surf.vertices.min_by(&:z).z].min } h = hMAX - hMIN unless h > 0 log(ERR, "#{id} height? #{hMIN.round(2)} vs #{hMAX.round(2)} (#{mth})") next end rooms[space] = {} rooms[space][:t0 ] = t0[:t] rooms[space][:m ] = space.multiplier rooms[space][:h ] = h rooms[space][:roofs ] = facets(space, "Outdoors", "RoofCeiling") rooms[space][:sidelit] = daylit?(space, true, false, false) # Fetch and process room-specific outdoor-facing roof surfaces, the most # basic 'set' to track, e.g.: # - no skylight wells (i.e. no leader lines) # - 1x skylight array per roof surface # - no need to consider site transformation rooms[space][:roofs].each do |roof| next unless roof?(roof) box = boundedBox(roof) next if box.empty? bm2 = OpenStudio.getArea(box) next if bm2.empty? bm2 = bm2.get next if bm2.round(2) < w02.round(2) width = alignedWidth(box, true) depth = alignedHeight(box, true) next if width < wl * 3 next if depth < wl # A set is 'tight' if the area of its bounded box is significantly # smaller than that of its roof. A set is 'thin' if the depth of its # bounded box is (too) narrow. If either is true, some geometry rules # may be relaxed to maximize allocated skylight area. Neither apply to # cases with skylight wells. tight = bm2 < roof.grossArea / 2 ? true : false thin = depth.round(2) < (1.5 * wl).round(2) ? true : false set = {} set[:box ] = box set[:bm2 ] = bm2 set[:tight ] = tight set[:thin ] = thin set[:roof ] = roof set[:space ] = space set[:m ] = space.multiplier set[:sidelit] = rooms[space][:sidelit] set[:t0 ] = rooms[space][:t0] set[:t ] = OpenStudio::Transformation.alignFace(roof.vertices) sets << set end end # Process outdoor-facing roof surfaces of plenums and attics above. rooms.each do |space, room| t0 = room[:t0] rufs = getRoofs(space) - room[:roofs] rufs.each do |ruf| next unless roof?(ruf) espace = ruf.space next if espace.empty? espace = espace.get next if espace.partofTotalFloorArea m = espace.multiplier if m != space.multiplier log(ERR, "Skipping #{ruf.nameString} (multiplier mismatch) (#{mth})") next end ti = transforms(espace) next unless ti[:t] ti = ti[:t] rpts = ti * ruf.vertices # Process occupied room ceilings, as 1x or more are overlapping roof # surfaces above. Vertically cast, then fetch overlap. facets(space, "Surface", "RoofCeiling").each do |tile| tpts = t0 * tile.vertices ci0 = cast(tpts, rpts, ray) next if ci0.empty? olap = overlap(rpts, ci0) next if olap.empty? om2 = OpenStudio.getArea(olap) next if om2.empty? om2 = om2.get next if om2.round(2) < w02.round(2) box = boundedBox(olap) next if box.empty? # Adding skylight wells (plenums/attics) is contingent to safely # linking new base roof 'inserts' (as well as new ceiling ones) # through 'leader lines'. This requires an offset to ensure no # conflicts with roof or (ceiling) tile edges. # # @todo: Expand the method to factor in cases where simple 'side' # cutouts can be supported (no need for leader lines), e.g. # skylight strips along roof ridges. box = offset(box, -gap, 300) next if box.empty? bm2 = OpenStudio.getArea(box) next if bm2.empty? bm2 = bm2.get next if bm2.round(2) < wl2.round(2) width = alignedWidth(box, true) depth = alignedHeight(box, true) next if width < wl * 3 next if depth < wl * 2 # Vertically cast box onto tile below. cbox = cast(box, tpts, ray) next if cbox.empty? cm2 = OpenStudio.getArea(cbox) next if cm2.empty? cm2 = cm2.get box = ti.inverse * box cbox = t0.inverse * cbox unless ceilings.key?(tile) floor = tile.adjacentSurface if floor.empty? log(ERR, "#{tile.nameString} adjacent floor? (#{mth})") next end floor = floor.get if floor.space.empty? log(ERR, "#{floor.nameString} space? (#{mth})") next end espce = floor.space.get unless espce == espace log(ERR, "#{espce.nameString} != #{espace.nameString}? (#{mth})") next end ceilings[tile] = {} ceilings[tile][:roofs ] = [] ceilings[tile][:space ] = space ceilings[tile][:floor ] = floor end ceilings[tile][:roofs] << ruf # Skylight set key:values are more detailed with suspended ceilings. # The overlap (:olap) remains in 'transformed' site coordinates (with # regards to the roof). The :box polygon reverts to attic/plenum space # coordinates, while the :cbox polygon is reset with regards to the # occupied space coordinates. set = {} set[:olap ] = olap set[:box ] = box set[:cbox ] = cbox set[:om2 ] = om2 set[:bm2 ] = bm2 set[:cm2 ] = cm2 set[:tight ] = false set[:thin ] = false set[:roof ] = ruf set[:space ] = space set[:m ] = space.multiplier set[:clng ] = tile set[:t0 ] = t0 set[:ti ] = ti set[:t ] = OpenStudio::Transformation.alignFace(ruf.vertices) set[:sidelit] = room[:sidelit] if unconditioned?(espace) # e.g. attic unless attics.key?(espace) attics[espace] = {ti: ti, m: m, bm2: 0, roofs: []} end attics[espace][:bm2 ] += bm2 attics[espace][:roofs] << ruf set[:attic] = espace ceilings[tile][:attic] = espace else # e.g. plenum unless plenums.key?(espace) plenums[espace] = {ti: ti, m: m, bm2: 0, roofs: []} end plenums[espace][:bm2 ] += bm2 plenums[espace][:roofs] << ruf set[:plenum] = espace ceilings[tile][:plenum] = espace end sets << set break # only 1x unique ruf/ceiling pair. end end end # Ensure uniqueness of plenum roofs. attics.values.each do |attic| attic[:roofs ].uniq! attic[:ridges] = getHorizontalRidges(attic[:roofs]) # @todo end plenums.values.each do |plenum| plenum[:roofs ].uniq! plenum[:ridges] = getHorizontalRidges(plenum[:roofs]) # @todo end # Regardless of the selected skylight arrangement pattern, the solution only # considers attic/plenum sets that can be successfully linked to leader line # anchors, for both roof and ceiling surfaces. First, attic/plenum roofs. [attics, plenums].each do |greniers| k = greniers == attics ? :attic : :plenum greniers.each do |spce, grenier| grenier[:roofs].each do |roof| sts = sets sts = sts.select { |st| st.key?(k) } sts = sts.select { |st| st.key?(:box) } sts = sts.select { |st| st.key?(:bm2) } sts = sts.select { |st| st.key?(:roof) } sts = sts.select { |st| st.key?(:space) } sts = sts.select { |st| st[k ] == spce } sts = sts.select { |st| st[:roof] == roof } next if sts.empty? sts = sts.sort_by { |st| st[:bm2] }.reverse genAnchors(roof, sts, :box) end end end # Delete voided sets. sets.reject! { |set| set.key?(:void) } # Repeat leader line loop for ceilings. ceilings.each do |tile, ceiling| k = ceiling.key?(:attic) ? :attic : :plenum next unless ceiling.key?(k) space = ceiling[:space] spce = ceiling[k] next unless ceiling.key?(:roofs) next unless rooms.key?(space) stz = [] ceiling[:roofs].each do |roof| sts = sets sts = sts.select { |st| st.key?(k) } sts = sts.select { |st| st.key?(:cbox) } stz = stz.select { |st| st.key?(:cm2) } sts = sts.select { |st| st.key?(:roof) } sts = sts.select { |st| st.key?(:clng) } sts = sts.select { |st| st.key?(:space) } sts = sts.select { |st| st[k ] == spce } sts = sts.select { |st| st[:roof ] == roof } sts = sts.select { |st| st[:clng ] == tile } sts = sts.select { |st| st[:space] == space } next unless sts.size == 1 stz << sts.first end next if stz.empty? stz = stz.sort_by { |st| st[:cm2] }.reverse genAnchors(tile, stz, :cbox) end # Delete voided sets. sets.reject! { |set| set.key?(:void) } return empty("sets", mth, WRN, rm2) if sets.empty? # Sort sets, from largest to smallest bounded box area. sets = sets.sort_by { |st| st[:bm2] * st[:m] }.reverse # Any sidelit and/or sloped roofs being targeted? # @todo: enable double-ridged, sloped roofs have double-sloped # skylights/wells (patterns "strip"/"strips"). sidelit = sets.any? { |set| set[:sidelit] } sloped = sets.any? { |set| set[:sloped ] } # Average sandbox area + revised 'working' SRR%. sbm2 = sets.map { |set| set[:bm2] }.reduce(:+) avm2 = sbm2 / sets.size srr2 = sm2 / sets.size / avm2 # Precalculate skylight rows + cols, for each selected pattern. In the case # of 'cols x rows' arrays of skylights, the method initially overshoots # with regards to 'ideal' skylight placement, e.g.: # # aceee.org/files/proceedings/2004/data/papers/SS04_Panel3_Paper18.pdf # # Skylight areas are subsequently contracted to strictly meet the target. sets.each_with_index do |set, i| thin = set[:thin ] tight = set[:tight] factor = tight ? 1.75 : 1.25 well = set.key?(:clng) space = set[:space] room = rooms[space] h = room[:h] width = alignedWidth( set[:box], true) depth = alignedHeight(set[:box], true) = set.key?(:om2) ? set[:om2] : set[:bm2] rtio = / avm2 skym2 = srr2 * * rtio # Flag set if too narrow/shallow to hold a single skylight. if well if width.round(2) < wl.round(2) log(WRN, "set #{i+1} well: Too narrow (#{mth})") set[:void] = true next end if depth.round(2) < wl.round(2) log(WRN, "set #{i+1} well: Too shallow (#{mth})") set[:void] = true next end else if width.round(2) < w0.round(2) log(WRN, "set #{i+1}: Too narrow (#{mth})") set[:void] = true next end if depth.round(2) < w0.round(2) log(WRN, "set #{i+1}: Too shallow (#{mth})") set[:void] = true next end end # Estimate number of skylight modules per 'pattern'. Default spacing # varies based on bounded box size (i.e. larger vs smaller rooms). patterns.each do |pattern| cols = 1 rows = 1 wx = w0 wy = w0 wxl = well ? wl : nil wyl = well ? wl : nil dX = nil dY = nil case pattern when "array" # min 2x cols x min 2x rows cols = 2 rows = 2 next if thin if tight sp = 1.4 * h / 2 lx = width - cols * wx ly = depth - rows * wy next if lx.round(2) < sp.round(2) next if ly.round(2) < sp.round(2) cols = ((width - wx) / (wx + sp)).round(2).to_i + 1 rows = ((depth - wy) / (wy + sp)).round(2).to_i + 1 next if cols < 2 next if rows < 2 dX = bfr + f dY = bfr + f else sp = 1.4 * h lx = well ? (width - cols * wxl) / cols : (width - cols * wx) / cols ly = well ? (depth - rows * wyl) / rows : (depth - rows * wy) / rows next if lx.round(2) < sp.round(2) next if ly.round(2) < sp.round(2) if well cols = (width / (wxl + sp)).round(2).to_i rows = (depth / (wyl + sp)).round(2).to_i else cols = (width / (wx + sp)).round(2).to_i rows = (depth / (wy + sp)).round(2).to_i end next if cols < 2 next if rows < 2 ly = well ? (depth - rows * wyl) / rows : (depth - rows * wy) / rows dY = ly / 2 end # Default allocated skylight area. If undershooting, inflate skylight # width/depth (with reduced spacing). For geometrically-constrained # cases, undershooting means not reaching 1.75x the required target. # Otherwise, undershooting means not reaching 1.25x the required # target. Any consequent overshooting is later corrected. tm2 = wx * cols * wy * rows # Inflate skylight width/depth (and reduce spacing) to reach target. if tm2.round(2) < factor * skym2.round(2) ratio2 = 1 + (factor * skym2 - tm2) / tm2 ratio = Math.sqrt(ratio2) sp = wl wx *= ratio wy *= ratio wxl = wx + gap if well wyl = wy + gap if well if tight lx = (width - 2 * (bfr + f) - cols * wx) / (cols - 1) ly = (depth - 2 * (bfr + f) - rows * wy) / (rows - 1) lx = lx.round(2) < sp.round(2) ? sp : lx ly = ly.round(2) < sp.round(2) ? sp : ly wx = (width - 2 * (bfr + f) - (cols - 1) * lx) / cols wy = (depth - 2 * (bfr + f) - (rows - 1) * ly) / rows else if well lx = (width - cols * wxl) / cols ly = (depth - rows * wyl) / rows lx = lx.round(2) < sp.round(2) ? sp : lx ly = ly.round(2) < sp.round(2) ? sp : ly wxl = (width - cols * lx) / cols wyl = (depth - rows * ly) / rows wx = wxl - gap wy = wyl - gap ly = (depth - rows * wyl) / rows else lx = (width - cols * wx) / cols ly = (depth - rows * wy) / rows lx = lx.round(2) < sp.round(2) ? sp : lx ly = ly.round(2) < sp.round(2) ? sp : ly wx = (width - cols * lx) / cols wy = (depth - rows * ly) / rows ly = (depth - rows * wy) / rows end dY = ly / 2 end end when "strips" # min 2x cols x 1x row cols = 2 if tight sp = h / 2 dX = bfr + f lx = width - cols * wx next if lx.round(2) < sp.round(2) cols = ((width - wx) / (wx + sp)).round(2).to_i + 1 next if cols < 2 if thin dY = bfr + f wy = depth - 2 * dY next if wy.round(2) < gap4 else ly = depth - wy next if ly.round(2) < wl.round(2) dY = ly / 2 end else sp = h if well lx = (width - cols * wxl) / cols next if lx.round(2) < sp.round(2) cols = (width / (wxl + sp)).round(2).to_i next if cols < 2 ly = depth - wyl dY = ly / 2 next if ly.round(2) < wl.round(2) else lx = (width - cols * wx) / cols next if lx.round(2) < sp.round(2) cols = (width / (wx + sp)).round(2).to_i next if cols < 2 if thin dY = bfr + f wy = depth - 2 * dY next if wy.round(2) < gap4 else ly = depth - wy next if ly.round(2) < wl.round(2) dY = ly / 2 end end end tm2 = wx * cols * wy # Inflate skylight depth to reach target. if tm2.round(2) < factor * skym2.round(2) sp = wl # Skip if already thin. unless thin ratio2 = 1 + (factor * skym2 - tm2) / tm2 wy *= ratio2 if well wyl = wy + gap ly = depth - wyl ly = ly.round(2) < sp.round(2) ? sp : ly wyl = depth - ly wy = wyl - gap else ly = depth - wy ly = ly.round(2) < sp.round(2) ? sp : ly wy = depth - ly end dY = ly / 2 end end tm2 = wx * cols * wy # Inflate skylight width (and reduce spacing) to reach target. if tm2.round(2) < factor * skym2.round(2) ratio2 = 1 + (factor * skym2 - tm2) / tm2 wx *= ratio2 wxl = wx + gap if well if tight lx = (width - 2 * (bfr + f) - cols * wx) / (cols - 1) lx = lx.round(2) < sp.round(2) ? sp : lx wx = (width - 2 * (bfr + f) - (cols - 1) * lx) / cols else if well lx = (width - cols * wxl) / cols lx = lx.round(2) < sp.round(2) ? sp : lx wxl = (width - cols * lx) / cols wx = wxl - gap else lx = (width - cols * wx) / cols lx = lx.round(2) < sp.round(2) ? sp : lx wx = (width - cols * lx) / cols end end end else # "strip" 1 (long?) row x 1 column if tight sp = gap4 dX = bfr + f wx = width - 2 * dX next if wx.round(2) < sp.round(2) if thin dY = bfr + f wy = depth - 2 * dY next if wy.round(2) < sp.round(2) else ly = depth - wy dY = ly / 2 next if ly.round(2) < sp.round(2) end else sp = wl lx = well ? width - wxl : width - wx ly = well ? depth - wyl : depth - wy dY = ly / 2 next if lx.round(2) < sp.round(2) next if ly.round(2) < sp.round(2) end tm2 = wx * wy # Inflate skylight width (and reduce spacing) to reach target. if tm2.round(2) < factor * skym2.round(2) unless tight ratio2 = 1 + (factor * skym2 - tm2) / tm2 wx *= ratio2 if well wxl = wx + gap lx = width - wxl lx = lx.round(2) < sp.round(2) ? sp : lx wxl = width - lx wx = wxl - gap else lx = width - wx lx = lx.round(2) < sp.round(2) ? sp : lx wx = width - lx end end end tm2 = wx * wy # Inflate skylight depth to reach target. Skip if already tight thin. if tm2.round(2) < factor * skym2.round(2) unless thin ratio2 = 1 + (factor * skym2 - tm2) / tm2 wy *= ratio2 if well wyl = wy + gap ly = depth - wyl ly = ly.round(2) < sp.round(2) ? sp : ly wyl = depth - ly wy = wyl - gap else ly = depth - wy ly = ly.round(2) < sp.round(2) ? sp : ly wy = depth - ly end dY = ly / 2 end end end st = {} st[:tight] = tight st[:cols ] = cols st[:rows ] = rows st[:wx ] = wx st[:wy ] = wy st[:wxl ] = wxl st[:wyl ] = wyl st[:dX ] = dX if dX st[:dY ] = dY if dY set[pattern] = st end set[:void] = true unless patterns.any? { |k| set.key?(k) } end # Delete voided sets. sets.reject! { |set| set.key?(:void) } return empty("sets (2)", mth, WRN, rm2) if sets.empty? # Final reset of filters. filters.map! { |f| f.include?("b") ? f.delete("b") : f } unless sidelit filters.map! { |f| f.include?("c") ? f.delete("c") : f } unless sloped filters.map! { |f| f.include?("d") ? f.delete("d") : f } if plenums.empty? filters.map! { |f| f.include?("e") ? f.delete("e") : f } if attics.empty? filters.reject! { |f| f.empty? } filters.uniq! # Initialize skylight area tally (to increment). skm2 = 0 # Assign skylight pattern. filters.each do |filter| next if skm2.round(2) >= sm2.round(2) dm2 = sm2 - skm2 # differential (remaining skylight area to meet). sts = sets sts = sts.reject { |st| st.key?(:pattern) } if filter.include?("a") # Start with the default (ideal) allocation selection: # - large roof surface areas (e.g. retail, classrooms not corridors) # - not sidelit (favours core spaces) # - having flat roofs (avoids sloped roofs) # - not under plenums, nor attics (avoids wells) sts = sts.reject { |st| st[:sidelit] } sts = sts.reject { |st| st[:sloped ] } sts = sts.reject { |st| st.key?(:clng) } else sts = sts.reject { |st| st[:sidelit] } unless filter.include?("b") sts = sts.reject { |st| st[:sloped] } unless filter.include?("c") sts = sts.reject { |st| st.key?(:plenum) } unless filter.include?("d") sts = sts.reject { |st| st.key?(:attic) } unless filter.include?("e") end next if sts.empty? # Tally precalculated skylights per pattern (once filtered). fpm2 = {} patterns.each do |pattern| sts.each do |st| next unless st.key?(pattern) cols = st[pattern][:cols] rows = st[pattern][:rows] wx = st[pattern][:wx ] wy = st[pattern][:wy ] fpm2[pattern] = {m2: 0, tight: false} unless fpm2.key?(pattern) fpm2[pattern][:m2 ] += st[:m] * wx * wy * cols * rows fpm2[pattern][:tight] = true if st[:tight] end end pattern = nil next if fpm2.empty? # Favour (large) arrays if meeting residual target, unless constrained. if fpm2.keys.include?("array") if fpm2["array"][:m2].round(2) >= dm2.round(2) pattern = "array" unless fpm2[:tight] end end unless pattern fpm2 = fpm2.sort_by { |_, fm2| fm2[:m2] }.to_h min_m2 = fpm2.values.first[:m2] max_m2 = fpm2.values.last[:m2] if min_m2.round(2) >= dm2.round(2) # If not large array, then retain pattern generating smallest skylight # area if ALL patterns >= residual target (deterministic sorting). fpm2.keep_if { |_, fm2| fm2[:m2].round(2) == min_m2.round(2) } if fpm2.keys.include?("array") pattern = "array" elsif fpm2.keys.include?("strips") pattern = "strips" else fpm2.keys.include?("strip") pattern = "strip" end else # Pick pattern offering greatest skylight area (deterministic sorting). fpm2.keep_if { |_, fm2| fm2[:m2].round(2) == max_m2.round(2) } if fpm2.keys.include?("strip") pattern = "strip" elsif fpm2.keys.include?("strips") pattern = "strips" else fpm2.keys.include?("array") pattern = "array" end end end skm2 += fpm2[pattern][:m2] # Update matching sets. sts.each do |st| sets.each do |set| next unless set.key?(pattern) next unless st[:roof] == set[:roof] next unless same?(st[:box], set[:box]) if st.key?(:clng) next unless set.key?(:clng) next unless st[:clng] == set[:clng] end set[:pattern] = pattern set[:cols ] = set[pattern][:cols] set[:rows ] = set[pattern][:rows] set[:w ] = set[pattern][:wx ] set[:d ] = set[pattern][:wy ] set[:w0 ] = set[pattern][:wxl ] set[:d0 ] = set[pattern][:wyl ] set[:dX ] = set[pattern][:dX ] if set[pattern][:dX] set[:dY ] = set[pattern][:dY ] if set[pattern][:dY] end end end # Delete incomplete sets (same as rejected if 'voided'). sets.reject! { |set| set.key?(:void) } sets.select! { |set| set.key?(:pattern) } return empty("sets (3)", mth, WRN, rm2) if sets.empty? # Skylight size contraction if overshot (e.g. scale down by -13% if > +13%). # Applied on a surface/pattern basis: individual skylight sizes may vary # from one surface to the next, depending on respective patterns. # First, skip whole sets altogether if their total m2 < (skm2 - sm2). Only # considered if significant discrepancies vs average set skylight m2. sbm2 = 0 sets.each do |set| sbm2 += set[:cols] * set[:w] * set[:rows] * set[:d] * set[:m] end avm2 = sbm2 / sets.size if skm2.round(2) > sm2.round(2) sets.reverse.each do |set| break unless skm2.round(2) > sm2.round(2) stm2 = set[:cols] * set[:w] * set[:rows] * set[:d] * set[:m] next unless stm2 < 0.75 * avm2 next unless stm2.round(2) < (skm2 - sm2).round(2) skm2 -= stm2 set[:void] = true end end sets.reject! { |set| set.key?(:void) } return empty("sets (4)", mth, WRN, rm2) if sets.empty? # Size contraction: round 1: low-hanging fruit. if skm2.round(2) > sm2.round(2) ratio2 = 1 - (skm2 - sm2) / skm2 ratio = Math.sqrt(ratio2) sets.each do |set| am2 = set[:cols] * set[:w] * set[:rows] * set[:d] * set[:m] xr = set[:w] yr = set[:d] if xr > w0 xr = xr * ratio < w0 ? w0 : xr * ratio end if yr > w0 yr = yr * ratio < w0 ? w0 : yr * ratio end xm2 = set[:cols] * xr * set[:rows] * yr * set[:m] next if xm2.round(2) == am2.round(2) set[:dY] += (set[:d] - yr) / 2 set[:dX] += (set[:w] - xr) / 2 if set.key?(:dX) set[:w ] = xr set[:d ] = yr set[:w0] = set[:w] + gap set[:d0] = set[:d] + gap skm2 -= (am2 - xm2) end end # Size contraction: round 2: prioritize larger sets. adm2 = 0 sets.each_with_index do |set, i| next if set[:w].round(2) <= w0 next if set[:d].round(2) <= w0 adm2 += set[:cols] * set[:w] * set[:rows] * set[:d] * set[:m] end if skm2.round(2) > sm2.round(2) && adm2.round(2) > sm2.round(2) ratio2 = 1 - (adm2 - sm2) / adm2 ratio = Math.sqrt(ratio2) sets.each do |set| next if set[:w].round(2) <= w0 next if set[:d].round(2) <= w0 am2 = set[:cols] * set[:w] * set[:rows] * set[:d] * set[:m] xr = set[:w] yr = set[:d] if xr > w0 xr = xr * ratio < w0 ? w0 : xr * ratio end if yr > w0 yr = yr * ratio < w0 ? w0 : yr * ratio end xm2 = set[:cols] * xr * set[:rows] * yr * set[:m] next if xm2.round(2) == am2.round(2) set[:dY] += (set[:d] - yr) / 2 set[:dX] += (set[:w] - xr) / 2 if set.key?(:dX) set[:w ] = xr set[:d ] = yr set[:w0] = set[:w] + gap set[:d0] = set[:d] + gap skm2 -= (am2 - xm2) adm2 -= (am2 - xm2) end end # Size contraction: round 3: Resort to sizes < requested w0. if skm2.round(2) > sm2.round(2) ratio2 = 1 - (skm2 - sm2) / skm2 ratio = Math.sqrt(ratio2) sets.each do |set| break unless skm2.round(2) > sm2.round(2) am2 = set[:cols] * set[:w] * set[:rows] * set[:d] * set[:m] xr = set[:w] yr = set[:d] if xr > gap4 xr = xr * ratio < gap4 ? gap4 : xr * ratio end if yr > gap4 yr = yr * ratio < gap4 ? gap4 : yr * ratio end xm2 = set[:cols] * xr * set[:rows] * yr * set[:m] next if xm2.round(2) == am2.round(2) set[:dY] += (set[:d] - yr) / 2 set[:dX] += (set[:w] - xr) / 2 if set.key?(:dX) set[:w ] = xr set[:d ] = yr set[:w0] = set[:w] + gap set[:d0] = set[:d] + gap skm2 -= (am2 - xm2) end end # Log warning if unable to entirely contract skylight dimensions. if skm2.round(2) > sm2.round(2) log(WRN, "Skylights slightly oversized (#{mth})") end # Generate skylight well vertices for roofs, attics & plenums. [attics, plenums].each do |greniers| k = greniers == attics ? :attic : :plenum greniers.each do |spce, grenier| grenier[:roofs].each do |roof| sts = sets sts = sts.select { |st| st.key?(k) } sts = sts.select { |st| st.key?(:pattern) } sts = sts.select { |st| st.key?(:clng) } sts = sts.select { |st| st.key?(:roof) } sts = sts.select { |st| st.key?(:space) } sts = sts.select { |st| st[:roof] == roof } sts = sts.select { |st| st[k ] == spce } sts = sts.select { |st| st.key?(st[:pattern]) } sts = sts.select { |st| rooms.key?(st[:space]) } sts = sts.select { |st| st.key?(:ld) } sts = sts.select { |st| st[:ld].key?(roof) } next if sts.empty? # If successful, 'genInserts' returns extended ROOF surface vertices, # including leader lines to support cutouts. The method also generates # new roof inserts. See key:value pair :vts. The FINAL go/no-go is # contingent to successfully inserting corresponding room ceiling # inserts (vis-à-vis attic/plenum floor below). vz = genInserts(roof, sts) next if vz.empty? roof.setVertices(vz) end end end # Repeat for ceilings below attic/plenum floors. ceilings.each do |tile, ceiling| k = ceiling.key?(:attic) ? :attic : :plenum next unless ceiling.key?(k) next unless ceiling.key?(:roofs) greniers = ceiling.key?(:attic) ? attics : plenums space = ceiling[:space] spce = ceiling[k ] floor = ceiling[:floor] next unless rooms.key?(space) next unless greniers.key?(spce) room = rooms[space] grenier = greniers[spce] ti = grenier[:ti] t0 = room[:t0] stz = [] ceiling[:roofs].each do |roof| sts = sets sts = sts.select { |st| st.key?(k) } sts = sts.select { |st| st.key?(:pattern) } sts = sts.select { |st| st.key?(:clng) } sts = sts.select { |st| st.key?(:cm2) } sts = sts.select { |st| st.key?(:roof) } sts = sts.select { |st| st.key?(:space) } sts = sts.select { |st| st[:clng] == tile } sts = sts.select { |st| st[:roof] == roof } sts = sts.select { |st| st[k ] == spce } sts = sts.select { |st| rooms.key?(st[:space]) } sts = sts.select { |st| st.key?(:ld) } sts = sts.select { |st| st.key?(:vtx) } sts = sts.select { |st| st.key?(:vts) } sts = sts.select { |st| st[:ld].key?(roof) } sts = sts.select { |st| st[:ld].key?(tile) } next unless sts.size == 1 stz << sts.first end next if stz.empty? # Add new roof inserts & skylights for the (now) toplit space. stz.each_with_index do |st, i| sub = {} sub[:type ] = "Skylight" sub[:frame] = frame if frame sub[:sill ] = gap / 2 st[:vts].each do |id, vt| roof = OpenStudio::Model::Surface.new(t0.inverse * (ti * vt), mdl) roof.setSpace(space) roof.setName("#{id}:#{space.nameString}") # Generate well walls. vX = cast(roof, tile, ray) s0 = getSegments(t0 * roof.vertices) sX = getSegments(t0 * vX) s0.each_with_index do |sg, j| sg0 = sg.to_a sgX = sX[j].to_a vec = OpenStudio::Point3dVector.new vec << sg0.first vec << sg0.last vec << sgX.last vec << sgX.first v_grenier = ti.inverse * vec v_room = (t0.inverse * vec).to_a.reverse grenier_wall = OpenStudio::Model::Surface.new(v_grenier, mdl) grenier_wall.setSpace(spce) grenier_wall.setName("#{id}:#{i}:#{j}:#{spce.nameString}") room_wall = OpenStudio::Model::Surface.new(v_room, mdl) room_wall.setSpace(space) room_wall.setName("#{id}:#{i}:#{j}:#{space.nameString}") grenier_wall.setAdjacentSurface(room_wall) room_wall.setAdjacentSurface(grenier_wall) end # Add individual skylights. Independently of the set layout (rows x # cols), individual roof inserts may be deeper than wider (or # vice-versa). Adapt skylight width vs depth accordingly. if st[:d].round(2) > st[:w].round(2) sub[:width ] = st[:d] - f2 sub[:height] = st[:w] - f2 else sub[:width ] = st[:w] - f2 sub[:height] = st[:d] - f2 end sub[:id] = roof.nameString addSubs(roof, sub, false, true, true) end end # Vertically-cast set roof :vtx onto ceiling. stz.each do |st| st[:cvtx] = t0.inverse * cast(ti * st[:vtx], t0 * tile.vertices, ray) end # Extended ceiling vertices. vertices = genExtendedVertices(tile, stz, :cvtx) next if vertices.empty? # Reset ceiling and adjacent floor vertices. tile.setVertices(vertices) floor.setVertices(ti.inverse * (t0 * vertices).to_a.reverse) end # Loop through 'direct' roof surfaces of rooms to toplit (no attics or # plenums). No overlaps, so no relative space coordinate adjustments. rooms.each do |space, room| room[:roofs].each do |roof| sets.each_with_index do |st, i| next unless st.key?(:roof) next unless st[:roof] == roof next if st.key?(:clng) next unless st.key?(:box) next unless st.key?(:cols) next unless st.key?(:rows) next unless st.key?(:d) next unless st.key?(:w) next unless st.key?(:dY) w1 = st[:w ] - f2 d1 = st[:d ] - f2 dY = st[:dY] st[:rows].times.each do |j| sub = {} sub[:type ] = "Skylight" sub[:count ] = st[:cols] sub[:width ] = w1 sub[:height ] = d1 sub[:frame ] = frame if frame sub[:id ] = "#{roof.nameString}:#{i}:#{j}" sub[:sill ] = dY + j * (2 * dY + d1) sub[:r_buffer] = st[:dX] if st[:dX] sub[:l_buffer] = st[:dX] if st[:dX] addSubs(roof, sub, false, true, true) end end end end rm2 end |
#addSubs(s = nil, subs = [], clear = false, bound = false, realign = false, bfr = 0.005) ⇒ Bool, false
Adds sub surfaces (e.g. windows, doors, skylights) to surface.
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 |
# File 'lib/osut/utils.rb', line 5284 def addSubs(s = nil, subs = [], clear = false, bound = false, realign = false, bfr = 0.005) mth = "OSut::#{__callee__}" v = OpenStudio.openStudioVersion.split(".").join.to_i cl1 = OpenStudio::Model::Surface cl2 = Array cl3 = Hash min = 0.050 # minimum ratio value ( 5%) max = 0.950 # maximum ratio value (95%) no = false # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Exit if mismatched or invalid argument classes. sbs = subs.is_a?(cl3) ? [subs] : subs sbs = sbs.respond_to?(:to_a) ? sbs.to_a : [] return mismatch("surface", s, cl1, mth, DBG, no) unless s.is_a?(cl1) return mismatch("subs", subs, cl2, mth, DBG, no) if sbs.empty? return empty("surface points", mth, DBG, no) if poly(s).empty? subs = sbs nom = s.nameString mdl = s.model # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Purge existing sub surfaces? unless [true, false].include?(clear) log(WRN, "#{nom}: Keeping existing sub surfaces (#{mth})") clear = false end s.subSurfaces.map(&:remove) if clear # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Add sub surfaces with respect to base surface's bounded box? This is # often useful (in some cases necessary) with irregular or concave surfaces. # If true, sub surface parameters (e.g. height, offset, centreline) no # longer apply to the original surface 'bounding' box, but instead to its # largest 'bounded' box. This can be combined with the 'realign' parameter. unless [true, false].include?(bound) log(WRN, "#{nom}: Ignoring bounded box (#{mth})") bound = false end # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Force re-alignment of base surface (or its 'bounded' box)? False by # default (ideal for vertical/tilted walls & sloped roofs). If set to true # for a narrow wall for instance, an array of sub surfaces will be added # from bottom to top (rather from left to right). unless [true, false].include?(realign) log(WRN, "#{nom}: Ignoring realignment (#{mth})") realign = false end # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Ensure minimum safety buffer. if bfr.respond_to?(:to_f) bfr = bfr.to_f return negative("safety buffer", mth, ERR, no) if bfr.round(2) < 0 msg = "Safety buffer < 5mm may generate invalid geometry (#{mth})" log(WRN, msg) if bfr.round(2) < 0.005 else log(ERR, "Setting safety buffer to 5mm (#{mth})") bfr = 0.005 end # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Allowable sub surface types ... & Frame&Divider enabled # - "FixedWindow" | true # - "OperableWindow" | true # - "Door" | false # - "GlassDoor" | true # - "OverheadDoor" | false # - "Skylight" | false if v < 321 # - "TubularDaylightDome" | false # - "TubularDaylightDiffuser" | false type = "FixedWindow" types = OpenStudio::Model::SubSurface.validSubSurfaceTypeValues stype = s.surfaceType # Wall, RoofCeiling or Floor # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # t = OpenStudio::Transformation.alignFace(s.vertices) s0 = poly(s, false, false, false, t, :ulc) s00 = nil # Adapt sandbox if user selects to 'bound' and/or 'realign'. if bound box = boundedBox(s0) if realign s00 = getRealignedFace(box, true) return invalid("bound realignment", mth, 0, DBG, false) unless s00[:set] end elsif realign s00 = getRealignedFace(s0, false) return invalid("unbound realignment", mth, 0, DBG, false) unless s00[:set] end max_x = s00 ? width( s00[:set]) : width(s0) max_y = s00 ? height(s00[:set]) : height(s0) mid_x = max_x / 2 mid_y = max_y / 2 # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Assign default values to certain sub keys (if missing), +more validation. subs.each_with_index do |sub, index| return mismatch("sub", sub, cl4, mth, DBG, no) unless sub.is_a?(cl3) # Required key:value pairs (either set by the user or defaulted). sub[:frame ] = nil unless sub.key?(:frame ) sub[:assembly ] = nil unless sub.key?(:assembly ) sub[:count ] = 1 unless sub.key?(:count ) sub[:multiplier] = 1 unless sub.key?(:multiplier) sub[:id ] = "" unless sub.key?(:id ) sub[:type ] = type unless sub.key?(:type ) sub[:type ] = trim(sub[:type]) sub[:id ] = trim(sub[:id]) sub[:type ] = type if sub[:type].empty? sub[:id ] = "OSut:#{nom}:#{index}" if sub[:id ].empty? sub[:count ] = 1 unless sub[:count ].respond_to?(:to_i) sub[:multiplier] = 1 unless sub[:multiplier].respond_to?(:to_i) sub[:count ] = sub[:count ].to_i sub[:multiplier] = sub[:multiplier].to_i sub[:count ] = 1 if sub[:count ] < 1 sub[:multiplier] = 1 if sub[:multiplier] < 1 id = sub[:id] # If sub surface type is invalid, log/reset. Additional corrections may # be enabled once a sub surface is actually instantiated. unless types.include?(sub[:type]) log(WRN, "Reset invalid '#{id}' type to '#{type}' (#{mth})") sub[:type] = type end # Log/ignore (optional) frame & divider object. unless sub[:frame].nil? if sub[:frame].respond_to?(:frameWidth) sub[:frame] = nil if sub[:type] == "Skylight" && v < 321 sub[:frame] = nil if sub[:type] == "Door" sub[:frame] = nil if sub[:type] == "OverheadDoor" sub[:frame] = nil if sub[:type] == "TubularDaylightDome" sub[:frame] = nil if sub[:type] == "TubularDaylightDiffuser" log(WRN, "Skip '#{id}' FrameDivider (#{mth})") if sub[:frame].nil? else sub[:frame] = nil log(WRN, "Skip '#{id}' invalid FrameDivider object (#{mth})") end end # The (optional) "assembly" must reference a valid OpenStudio # construction base, to explicitly assign to each instantiated sub # surface. If invalid, log/reset/ignore. Additional checks are later # activated once a sub surface is actually instantiated. unless sub[:assembly].nil? unless sub[:assembly].respond_to?(:isFenestration) log(WRN, "Skip invalid '#{id}' construction (#{mth})") sub[:assembly] = nil end end # Log/reset negative float values. Set ~0.0 values to 0.0. sub.each do |key, value| next if key == :count next if key == :multiplier next if key == :type next if key == :id next if key == :frame next if key == :assembly unless value.respond_to?(:to_f) return mismatch(key, value, Float, mth, DBG, no) end next if key == :centreline negative(key, mth, WRN) if value < 0 value = 0.0 if value.abs < TOL end end # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Log/reset (or abandon) conflicting user-set geometry key:value pairs: # :head e.g. std 80" door + frame/buffers (+ m) # :sill e.g. std 30" sill + frame/buffers (+ m) # :height any sub surface height, below "head" (+ m) # :width e.g. 1.200 m # :offset if array (+ m) # :centreline left or right of base surface centreline (+/- m) # :r_buffer buffer between sub/array and right-side corner (+ m) # :l_buffer buffer between sub/array and left-side corner (+ m) # # If successful, this will generate sub surfaces and add them to the model. subs.each do |sub| # Set-up unique sub parameters: # - Frame & Divider "width" # - minimum "clear glazing" limits # - buffers, etc. id = sub[:id] frame = sub[:frame] ? sub[:frame].frameWidth : 0 frames = 2 * frame buffer = frame + bfr buffers = 2 * buffer dim = 3 * frame > 0.200 ? 3 * frame : 0.200 glass = dim - frames min_sill = buffer min_head = buffers + glass max_head = max_y - buffer max_sill = max_head - (buffers + glass) min_ljamb = buffer max_ljamb = max_x - (buffers + glass) min_rjamb = buffers + glass max_rjamb = max_x - buffer max_height = max_y - buffers max_width = max_x - buffers # Default sub surface "head" & "sill" height, unless user-specified. typ_head = HEAD typ_sill = SILL if sub.key?(:ratio) typ_head = mid_y * (1 + sub[:ratio]) if sub[:ratio] > 0.75 typ_head = mid_y * (1 + sub[:ratio]) unless stype.downcase == "wall" typ_sill = mid_y * (1 - sub[:ratio]) if sub[:ratio] > 0.75 typ_sill = mid_y * (1 - sub[:ratio]) unless stype.downcase == "wall" end # Log/reset "height" if beyond min/max. if sub.key?(:height) unless sub[:height].between?(glass - TOL2, max_height + TOL2) log(WRN, "Reset '#{id}' height #{sub[:height].round(3)}m (#{mth})") sub[:height] = sub[:height].clamp(glass, max_height) log(WRN, "Height '#{id}' reset to #{sub[:height].round(3)}m (#{mth})") end end # Log/reset "head" height if beyond min/max. if sub.key?(:head) unless sub[:head].between?(min_head - TOL2, max_head + TOL2) log(WRN, "Reset '#{id}' head #{sub[:head].round(3)}m (#{mth})") sub[:head] = sub[:head].clamp(min_head, max_head) log(WRN, "Head '#{id}' reset to #{sub[:head].round(3)}m (#{mth})") end end # Log/reset "sill" height if beyond min/max. if sub.key?(:sill) unless sub[:sill].between?(min_sill - TOL2, max_sill + TOL2) log(WRN, "Reset '#{id}' sill #{sub[:sill].round(3)}m (#{mth})") sub[:sill] = sub[:sill].clamp(min_sill, max_sill) log(WRN, "Sill '#{id}' reset to #{sub[:sill].round(3)}m (#{mth})") end end # At this point, "head", "sill" and/or "height" have been tentatively # validated (and/or have been corrected) independently from one another. # Log/reset "head" & "sill" heights if conflicting. if sub.key?(:head) && sub.key?(:sill) && sub[:head] < sub[:sill] + glass sill = sub[:head] - glass if sill < min_sill - TOL2 sub[:ratio ] = 0 if sub.key?(:ratio) sub[:count ] = 0 sub[:multiplier] = 0 sub[:height ] = 0 if sub.key?(:height) sub[:width ] = 0 if sub.key?(:width) log(ERR, "Skip: invalid '#{id}' head/sill combo (#{mth})") next else log(WRN, "(Re)set '#{id}' sill #{sub[:sill].round(3)}m (#{mth})") sub[:sill] = sill log(WRN, "Sill '#{id}' (re)set to #{sub[:sill].round(3)}m (#{mth})") end end # Attempt to reconcile "head", "sill" and/or "height". If successful, # all 3x parameters are set (if missing), or reset if invalid. if sub.key?(:head) && sub.key?(:sill) height = sub[:head] - sub[:sill] if sub.key?(:height) && (sub[:height] - height).abs > TOL2 log(WRN, "(Re)set '#{id}' height #{sub[:height].round(3)}m (#{mth})") log(WRN, "Height '#{id}' (re)set to #{height.round(3)}m (#{mth})") end sub[:height] = height elsif sub.key?(:head) # no "sill" if sub.key?(:height) sill = sub[:head] - sub[:height] if sill < min_sill - TOL2 sill = min_sill height = sub[:head] - sill if height < glass sub[:ratio ] = 0 if sub.key?(:ratio) sub[:count ] = 0 sub[:multiplier] = 0 sub[:height ] = 0 if sub.key?(:height) sub[:width ] = 0 if sub.key?(:width) log(ERR, "Skip: invalid '#{id}' head/height combo (#{mth})") next else log(WRN, "(Re)set '#{id}' height #{sub[:height].round(3)}m (#{mth})") sub[:sill ] = sill sub[:height] = height log(WRN, "Height '#{id}' re(set) #{sub[:height].round(3)}m (#{mth})") end else sub[:sill] = sill end else sub[:sill ] = typ_sill sub[:height] = sub[:head] - sub[:sill] end elsif sub.key?(:sill) # no "head" if sub.key?(:height) head = sub[:sill] + sub[:height] if head > max_head - TOL2 head = max_head height = head - sub[:sill] if height < glass sub[:ratio ] = 0 if sub.key?(:ratio) sub[:count ] = 0 sub[:multiplier] = 0 sub[:height ] = 0 if sub.key?(:height) sub[:width ] = 0 if sub.key?(:width) log(ERR, "Skip: invalid '#{id}' sill/height combo (#{mth})") next else log(WRN, "(Re)set '#{id}' height #{sub[:height].round(3)}m (#{mth})") sub[:head ] = head sub[:height] = height log(WRN, "Height '#{id}' reset to #{sub[:height].round(3)}m (#{mth})") end else sub[:head] = head end else sub[:head ] = typ_head sub[:height] = sub[:head] - sub[:sill] end elsif sub.key?(:height) # neither "head" nor "sill" head = s00 ? mid_y + sub[:height]/2 : typ_head sill = head - sub[:height] if sill < min_sill sill = min_sill head = sill + sub[:height] end sub[:head] = head sub[:sill] = sill else sub[:head ] = typ_head sub[:sill ] = typ_sill sub[:height] = sub[:head] - sub[:sill] end # Log/reset "width" if beyond min/max. if sub.key?(:width) unless sub[:width].between?(glass - TOL2, max_width + TOL2) log(WRN, "Reset '#{id}' width #{sub[:width].round(3)}m (#{mth})") sub[:width] = sub[:width].clamp(glass, max_width) log(WRN, "Width '#{id}' reset to #{sub[:width].round(3)}m (#{mth})") end end # Log/reset "count" if < 1 (or not an Integer) if sub[:count].respond_to?(:to_i) sub[:count] = sub[:count].to_i if sub[:count] < 1 sub[:count] = 1 log(WRN, "Reset '#{id}' count to min 1 (#{mth})") end else sub[:count] = 1 end sub[:count] = 1 unless sub.key?(:count) # Log/reset if left-sided buffer under min jamb position. if sub.key?(:l_buffer) if sub[:l_buffer] < min_ljamb - TOL log(WRN, "Reset '#{id}' left buffer #{sub[:l_buffer].round(3)}m (#{mth})") sub[:l_buffer] = min_ljamb log(WRN, "Left buffer '#{id}' reset to #{sub[:l_buffer].round(3)}m (#{mth})") end end # Log/reset if right-sided buffer beyond max jamb position. if sub.key?(:r_buffer) if sub[:r_buffer] > max_rjamb - TOL log(WRN, "Reset '#{id}' right buffer #{sub[:r_buffer].round(3)}m (#{mth})") sub[:r_buffer] = min_rjamb log(WRN, "Right buffer '#{id}' reset to #{sub[:r_buffer].round(3)}m (#{mth})") end end centre = mid_x centre += sub[:centreline] if sub.key?(:centreline) n = sub[:count ] h = sub[:height ] + frames w = 0 # overall width of sub(s) bounding box (to calculate) x0 = 0 # left-side X-axis coordinate of sub(s) bounding box xf = 0 # right-side X-axis coordinate of sub(s) bounding box # Log/reset "offset", if conflicting vs "width". if sub.key?(:ratio) if sub[:ratio] < TOL sub[:ratio ] = 0 sub[:count ] = 0 sub[:multiplier] = 0 sub[:height ] = 0 if sub.key?(:height) sub[:width ] = 0 if sub.key?(:width) log(ERR, "Skip: ratio ~0 (#{mth})") next end # Log/reset if "ratio" beyond min/max? unless sub[:ratio].between?(min, max) log(WRN, "Reset ratio #{sub[:ratio].round(3)} (#{mth})") sub[:ratio] = sub[:ratio].clamp(min, max) log(WRN, "Ratio reset to #{sub[:ratio].round(3)} (#{mth})") end # Log/reset "count" unless 1. unless sub[:count] == 1 sub[:count] = 1 log(WRN, "Reset count (ratio) to 1 (#{mth})") end area = s.grossArea * sub[:ratio] # sub m2, including (optional) frames w = area / h width = w - frames x0 = centre - w/2 xf = centre + w/2 if sub.key?(:l_buffer) if sub.key?(:centreline) log(WRN, "Skip '#{id}' left buffer (vs centreline) (#{mth})") else x0 = sub[:l_buffer] - frame xf = x0 + w centre = x0 + w/2 end elsif sub.key?(:r_buffer) if sub.key?(:centreline) log(WRN, "Skip '#{id}' right buffer (vs centreline) (#{mth})") else xf = max_x - sub[:r_buffer] + frame x0 = xf - w centre = x0 + w/2 end end # Too wide? if x0 < min_ljamb - TOL2 || xf > max_rjamb - TOL2 sub[:ratio ] = 0 if sub.key?(:ratio) sub[:count ] = 0 sub[:multiplier] = 0 sub[:height ] = 0 if sub.key?(:height) sub[:width ] = 0 if sub.key?(:width) log(ERR, "Skip '#{id}': invalid (ratio) width/centreline (#{mth})") next end if sub.key?(:width) && (sub[:width] - width).abs > TOL log(WRN, "Reset '#{id}' width (ratio) #{sub[:width].round(2)}m (#{mth})") sub[:width] = width log(WRN, "Width (ratio) '#{id}' reset to #{sub[:width].round(2)}m (#{mth})") end sub[:width] = width unless sub.key?(:width) else unless sub.key?(:width) sub[:ratio ] = 0 if sub.key?(:ratio) sub[:count ] = 0 sub[:multiplier] = 0 sub[:height ] = 0 if sub.key?(:height) sub[:width ] = 0 if sub.key?(:width) log(ERR, "Skip: missing '#{id}' width (#{mth})") next end width = sub[:width] + frames gap = (max_x - n * width) / (n + 1) gap = sub[:offset] - width if sub.key?(:offset) gap = 0 if gap < buffer offset = gap + width if sub.key?(:offset) && (offset - sub[:offset]).abs > TOL log(WRN, "Reset '#{id}' sub offset #{sub[:offset].round(2)}m (#{mth})") sub[:offset] = offset log(WRN, "Sub offset (#{id}) reset to #{sub[:offset].round(2)}m (#{mth})") end sub[:offset] = offset unless sub.key?(:offset) # Overall width (including frames) of bounding box around array. w = n * width + (n - 1) * gap x0 = centre - w/2 xf = centre + w/2 if sub.key?(:l_buffer) if sub.key?(:centreline) log(WRN, "Skip '#{id}' left buffer (vs centreline) (#{mth})") else x0 = sub[:l_buffer] - frame xf = x0 + w centre = x0 + w/2 end elsif sub.key?(:r_buffer) if sub.key?(:centreline) log(WRN, "Skip '#{id}' right buffer (vs centreline) (#{mth})") else xf = max_x - sub[:r_buffer] + frame x0 = xf - w centre = x0 + w/2 end end # Too wide? if x0 < buffer - TOL2 || xf > max_x - buffer - TOL2 sub[:ratio ] = 0 if sub.key?(:ratio) sub[:count ] = 0 sub[:multiplier] = 0 sub[:height ] = 0 if sub.key?(:height) sub[:width ] = 0 if sub.key?(:width) log(ERR, "Skip: invalid array width/centreline (#{mth})") next end end # Initialize left-side X-axis coordinate of only/first sub. pos = x0 + frame # Generate sub(s). sub[:count].times do |i| name = "#{id}:#{i}" fr = 0 fr = sub[:frame].frameWidth if sub[:frame] vec = OpenStudio::Point3dVector.new vec << OpenStudio::Point3d.new(pos, sub[:head], 0) vec << OpenStudio::Point3d.new(pos, sub[:sill], 0) vec << OpenStudio::Point3d.new(pos + sub[:width], sub[:sill], 0) vec << OpenStudio::Point3d.new(pos + sub[:width], sub[:head], 0) vec = s00 ? t * (s00[:r] * (s00[:t] * vec)) : t * vec # Log/skip if conflict between individual sub and base surface. vc = vec vc = offset(vc, fr, 300) if fr > 0 unless fits?(vc, s) log(ERR, "Skip '#{name}': won't fit in '#{nom}' (#{mth})") break end # Log/skip if conflicts with existing subs (even if same array). conflict = false s.subSurfaces.each do |sb| nome = sb.nameString fd = sb.windowPropertyFrameAndDivider fr = fd.empty? ? 0 : fd.get.frameWidth vk = sb.vertices vk = offset(vk, fr, 300) if fr > 0 if overlaps?(vc, vk) log(ERR, "Skip '#{name}': overlaps '#{nome}' (#{mth})") conflict = true break end end break if conflict sb = OpenStudio::Model::SubSurface.new(vec, mdl) sb.setName(name) sb.setSubSurfaceType(sub[:type]) sb.setConstruction(sub[:assembly]) if sub[:assembly] sb.setMultiplier(sub[:multiplier]) if sub[:multiplier] > 1 if sub[:frame] && sb.allowWindowPropertyFrameAndDivider sb.setWindowPropertyFrameAndDivider(sub[:frame]) end sb.setSurface(s) # Reset "pos" if array. pos += sub[:offset] if sub.key?(:offset) end end true end |
#airLoopsHVAC?(model = nil) ⇒ Bool, false
Validates if model has zones with HVAC air loops.
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 |
# File 'lib/osut/utils.rb', line 1291 def airLoopsHVAC?(model = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Model return mismatch("model", model, cl, mth, DBG, false) unless model.is_a?(cl) model.getThermalZones.each do |zone| next if zone.canBePlenum return true unless zone.airLoopHVACs.empty? return true if zone.isPlenum end false end |
#alignedHeight(pts = nil, force = false) ⇒ Float, 0.0
Returns ‘height’ of a set of OpenStudio 3D points, once re/aligned.
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 |
# File 'lib/osut/utils.rb', line 4470 def alignedHeight(pts = nil, force = false) mth = "OSut::#{__callee__}" pts = poly(pts, false, true, true, true) return 0 if pts.size < 2 unless [true, false].include?(force) log(DBG, "Ignoring force input (#{mth})") force = false end pts = getRealignedFace(pts, force)[:set] return 0 if pts.size < 2 pts.max_by(&:y).y - pts.min_by(&:y).y end |
#alignedWidth(pts = nil, force = false) ⇒ Float, 0.0
Returns ‘width’ of a set of OpenStudio 3D points, once re/aligned.
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 |
# File 'lib/osut/utils.rb', line 4446 def alignedWidth(pts = nil, force = false) mth = "OSut::#{__callee__}" pts = poly(pts, false, true, true, true) return 0 if pts.size < 2 unless [true, false].include?(force) log(DBG, "Ignoring force input (#{mth})") force = false end pts = getRealignedFace(pts, force)[:set] return 0 if pts.size < 2 pts.max_by(&:x).x - pts.min_by(&:x).x end |
#availabilitySchedule(model = nil, avl = "") ⇒ OpenStudio::Model::Schedule?
Generates an HVAC availability schedule.
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 |
# File 'lib/osut/utils.rb', line 2155 def availabilitySchedule(model = nil, avl = "") mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Model limits = nil return mismatch("model", model, cl, mth) unless model.is_a?(cl) return invalid("availability", avl, 2, mth) unless avl.respond_to?(:to_s) # Either fetch availability ScheduleTypeLimits object, or create one. model.getScheduleTypeLimitss.each do |l| break if limits next if l.lowerLimitValue.empty? next if l.upperLimitValue.empty? next if l.numericType.empty? next unless l.lowerLimitValue.get.to_i == 0 next unless l.upperLimitValue.get.to_i == 1 next unless l.numericType.get.downcase == "discrete" next unless l.unitType.downcase == "availability" next unless l.nameString.downcase == "hvac operation scheduletypelimits" limits = l end unless limits limits = OpenStudio::Model::ScheduleTypeLimits.new(model) limits.setName("HVAC Operation ScheduleTypeLimits") limits.setLowerLimitValue(0) limits.setUpperLimitValue(1) limits.setNumericType("Discrete") limits.setUnitType("Availability") end time = OpenStudio::Time.new(0,24) secs = time.totalSeconds on = OpenStudio::Model::ScheduleDay.new(model, 1) off = OpenStudio::Model::ScheduleDay.new(model, 0) # Seasonal availability start/end dates. year = model.yearDescription return empty("yearDescription", mth, ERR) if year.empty? year = year.get may01 = year.makeDate(OpenStudio::MonthOfYear.new("May"), 1) oct31 = year.makeDate(OpenStudio::MonthOfYear.new("Oct"), 31) case trim(avl).downcase when "winter" # available from November 1 to April 30 (6 months) val = 1 sch = off nom = "WINTER Availability SchedRuleset" dft = "WINTER Availability dftDaySched" tag = "May-Oct WINTER Availability SchedRule" day = "May-Oct WINTER SchedRule Day" when "summer" # available from May 1 to October 31 (6 months) val = 0 sch = on nom = "SUMMER Availability SchedRuleset" dft = "SUMMER Availability dftDaySched" tag = "May-Oct SUMMER Availability SchedRule" day = "May-Oct SUMMER SchedRule Day" when "off" # never available val = 0 sch = on nom = "OFF Availability SchedRuleset" dft = "OFF Availability dftDaySched" tag = "" day = "" else # always available val = 1 sch = on nom = "ON Availability SchedRuleset" dft = "ON Availability dftDaySched" tag = "" day = "" end # Fetch existing schedule. ok = true schedule = model.getScheduleByName(nom) unless schedule.empty? schedule = schedule.get.to_ScheduleRuleset unless schedule.empty? schedule = schedule.get default = schedule.defaultDaySchedule ok = ok && default.nameString == dft ok = ok && default.times.size == 1 ok = ok && default.values.size == 1 ok = ok && default.times.first == time ok = ok && default.values.first == val rules = schedule.scheduleRules ok = ok && rules.size < 2 if rules.size == 1 rule = rules.first ok = ok && rule.nameString == tag ok = ok && !rule.startDate.empty? ok = ok && !rule.endDate.empty? ok = ok && rule.startDate.get == may01 ok = ok && rule.endDate.get == oct31 ok = ok && rule.applyAllDays d = rule.daySchedule ok = ok && d.nameString == day ok = ok && d.times.size == 1 ok = ok && d.values.size == 1 ok = ok && d.times.first.totalSeconds == secs ok = ok && d.values.first.to_i != val end return schedule if ok end end schedule = OpenStudio::Model::ScheduleRuleset.new(model) schedule.setName(nom) unless schedule.setScheduleTypeLimits(limits) log(ERR, "'#{nom}': Can't set schedule type limits (#{mth})") return nil end unless schedule.defaultDaySchedule.addValue(time, val) log(ERR, "'#{nom}': Can't set default day schedule (#{mth})") return nil end schedule.defaultDaySchedule.setName(dft) unless tag.empty? rule = OpenStudio::Model::ScheduleRule.new(schedule, sch) rule.setName(tag) unless rule.setStartDate(may01) log(ERR, "'#{tag}': Can't set start date (#{mth})") return nil end unless rule.setEndDate(oct31) log(ERR, "'#{tag}': Can't set end date (#{mth})") return nil end unless rule.setApplyAllDays(true) log(ERR, "'#{tag}': Can't apply to all days (#{mth})") return nil end rule.daySchedule.setName(day) end schedule end |
#blc(pts = nil) ⇒ OpenStudio::Point3dVector
Returns OpenStudio 3D points (min 3x) conforming to an BottomLeftCorner (BLC) convention. Points Z-axis values must be ~= 0. Points are returned counterclockwise.
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 |
# File 'lib/osut/utils.rb', line 3121 def blc(pts = nil) mth = "OSut::#{__callee__}" v = OpenStudio::Point3dVector.new pts = to_p3Dv(pts).to_a return invalid("points (3+)", mth, 1, DBG, v) if pts.size < 3 return invalid("points (aligned)", mth, 1, DBG, v) unless xyz?(pts, :z) # Ensure counterclockwise sequence. pts = pts.reverse if clockwise?(pts) minX = pts.min_by(&:x).x i0 = nearest(pts) p0 = pts[i0] pts_x = pts.select { |pt| pt.x.round(2) == minX.round(2) }.reverse return to_p3Dv(pts.rotate(i0)) if pts_x.include?(p0) p1 = pts_x.min_by { |pt| (pt - p0).length } i1 = pts.index(p1) to_p3Dv(pts.rotate(i1)) end |
#boundedBox(pts = nil) ⇒ OpenStudio::Point3dVector
Generates a BLC bounded box within a polygon.
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 |
# File 'lib/osut/utils.rb', line 4133 def boundedBox(pts = nil) str = ".*(?<!utilities.geometry.join)$" OpenStudio::Logger.instance.standardOutLogger.setChannelRegex(str) mth = "OSut::#{__callee__}" bkp = OpenStudio::Point3dVector.new box = [] pts = poly(pts, false, true, true) return bkp if pts.empty? t = xyz?(pts, :z) ? nil : OpenStudio::Transformation.alignFace(pts) pts = t.inverse * pts if t return bkp if pts.empty? pts = to_p3Dv(pts.to_a.reverse) if clockwise?(pts) # PATH A : Return medial bounded box if polygon is a triangle. if pts.size == 3 box = medialBox(pts) unless box.empty? box = to_p3Dv(t * box) if t return box end end # PATH B : Return polygon itself if already rectangular. if rectangular?(pts) box = t ? to_p3Dv(t * pts) : pts return box end aire = 0 # PATH C : Right-angle, midpoint triad approach. getSegments(pts).each do |sg| m0 = midpoint(sg.first, sg.last) getSegments(pts).each do |seg| p1 = seg.first p2 = seg.last next if same?(p1, sg.first) next if same?(p1, sg.last) next if same?(p2, sg.first) next if same?(p2, sg.first) out = triadBox(OpenStudio::Point3dVector.new([m0, p1, p2])) next if out.empty? next unless fits?(out, pts) next if fits?(pts, out) area = OpenStudio.getArea(out) next if area.empty? area = area.get next if area < TOL next if area < aire aire = area box = out end end # PATH D : Right-angle triad approach, may override PATH C boxes. getSegments(pts).each do |sg| p0 = sg.first p1 = sg.last pts.each do |p2| next if same?(p2, p0) next if same?(p2, p1) out = triadBox(OpenStudio::Point3dVector.new([p0, p1, p2])) next if out.empty? next unless fits?(out, pts) next if fits?(pts, out) area = OpenStudio.getArea(out) next if area.empty? area = area.get next if area < TOL next if area < aire aire = area box = out end end unless aire < TOL box = to_p3Dv(t * box) if t return box end # PATH E : Medial box, segment approach. aire = 0 getSegments(pts).each do |sg| p0 = sg.first p1 = sg.last pts.each do |p2| next if same?(p2, p0) next if same?(p2, p1) out = medialBox(OpenStudio::Point3dVector.new([p0, p1, p2])) next if out.empty? next unless fits?(out, pts) next if fits?(pts, out) area = OpenStudio.getArea(box) next if area.empty? area = area.get next if area < TOL next if area < aire aire = area box = out end end unless aire < TOL box = to_p3Dv(t * box) if t return box end # PATH F : Medial box, triad approach. aire = 0 getTriads(pts).each do |sg| p0 = sg[0] p1 = sg[1] p2 = sg[2] out = medialBox(OpenStudio::Point3dVector.new([p0, p1, p2])) next if out.empty? next unless fits?(out, pts) next if fits?(pts, out) area = OpenStudio.getArea(box) next if area.empty? area = area.get next if area < TOL next if area < aire aire = area box = out end unless aire < TOL box = to_p3Dv(t * box) if t return box end # PATH G : Medial box, triangulated approach. aire = 0 outer = to_p3Dv(pts.to_a.reverse) holes = OpenStudio::Point3dVectorVector.new OpenStudio.computeTriangulation(outer, holes).each do |triangle| getSegments(triangle).each do |sg| p0 = sg.first p1 = sg.last pts.each do |p2| next if same?(p2, p0) next if same?(p2, p1) out = medialBox(OpenStudio::Point3dVector.new([p0, p1, p2])) next if out.empty? next unless fits?(out, pts) next if fits?(pts, out) area = OpenStudio.getArea(out) next if area.empty? area = area.get next if area < TOL next if area < aire aire = area box = out end end end return bkp if aire < TOL box = to_p3Dv(t * box) if t box end |
#cast(p1 = nil, p2 = nil, ray = nil) ⇒ OpenStudio::Point3dVector
Casts an OpenStudio polygon onto the 3D plane of a 2nd polygon, relying on an independent 3D ray vector.
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 |
# File 'lib/osut/utils.rb', line 3685 def cast(p1 = nil, p2 = nil, ray = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Vector3d face = OpenStudio::Point3dVector.new p1 = poly(p1) p2 = poly(p2) return face if p1.empty? return face if p2.empty? return mismatch("ray", ray, cl, mth) unless ray.is_a?(cl) # From OpenStudio SDK v3.7.0 onwards, one could/should rely on: # # s3.amazonaws.com/openstudio-sdk-documentation/cpp/OpenStudio-3.7.0-doc/ # utilities/html/classopenstudio_1_1_plane.html # #abc4747b1b041a7f09a6887bc0e5abce1 # # e.g. p1.each { |pt| face << pl.rayIntersection(pt, ray) } # # The following +/- replicates the same solution, based on: # https://stackoverflow.com/a/65832417 p0 = p2.first pl = OpenStudio::Plane.new(p2) n = pl.outwardNormal return face if n.dot(ray).abs < TOL p1.each do |pt| length = n.dot(pt - p0) / n.dot(ray.reverseVector) face << pt + scalar(ray, length) end face end |
#clockwise?(pts = nil) ⇒ Bool, false
Validates whether OpenStudio 3D points are listed clockwise, assuming points have been pre-‘aligned’ - not just flattened along XY (i.e. Z = 0).
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 |
# File 'lib/osut/utils.rb', line 3072 def clockwise?(pts = nil) mth = "OSut::#{__callee__}" pts = to_p3Dv(pts) return invalid("3+ points" , mth, 1, DBG, false) if pts.size < 3 return invalid("flat points", mth, 1, DBG, false) unless xyz?(pts, :z) n = OpenStudio.getOutwardNormal(pts) return invalid("polygon", mth, 1, DBG, false) if n.empty? n.get.z > 0 ? false : true end |
#coolingTemperatureSetpoints?(model = nil) ⇒ Bool, false
Validates if model has zones with valid cooling temperature setpoints.
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 |
# File 'lib/osut/utils.rb', line 1793 def coolingTemperatureSetpoints?(model = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Model return mismatch("model", model, cl, mth, DBG, false) unless model.is_a?(cl) model.getThermalZones.each do |zone| return true if minCoolScheduledSetpoint(zone)[:spt] end false end |
#daylit?(space = nil, sidelit = true, toplit = true, baselit = true) ⇒ Bool, false
Validates whether space has outdoor-facing surfaces with fenestration.
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 |
# File 'lib/osut/utils.rb', line 5230 def daylit?(space = nil, sidelit = true, toplit = true, baselit = true) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Space ck1 = space.is_a?(cl) ck2 = [true, false].include?(sidelit) ck3 = [true, false].include?(toplit) ck4 = [true, false].include?(baselit) return mismatch("space", space, cl, mth, DBG, false) unless ck1 return invalid("sidelit" , mth, 2, DBG, false) unless ck2 return invalid("toplit" , mth, 3, DBG, false) unless ck3 return invalid("baselit" , mth, 4, DBG, false) unless ck4 walls = sidelit ? facets(space, "Outdoors", "Wall") : [] roofs = toplit ? facets(space, "Outdoors", "RoofCeiling") : [] floors = baselit ? facets(space, "Outdoors", "Floor") : [] (walls + roofs + floors).each do |surface| surface.subSurfaces.each do |sub| # All fenestrated subsurface types are considered, as user can set these # explicitly (e.g. skylight in a wall) in OpenStudio. return true if fenestration?(sub) end end false end |
#defaultConstructionSet(s = nil) ⇒ OpenStudio::Model::DefaultConstructionSet?
Returns a surface’s default construction set.
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 |
# File 'lib/osut/utils.rb', line 828 def defaultConstructionSet(s = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Surface return invalid("surface", mth, 1) unless s.respond_to?(NS) id = s.nameString ok = s.isConstructionDefaulted m1 = "#{id} construction not defaulted (#{mth})" m2 = "#{id} construction" m3 = "#{id} space" return mismatch(id, s, cl, mth) unless s.is_a?(cl) log(ERR, m1) unless ok return nil unless ok return empty(m2, mth, ERR) if s.construction.empty? return empty(m3, mth, ERR) if s.space.empty? mdl = s.model base = s.construction.get space = s.space.get type = s.surfaceType ground = false exterior = false if s.isGroundSurface ground = true elsif s.outsideBoundaryCondition.downcase == "outdoors" exterior = true end unless space.defaultConstructionSet.empty? set = space.defaultConstructionSet.get return set if holdsConstruction?(set, base, ground, exterior, type) end unless space.spaceType.empty? spacetype = space.spaceType.get unless spacetype.defaultConstructionSet.empty? set = spacetype.defaultConstructionSet.get return set if holdsConstruction?(set, base, ground, exterior, type) end end unless space.buildingStory.empty? story = space.buildingStory.get unless story.defaultConstructionSet.empty? set = story.defaultConstructionSet.get return set if holdsConstruction?(set, base, ground, exterior, type) end end building = mdl.getBuilding unless building.defaultConstructionSet.empty? set = building.defaultConstructionSet.get return set if holdsConstruction?(set, base, ground, exterior, type) end nil end |
#facets(spaces = [], boundary = "all", type = "all", sides = []) ⇒ Array<OpenStudio::Model::Surface>
Returns an array of OpenStudio space surfaces or subsurfaces that match criteria, e.g. exterior, north-east facing walls in hotel “lobby”. Note that ‘sides’ rely on space coordinates (not building or site coordinates). Also, ‘sides’ are exclusive (not inclusive), e.g. walls strictly north-facing or strictly east-facing would not be returned if ‘sides’ holds [:north, :east]. No outside boundary condition filters if ‘boundary’ argument == “all”. No surface type filters if ‘type’ argument == “all”.
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 |
# File 'lib/osut/utils.rb', line 4984 def facets(spaces = [], boundary = "all", type = "all", sides = []) spaces = spaces.is_a?(OpenStudio::Model::Space) ? [spaces] : spaces spaces = spaces.respond_to?(:to_a) ? spaces.to_a : [] return [] if spaces.empty? sides = sides.respond_to?(:to_sym) ? [sides] : sides sides = sides.respond_to?(:to_a) ? sides.to_a : [] faces = [] boundary = trim(boundary).downcase type = trim(type).downcase return [] if boundary.empty? return [] if type.empty? # Filter sides. If 'sides' is initially empty, return all surfaces of # matching type and outside boundary condition. unless sides.empty? sides = sides.select { |side| SIDZ.include?(side) } return [] if sides.empty? end spaces.each do |space| return [] unless space.respond_to?(:setSpaceType) space.surfaces.each do |s| unless boundary == "all" next unless s.outsideBoundaryCondition.downcase == boundary end unless type == "all" next unless s.surfaceType.downcase == type end if sides.empty? faces << s else orientations = [] orientations << :top if s.outwardNormal.z > TOL orientations << :bottom if s.outwardNormal.z < -TOL orientations << :north if s.outwardNormal.y > TOL orientations << :east if s.outwardNormal.x > TOL orientations << :south if s.outwardNormal.y < -TOL orientations << :west if s.outwardNormal.x < -TOL faces << s if sides.all? { |o| orientations.include?(o) } end end end # SubSurfaces? spaces.each do |space| space.surfaces.each do |s| unless boundary == "all" next unless s.outsideBoundaryCondition.downcase == boundary end s.subSurfaces.each do |sub| unless type == "all" next unless sub.subSurfaceType.downcase == type end if sides.empty? faces << sub else orientations = [] orientations << :top if sub.outwardNormal.z > TOL orientations << :bottom if sub.outwardNormal.z < -TOL orientations << :north if sub.outwardNormal.y > TOL orientations << :east if sub.outwardNormal.x > TOL orientations << :south if sub.outwardNormal.y < -TOL orientations << :west if sub.outwardNormal.x < -TOL faces << sub if sides.all? { |o| orientations.include?(o) } end end end end faces end |
#facingDown?(pts = nil) ⇒ Bool, false
Validates whether a polygon faces downwards, harmonized with OpenStudio Utilities’ “alignZPrime” function.
3457 3458 3459 3460 3461 3462 3463 |
# File 'lib/osut/utils.rb', line 3457 def facingDown?(pts = nil) ray = OpenStudio::Point3d.new(0,0,-1) - OpenStudio::Point3d.new(0,0,0) pts = poly(pts, false, true, true) return false if pts.empty? OpenStudio.getOutwardNormal(pts).get.dot(ray) > 0.99 end |
#facingUp?(pts = nil) ⇒ Bool, false
Validates whether a polygon faces upwards, harmonized with OpenStudio Utilities’ “alignZPrime” function.
3441 3442 3443 3444 3445 3446 3447 |
# File 'lib/osut/utils.rb', line 3441 def facingUp?(pts = nil) ray = OpenStudio::Point3d.new(0,0,1) - OpenStudio::Point3d.new(0,0,0) pts = poly(pts, false, true, true) return false if pts.empty? OpenStudio.getOutwardNormal(pts).get.dot(ray) > 0.99 end |
#farthest(pts = nil, p01 = nil) ⇒ Integer?
Returns OpenStudio 3D point (in a set) farthest from a point of reference, e.g. grid origin. If left unspecified, the method systematically returns the top-right corner (TRC) of any horizontal set. If more than one point fits the initial criteria, the method relies on deterministic sorting through triangulation.
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 |
# File 'lib/osut/utils.rb', line 2563 def farthest(pts = nil, p01 = nil) mth = "OSut::#{__callee__}" l = 100 d01 = 0 d02 = 10000 d03 = 10000 idx = nil pts = to_p3Dv(pts) return idx if pts.empty? p03 = OpenStudio::Point3d.new( l,-l,-l) p02 = OpenStudio::Point3d.new( l, l, l) p01 = OpenStudio::Point3d.new(-l,-l,-l) unless p01 return mismatch("point", p01, cl, mth) unless p01.is_a?(OpenStudio::Point3d) pts.each_with_index do |pt, i| next if same?(pt, p01) length01 = (pt - p01).length length02 = (pt - p02).length length03 = (pt - p03).length if length01.round(2) == d01.round(2) if length02.round(2) == d02.round(2) if length03.round(2) < d03.round(2) idx = i d03 = length03 end elsif length02.round(2) < d02.round(2) idx = i d03 = length03 d02 = length02 end elsif length01.round(2) > d01.round(2) idx = i d01 = length01 d02 = length02 d03 = length03 end end idx end |
#fenestration?(s = nil) ⇒ Bool, false
Validates whether a sub surface is fenestrated.
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 |
# File 'lib/osut/utils.rb', line 1126 def fenestration?(s = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::SubSurface return invalid("subsurface", mth, 1, DBG, false) unless s.respond_to?(NS) id = s.nameString return mismatch(id, s, cl, mth, false) unless s.is_a?(cl) # OpenStudio::Model::SubSurface.validSubSurfaceTypeValues # "FixedWindow" : fenestration # "OperableWindow" : fenestration # "Door" # "GlassDoor" : fenestration # "OverheadDoor" # "Skylight" : fenestration # "TubularDaylightDome" : fenestration # "TubularDaylightDiffuser" : fenestration return false if s.subSurfaceType.downcase == "door" return false if s.subSurfaceType.downcase == "overheaddoor" true end |
#fits?(p1 = nil, p2 = nil, entirely = false) ⇒ Bool, false
Determines whether a 1st OpenStudio polygon fits in a 2nd polygon. Vertex sequencing of both polygons must be counterclockwise. If option ‘entirely’ is set to true, then the method returns false if point lies along any of the polygon edges, or is very near any of its vertices.
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 |
# File 'lib/osut/utils.rb', line 3542 def fits?(p1 = nil, p2 = nil, entirely = false) pts = [] p1 = poly(p1) p2 = poly(p2) return false if p1.empty? return false if p2.empty? p1.each { |p0| return false unless pointWithinPolygon?(p0, p2) } # Although p2 points may lie ALONG p1, none may lie entirely WITHIN p1. p2.each { |p0| return false if pointWithinPolygon?(p0, p1, true) } # p1 segment mid-points must not lie OUTSIDE of p2. getSegments(p1).each do |sg| mp = midpoint(sg.first, sg.last) return false unless pointWithinPolygon?(mp, p2) end entirely = false unless [true, false].include?(entirely) return true unless entirely p1.each { |p0| return false unless pointWithinPolygon?(p0, p2, entirely) } true end |
#flatten(pts = nil, axs = :z, val = 0) ⇒ OpenStudio::Point3dVector
Flattens OpenStudio 3D points vs X, Y or Z axes.
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 |
# File 'lib/osut/utils.rb', line 2615 def flatten(pts = nil, axs = :z, val = 0) mth = "OSut::#{__callee__}" pts = to_p3Dv(pts) v = OpenStudio::Point3dVector.new ok1 = val.respond_to?(:to_f) ok2 = [:x, :y, :z].include?(axs) return mismatch("val", val, Numeric, mth, DBG, v) unless ok1 return invalid("axis (XYZ?)", mth, 2, DBG, v) unless ok2 val = val.to_f case axs when :x pts.each { |pt| v << OpenStudio::Point3d.new(val, pt.y, pt.z) } when :y pts.each { |pt| v << OpenStudio::Point3d.new(pt.x, val, pt.z) } else pts.each { |pt| v << OpenStudio::Point3d.new(pt.x, pt.y, val) } end v end |
#genAnchors(s = nil, set = [], tag = :box) ⇒ Integer
Identifies ‘leader line anchors’, i.e. specific 3D points of a (larger) set (e.g. delineating a larger, parent polygon), each anchor linking the BLC corner of one or more (smaller) subsets (free-floating within the parent)
-
see follow-up ‘genInserts’. Subsets may hold several ‘tagged’ vertices
(e.g. :box, :cbox). By default, the solution seeks to anchor subset :box vertices. Users can select other tags, e.g. tag == :cbox. The solution minimally validates individual subsets (e.g. no self-intersecting polygons, coplanarity, no inter-subset conflicts, must fit within larger set). Potential leader lines cannot intersect each other, similarly tagged subsets or (parent) polygon edges. For highly-articulated cases (e.g. a narrow parent polygon with multiple concavities, holding multiple subsets), such leader line conflicts are likely unavoidable. It is recommended to first sort subsets (e.g. areas), given the solution’s ‘first-come-first-served’ policy. Subsets without valid leader lines are ultimately ignored (check for new set :void keys, see error logs). The larger set of points is expected to be in space coordinates - not building or site coordinates, while subset points are expected to ‘fit?’ in the larger set.
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 |
# File 'lib/osut/utils.rb', line 4510 def genAnchors(s = nil, set = [], tag = :box) mth = "OSut::#{__callee__}" n = 0 id = s.respond_to?(:nameString) ? "#{s.nameString}: " : "" pts = poly(s) return invalid("#{id} polygon", mth, 1, DBG, n) if pts.empty? return mismatch("set", set, Array, mth, DBG, n) unless set.respond_to?(:to_a) origin = OpenStudio::Point3d.new(0,0,0) zenith = OpenStudio::Point3d.new(0,0,1) ray = zenith - origin set = set.to_a # Validate individual subsets. Purge surface-specific leader line anchors. set.each_with_index do |st, i| str1 = id + "subset ##{i+1}" str2 = str1 + " #{tag.to_s}" return mismatch(str1, st, Hash, mth, DBG, n) unless st.respond_to?(:key?) return hashkey( str1, st, tag, mth, DBG, n) unless st.key?(tag) return empty("#{str2} vertices", mth, DBG, n) if st[tag].empty? if st.key?(:out) return hashkey( str1, st, :t, mth, DBG, n) unless st.key?(:t) return hashkey( str1, st, :ti, mth, DBG, n) unless st.key?(:ti) return hashkey( str1, st, :t0, mth, DBG, n) unless st.key?(:t0) end stt = poly(st[tag]) return invalid("#{str2} polygon", mth, 0, DBG, n) if stt.empty? return invalid("#{str2} gap", mth, 0, DBG, n) unless fits?(stt, pts, true) if st.key?(:ld) ld = st[:ld] return invalid("#{str1} leaders", mth, 0, DBG, n) unless ld.is_a?(Hash) ld.reject! { |k, _| k == s } else st[:ld] = {} end end set.each_with_index do |st, i| # When a subset already holds a leader line anchor (from an initial call # to 'genAnchors'), it inherits key :out - a Hash holding (among others) a # 'realigned' set of points (by default a 'realigned' :box). The latter is # typically generated from an outdoor-facing roof (e.g. when called from # 'lights'). Subsequent calls to 'genAnchors' may send (as first # argument) a corresponding ceiling tile below (also from 'addSkylights'). # Roof vs ceiling may neither share alignment transformation nor space # site transformation identities. All subsequent calls to 'genAnchors' # shall recover the :out points, apply a succession of de/alignments and # transformations in sync , and overwrite tagged points. # # Although 'genAnchors' and 'genInserts' have both been developed to # support anchor insertions in other cases (e.g. bay window in a wall), # variables and terminology here continue pertain to roofs, ceilings, # skylights and wells - less abstract, simpler to follow. if st.key?(:out) ti = st[:ti ] # unoccupied attic/plenum space site transformation t0 = st[:t0 ] # occupied space site transformation t = st[:t ] # initial alignment transformation of roof surface o = st[:out] tpts = t0.inverse * (ti * (t * (o[:r] * (o[:t] * o[:set])))) tpts = cast(tpts, pts, ray) st[tag] = tpts else st[:t] = OpenStudio::Transformation.alignFace(pts) unless st.key?(:t) tpts = st[:t].inverse * st[tag] o = getRealignedFace(tpts, true) tpts = st[:t] * (o[:r] * (o[:t] * o[:set])) st[:out] = o st[tag ] = tpts end end # Identify candidate leader line anchors for each subset. set.each_with_index do |st, i| candidates = [] tpts = st[tag] pts.each do |pt| ld = [pt, tpts.first] nb = 0 # Check for intersections between leader line and larger polygon edges. getSegments(pts).each do |sg| break unless nb.zero? next if holds?(sg, pt) nb += 1 if lineIntersects?(sg, ld) end # Check for intersections between candidate leader line vs other subsets. set.each do |other| break unless nb.zero? next if st == other ost = other[tag] getSegments(ost).each { |sg| nb += 1 if lineIntersects?(ld, sg) } end # ... and previous leader lines (first come, first serve basis). set.each do |other| break unless nb.zero? next if st == other next unless other.key?(:ld) next unless other[:ld].key?(s) ost = other[tag] pld = other[:ld][s] next if same?(pld, pt) nb += 1 if lineIntersects?(ld, [pld, ost.first]) end # Finally, check for self-intersections. getSegments(tpts).each do |sg| break unless nb.zero? next if holds?(sg, tpts.first) nb += 1 if lineIntersects?(sg, ld) nb += 1 if (sg.first - sg.last).cross(ld.first - ld.last).length < TOL end candidates << pt if nb.zero? end if candidates.empty? str = id + "set ##{i+1}" log(WRN, "#{str}: unable to anchor #{tag} leader line (#{mth})") st[:void] = true else p0 = candidates.sort_by { |pt| (pt - tpts.first).length }.first n += 1 st[:ld][s] = p0 end end n end |
#genConstruction(model = nil, specs = {}) ⇒ OpenStudio::Model::Construction?
Generates an OpenStudio multilayered construction, + materials if needed.
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
# File 'lib/osut/utils.rb', line 208 def genConstruction(model = nil, specs = {}) mth = "OSut::#{__callee__}" cl1 = OpenStudio::Model::Model cl2 = Hash return mismatch("model", model, cl1, mth) unless model.is_a?(cl1) return mismatch("specs", specs, cl2, mth) unless specs.is_a?(cl2) specs[:id] = "" unless specs.key?(:id) id = trim(specs[:id]) id = "OSut|CON|#{specs[:type]}" if id.empty? specs[:type] = :wall unless specs.key?(:type) chk = @@uo.keys.include?(specs[:type]) return invalid("surface type", mth, 2, ERR) unless chk specs[:uo] = @@uo[ specs[:type] ] unless specs.key?(:uo) u = specs[:uo] if u return mismatch("#{id} Uo", u, Numeric, mth) unless u.is_a?(Numeric) return invalid("#{id} Uo (> 5.678)", mth, 2, ERR) if u > 5.678 return negative("#{id} Uo" , mth, ERR) if u < 0 end # Optional specs. Log/reset if invalid. specs[:clad ] = :light unless specs.key?(:clad ) # exterior specs[:frame ] = :light unless specs.key?(:frame ) specs[:finish] = :light unless specs.key?(:finish) # interior log(WRN, "Reset to light cladding") unless @@mass.include?(specs[:clad ]) log(WRN, "Reset to light framing" ) unless @@mass.include?(specs[:frame ]) log(WRN, "Reset to light finish" ) unless @@mass.include?(specs[:finish]) specs[:clad ] = :light unless @@mass.include?(specs[:clad ]) specs[:frame ] = :light unless @@mass.include?(specs[:frame ]) specs[:finish] = :light unless @@mass.include?(specs[:finish]) film = @@film[ specs[:type] ] # Layered assembly (max 4 layers): # - cladding # - intermediate sheathing # - composite insulating/framing # - interior finish a = {clad: {}, sheath: {}, compo: {}, finish: {}, glazing: {}} case specs[:type] when :shading mt = :material d = 0.015 a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" when :partition unless specs[:clad] == :none d = 0.015 mt = :drywall a[:clad][:mat] = @@mats[mt] a[:clad][:d ] = d a[:clad][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end d = 0.015 d = 0.100 if specs[:frame] == :medium d = 0.200 if specs[:frame] == :heavy d = 0.100 if u mt = :concrete mt = :material if specs[:frame] == :light mt = :mineral if u a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" unless specs[:finish] == :none d = 0.015 mt = :drywall a[:finish][:mat] = @@mats[mt] a[:finish][:d ] = d a[:finish][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end when :wall unless specs[:clad] == :none mt = :material mt = :brick if specs[:clad] == :medium mt = :concrete if specs[:clad] == :heavy d = 0.100 d = 0.015 if specs[:clad] == :light a[:clad][:mat] = @@mats[mt] a[:clad][:d ] = d a[:clad][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end mt = :drywall mt = :mineral if specs[:frame] == :medium mt = :polyiso if specs[:frame] == :heavy d = 0.100 d = 0.015 if specs[:frame] == :light a[:sheath][:mat] = @@mats[mt] a[:sheath][:d ] = d a[:sheath][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" mt = :mineral mt = :cellulose if specs[:frame] == :medium mt = :concrete if specs[:frame] == :heavy mt = :material unless u d = 0.100 d = 0.200 if specs[:frame] == :heavy d = 0.015 unless u a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" unless specs[:finish] == :none mt = :concrete mt = :drywall if specs[:finish] == :light d = 0.015 d = 0.100 if specs[:finish] == :medium d = 0.200 if specs[:finish] == :heavy a[:finish][:mat] = @@mats[mt] a[:finish][:d ] = d a[:finish][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end when :roof unless specs[:clad] == :none mt = :concrete mt = :material if specs[:clad] == :light d = 0.015 d = 0.100 if specs[:clad] == :medium # e.g. terrace d = 0.200 if specs[:clad] == :heavy # e.g. parking garage a[:clad][:mat] = @@mats[mt] a[:clad][:d ] = d a[:clad][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end mt = :mineral mt = :polyiso if specs[:frame] == :medium mt = :cellulose if specs[:frame] == :heavy mt = :material unless u d = 0.100 d = 0.015 unless u a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" unless specs[:finish] == :none mt = :concrete mt = :drywall if specs[:finish] == :light d = 0.015 d = 0.100 if specs[:finish] == :medium # proxy for steel decking d = 0.200 if specs[:finish] == :heavy a[:finish][:mat] = @@mats[mt] a[:finish][:d ] = d a[:finish][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end when :floor unless specs[:clad] == :none mt = :material d = 0.015 a[:clad][:mat] = @@mats[mt] a[:clad][:d ] = d a[:clad][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end mt = :mineral mt = :polyiso if specs[:frame] == :medium mt = :cellulose if specs[:frame] == :heavy mt = :material unless u d = 0.100 d = 0.015 unless u a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" unless specs[:finish] == :none mt = :concrete mt = :material if specs[:finish] == :light d = 0.015 d = 0.100 if specs[:finish] == :medium d = 0.200 if specs[:finish] == :heavy a[:finish][:mat] = @@mats[mt] a[:finish][:d ] = d a[:finish][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end when :slab mt = :sand d = 0.100 a[:clad][:mat] = @@mats[mt] a[:clad][:d ] = d a[:clad][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" unless specs[:frame] == :none mt = :polyiso d = 0.025 a[:sheath][:mat] = @@mats[mt] a[:sheath][:d ] = d a[:sheath][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end mt = :concrete d = 0.100 d = 0.200 if specs[:frame] == :heavy a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" unless specs[:finish] == :none mt = :material d = 0.015 a[:finish][:mat] = @@mats[mt] a[:finish][:d ] = d a[:finish][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end when :basement unless specs[:clad] == :none mt = :concrete mt = :material if specs[:clad] == :light d = 0.100 d = 0.015 if specs[:clad] == :light a[:clad][:mat] = @@mats[mt] a[:clad][:d ] = d a[:clad][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" mt = :polyiso d = 0.025 a[:sheath][:mat] = @@mats[mt] a[:sheath][:d ] = d a[:sheath][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" mt = :concrete d = 0.200 a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" else mt = :concrete d = 0.200 a[:sheath][:mat] = @@mats[mt] a[:sheath][:d ] = d a[:sheath][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" unless specs[:finish] == :none mt = :mineral d = 0.075 a[:compo][:mat] = @@mats[mt] a[:compo][:d ] = d a[:compo][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" mt = :drywall d = 0.015 a[:finish][:mat] = @@mats[mt] a[:finish][:d ] = d a[:finish][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" end end when :door mt = :door d = 0.045 a[:compo ][:mat ] = @@mats[mt] a[:compo ][:d ] = d a[:compo ][:id ] = "OSut|#{mt}|#{format('%03d', d*1000)[-3..-1]}" when :window a[:glazing][:u ] = specs[:uo ] a[:glazing][:shgc] = 0.450 a[:glazing][:shgc] = specs[:shgc] if specs.key?(:shgc) a[:glazing][:id ] = "OSut|window" a[:glazing][:id ] += "|U#{format('%.1f', a[:glazing][:u])}" a[:glazing][:id ] += "|SHGC#{format('%d', a[:glazing][:shgc]*100)}" when :skylight a[:glazing][:u ] = specs[:uo ] a[:glazing][:shgc] = 0.450 a[:glazing][:shgc] = specs[:shgc] if specs.key?(:shgc) a[:glazing][:id ] = "OSut|skylight" a[:glazing][:id ] += "|U#{format('%.1f', a[:glazing][:u])}" a[:glazing][:id ] += "|SHGC#{format('%d', a[:glazing][:shgc]*100)}" end # Initiate layers. glazed = true glazed = false if a[:glazing].empty? layers = OpenStudio::Model::OpaqueMaterialVector.new unless glazed layers = OpenStudio::Model::FenestrationMaterialVector.new if glazed if glazed u = a[:glazing][:u ] shgc = a[:glazing][:shgc] lyr = model.getSimpleGlazingByName(a[:glazing][:id]) if lyr.empty? lyr = OpenStudio::Model::SimpleGlazing.new(model, u, shgc) lyr.setName(a[:glazing][:id]) else lyr = lyr.get end layers << lyr else # Loop through each layer spec, and generate construction. a.each do |i, l| next if l.empty? lyr = model.getStandardOpaqueMaterialByName(l[:id]) if lyr.empty? lyr = OpenStudio::Model::StandardOpaqueMaterial.new(model) lyr.setName(l[:id]) lyr.setThickness(l[:d]) lyr.setRoughness( l[:mat][:rgh]) if l[:mat].key?(:rgh) lyr.setConductivity( l[:mat][:k ]) if l[:mat].key?(:k ) lyr.setDensity( l[:mat][:rho]) if l[:mat].key?(:rho) lyr.setSpecificHeat( l[:mat][:cp ]) if l[:mat].key?(:cp ) lyr.setThermalAbsorptance(l[:mat][:thm]) if l[:mat].key?(:thm) lyr.setSolarAbsorptance( l[:mat][:sol]) if l[:mat].key?(:sol) lyr.setVisibleAbsorptance(l[:mat][:vis]) if l[:mat].key?(:vis) else lyr = lyr.get end layers << lyr end end c = OpenStudio::Model::Construction.new(layers) c.setName(id) # Adjust insulating layer thickness or conductivity to match requested Uo. unless glazed ro = 0 ro = 1 / specs[:uo] - @@film[ specs[:type] ] if specs[:uo] if specs[:type] == :door # 1x layer, adjust conductivity layer = c.getLayer(0).to_StandardOpaqueMaterial return invalid("#{id} standard material?", mth, 0) if layer.empty? layer = layer.get k = layer.thickness / ro layer.setConductivity(k) elsif ro > 0 # multiple layers, adjust insulating layer thickness lyr = insulatingLayer(c) return invalid("#{id} construction", mth, 0) if lyr[:index].nil? return invalid("#{id} construction", mth, 0) if lyr[:type ].nil? return invalid("#{id} construction", mth, 0) if lyr[:r ].zero? index = lyr[:index] layer = c.getLayer(index).to_StandardOpaqueMaterial return invalid("#{id} material @#{index}", mth, 0) if layer.empty? layer = layer.get k = layer.conductivity d = (ro - rsi(c) + lyr[:r]) * k return invalid("#{id} adjusted m", mth, 0) if d < 0.03 nom = "OSut|" nom += layer.nameString.gsub(/[^a-z]/i, "").gsub("OSut", "") nom += "|" nom += format("%03d", d*1000)[-3..-1] layer.setName(nom) if model.getStandardOpaqueMaterialByName(nom).empty? layer.setThickness(d) end end c end |
#genExtendedVertices(s = nil, set = [], tag = :vtx) ⇒ OpenStudio::Point3dVector
Extends (larger) polygon vertices to circumscribe one or more (smaller) subsets of vertices, based on previously-generated ‘leader line’ anchors. The solution minimally validates individual subsets (e.g. no self-intersecting polygons, coplanarity, no inter-subset conflicts, must fit within larger set). Valid leader line anchors (set key :ld) need to be generated prior to calling the method - see ‘genAnchors’. Subsets may hold several ‘tag’ged vertices (e.g. :box, :vtx). By default, the solution seeks to anchor subset :vtx vertices. Users can select other tags, e.g. tag == :box).
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 |
# File 'lib/osut/utils.rb', line 4672 def genExtendedVertices(s = nil, set = [], tag = :vtx) mth = "OSut::#{__callee__}" id = s.respond_to?(:nameString) ? "#{s.nameString}: " : "" f = false pts = poly(s) cl = OpenStudio::Point3d a = OpenStudio::Point3dVector.new v = [] return a if pts.empty? return mismatch("set", set, Array, mth, DBG, a) unless set.respond_to?(:to_a) set = set.to_a # Validate individual sets. set.each_with_index do |st, i| str1 = id + "subset ##{i+1}" str2 = str1 + " #{tag.to_s}" next if st.key?(:void) && st[:void] return mismatch(str1, st, Hash, mth, DBG, a) unless st.respond_to?(:key?) return hashkey( str1, st, tag, mth, DBG, a) unless st.key?(tag) return empty("#{str2} vertices", mth, DBG, a) if st[tag].empty? return hashkey( str1, st, :ld, mth, DBG, a) unless st.key?(:ld) stt = poly(st[tag]) return invalid("#{str2} polygon", mth, 0, DBG, a) if stt.empty? ld = st[:ld] return mismatch(str, ld, Hash, mth, DBG, a) unless ld.is_a?(Hash) return hashkey( str, ld, s, mth, DBG, a) unless ld.key?(s) return mismatch(str, ld[s], cl, mth, DBG, a) unless ld[s].is_a?(cl) end # Re-sequence polygon vertices. pts.each do |pt| v << pt # Loop through each valid set; concatenate circumscribing vertices. set.each do |st| next if st.key?(:void) && st[:void] next unless same?(st[:ld][s], pt) next unless st.key?(tag) v += st[tag].to_a v << pt end end to_p3Dv(v) end |
#genInserts(s = nil, set = []) ⇒ OpenStudio::Point3dVector
Generates (1D or 2D) arrays of (smaller) rectangular collection of points, (e.g. arrays of polygon inserts) from subset parameters, within a (larger) set (e.g. parent polygon). If successful, each subset inherits additional key:value pairs: namely :vtx (collection of circumscribing vertices), and :vts (collection of individual insert vertices). Valid leader line anchors (set key :ld) need to be generated prior to calling the solution
-
see ‘genAnchors’.
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 |
# File 'lib/osut/utils.rb', line 4743 def genInserts(s = nil, set = []) mth = "OSut::#{__callee__}" id = s.respond_to?(:nameString) ? "#{s.nameString}:" : "" pts = poly(s) cl = OpenStudio::Point3d a = OpenStudio::Point3dVector.new return a if pts.empty? return mismatch("set", set, Array, mth, DBG, a) unless set.respond_to?(:to_a) set = set.to_a gap = 0.1 gap4 = 0.4 # minimum insert width/depth # Validate/reset individual set collections. set.each_with_index do |st, i| str1 = id + "subset ##{i+1}" next if st.key?(:void) && st[:void] return mismatch(str1, st, Hash, mth, DBG, a) unless st.respond_to?(:key?) return hashkey( str1, st, :box, mth, DBG, a) unless st.key?(:box) return hashkey( str1, st, :ld, mth, DBG, a) unless st.key?(:ld) return hashkey( str1, st, :out, mth, DBG, a) unless st.key?(:out) str2 = str1 + " anchor" ld = st[:ld] return mismatch(str2, ld, Hash, mth, DBG, a) unless ld.respond_to?(:key?) return hashkey( str2, ld, s, mth, DBG, a) unless ld.key?(s) return mismatch(str2, ld[s], cl, mth, DBG, a) unless ld[s].is_a?(cl) # Ensure each set bounding box is safely within larger polygon boundaries. # @todo: In line with related addSkylights' @todo, expand solution to # safely handle 'side' cutouts (i.e. no need for leader lines). In # so doing, boxes could eventually align along surface edges. str3 = str1 + " box" bx = poly(st[:box]) return invalid(str3, mth, 0, DBG, a) if bx.empty? return invalid("#{str3} rectangle", mth, 0, DBG, a) unless rectangular?(bx) return invalid("#{str3} box", mth, 0, DBG, a) unless fits?(bx, pts, true) if st.key?(:rows) rws = st[:rows] return invalid("#{id} rows", mth, 0, DBG, a) unless rws.is_a?(Integer) return zero( "#{id} rows", mth, DBG, a) if rws < 1 else st[:rows] = 1 end if st.key?(:cols) cls = st[:cols] return invalid("#{id} cols", mth, 0, DBG, a) unless cls.is_a?(Integer) return zero( "#{id} cols", mth, DBG, a) if cls < 1 else st[:cols] = 1 end if st.key?(:w0) w0 = st[:w0] return invalid("#{id} width", mth, 0, DBG, a) unless w0.is_a?(Numeric) w0 = w0.to_f return zero("#{id} width", mth, DBG, a) if w0.round(2) < gap4 else st[:w0] = 1.4 end if st.key?(:d0) d0 = st[:d0] return invalid("#{id} depth", mth, 0, DBG, a) unless d0.is_a?(Numeric) d0 = d0.to_f return zero("#{id} depth", mth, DBG, a) if d0.round(2) < gap4 else st[:d0] = 1.4 end if st.key?(:dX) dX = st[:dX] return invalid( "#{id} dX", mth, 0, DBG, a) unless dX.is_a?(Numeric) else st[:dX] = nil end if st.key?(:dY) dY = st[:dY] return invalid( "#{id} dY", mth, 0, DBG, a) unless dY.is_a?(Numeric) else st[:dY] = nil end end # Flag conflicts between set bounding boxes. @todo: ease up for ridges. set.each_with_index do |st, i| bx = st[:box] next if st.key?(:void) && st[:void] set.each_with_index do |other, j| next if i == j bx2 = other[:box] str4 = id + "set boxes ##{i+1}:##{j+1}" next unless overlaps?(bx, bx2) return invalid("#{str4} (overlapping)", mth, 0, DBG, a) end end t = OpenStudio::Transformation.alignFace(pts) rpts = t.inverse * pts # Loop through each 'valid' subset (i.e. linking a valid leader line anchor), # generate subset vertex array based on user-provided specs. set.each_with_index do |st, i| str = id + "subset ##{i+1}" next if st.key?(:void) && st[:void] o = st[:out] vts = {} # collection of individual (named) polygon insert vertices vtx = [] # sequence of circumscribing polygon vertices bx = o[:set] w = width(bx) # overall sandbox width d = height(bx) # overall sandbox depth dX = st[:dX ] # left/right buffer (array vs bx) dY = st[:dY ] # top/bottom buffer (array vs bx) cols = st[:cols] # number of array columns rows = st[:rows] # number of array rows x = st[:w0 ] # width of individual insert y = st[:d0 ] # depth of individual insert gX = 0 # gap between insert columns gY = 0 # gap between insert rows # Gap between insert columns. if cols > 1 dX = ( (w - cols * x) / cols) / 2 unless dX gX = (w - 2 * dX - cols * x) / (cols - 1) gX = gap if gX.round(2) < gap dX = (w - cols * x - (cols - 1) * gX) / 2 else dX = (w - x) / 2 end if dX.round(2) < 0 log(ERR, "Skipping #{str}: Negative dX {#{mth}}") next end # Gap between insert rows. if rows > 1 dY = ( (d - rows * y) / rows) / 2 unless dY gY = (d - 2 * dY - rows * y) / (rows - 1) gY = gap if gY.round(2) < gap dY = (d - rows * y - (rows - 1) * gY) / 2 else dY = (d - y) / 2 end if dY.round(2) < 0 log(ERR, "Skipping #{str}: Negative dY {#{mth}}") next end st[:dX] = dX st[:gX] = gX st[:dY] = dY st[:gY] = gY x0 = bx.min_by(&:x).x + dX # X-axis starting point y0 = bx.min_by(&:y).y + dY # X-axis starting point xC = x0 # current X-axis position yC = y0 # current Y-axis position # BLC of array. vtx << OpenStudio::Point3d.new(xC, yC, 0) # Move up incrementally along left side of sandbox. rows.times.each do |iY| unless iY.zero? yC += gY vtx << OpenStudio::Point3d.new(xC, yC, 0) end yC += y vtx << OpenStudio::Point3d.new(xC, yC, 0) end # Loop through each row: left-to-right, then right-to-left. rows.times.each do |iY| (cols - 1).times.each do |iX| xC += x vtx << OpenStudio::Point3d.new(xC, yC, 0) xC += gX vtx << OpenStudio::Point3d.new(xC, yC, 0) end # Generate individual polygon inserts, left-to-right. cols.times.each do |iX| nom = "#{i}:#{iX}:#{iY}" vec = [] vec << OpenStudio::Point3d.new(xC , yC , 0) vec << OpenStudio::Point3d.new(xC , yC - y, 0) vec << OpenStudio::Point3d.new(xC + x, yC - y, 0) vec << OpenStudio::Point3d.new(xC + x, yC , 0) # Store. vts[nom] = to_p3Dv(t * ulc(o[:r] * (o[:t] * vec))) # Add reverse vertices, circumscribing each insert. vec.reverse! vec.pop if iX == cols - 1 vtx += vec xC -= gX + x unless iX == cols - 1 end unless iY == rows - 1 yC -= gY + y vtx << OpenStudio::Point3d.new(xC, yC, 0) end end st[:vts] = vts st[:vtx] = to_p3Dv(t * (o[:r] * (o[:t] * vtx))) end # Extended vertex sequence of the larger polygon. genExtendedVertices(s, set) end |
#genMass(sps = OpenStudio::Model::SpaceVector.new, ratio = 2.0) ⇒ Bool, false
Generates an internal mass definition and instances for target spaces.
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
# File 'lib/osut/utils.rb', line 675 def genMass(sps = OpenStudio::Model::SpaceVector.new, ratio = 2.0) # This is largely adapted from OpenStudio-Standards: # # https://github.com/NREL/openstudio-standards/blob/ # d332605c2f7a35039bf658bf55cad40a7bcac317/lib/openstudio-standards/ # prototypes/common/objects/Prototype.Model.rb#L786 mth = "OSut::#{__callee__}" cl1 = OpenStudio::Model::SpaceVector cl2 = Numeric no = false return mismatch("spaces", sps, cl1, mth, DBG, no) unless sps.is_a?(cl1) return mismatch( "ratio", ratio, cl2, mth, DBG, no) unless ratio.is_a?(cl2) return empty( "spaces", mth, WRN, no) if sps.empty? return negative( "ratio", mth, ERR, no) if ratio < 0 # A single material. mdl = sps.first.model id = "OSut|MASS|Material" mat = mdl.getOpaqueMaterialByName(id) if mat.empty? mat = OpenStudio::Model::StandardOpaqueMaterial.new(mdl) mat.setName(id) mat.setRoughness("MediumRough") mat.setThickness(0.15) mat.setConductivity(1.12) mat.setDensity(540) mat.setSpecificHeat(1210) mat.setThermalAbsorptance(0.9) mat.setSolarAbsorptance(0.7) mat.setVisibleAbsorptance(0.17) else mat = mat.get end # A single, 1x layered construction. id = "OSut|MASS|Construction" con = mdl.getConstructionByName(id) if con.empty? con = OpenStudio::Model::Construction.new(mdl) con.setName(id) layers = OpenStudio::Model::MaterialVector.new layers << mat con.setLayers(layers) else con = con.get end id = "OSut|InternalMassDefinition|" + (format "%.2f", ratio) df = mdl.getInternalMassDefinitionByName(id) if df.empty? df = OpenStudio::Model::InternalMassDefinition.new(mdl) df.setName(id) df.setConstruction(con) df.setSurfaceAreaperSpaceFloorArea(ratio) else df = df.get end sps.each do |sp| mass = OpenStudio::Model::InternalMass.new(df) mass.setName("OSut|InternalMass|#{sp.nameString}") mass.setSpace(sp) end true end |
#genShade(subs = OpenStudio::Model::SubSurfaceVector.new) ⇒ Bool, false
Generates a solar shade (e.g. roller, textile) for glazed OpenStudio SubSurfaces (v351+), controlled to minimize overheating in cooling months (May to October in Northern Hemisphere), when outdoor dry bulb temperature is above 18°C and impinging solar radiation is above 100 W/m2.
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
# File 'lib/osut/utils.rb', line 581 def genShade(subs = OpenStudio::Model::SubSurfaceVector.new) # Filter OpenStudio warnings for ShadingControl: # ref: https://github.com/NREL/OpenStudio/issues/4911 str = ".*(?<!ShadingControl)$" OpenStudio::Logger.instance.standardOutLogger.setChannelRegex(str) mth = "OSut::#{__callee__}" v = OpenStudio.openStudioVersion.split(".").join.to_i cl = OpenStudio::Model::SubSurfaceVector return mismatch("subs ", subs, cl2, mth, DBG, false) unless subs.is_a?(cl) return empty( "subs", mth, WRN, false) if subs.empty? return false if v < 321 # Shading availability period. mdl = subs.first.model id = "onoff" onoff = mdl.getScheduleTypeLimitsByName(id) if onoff.empty? onoff = OpenStudio::Model::ScheduleTypeLimits.new(mdl) onoff.setName(id) onoff.setLowerLimitValue(0) onoff.setUpperLimitValue(1) onoff.setNumericType("Discrete") onoff.setUnitType("Availability") else onoff = onoff.get end # Shading schedule. id = "OSut|SHADE|Ruleset" sch = mdl.getScheduleRulesetByName(id) if sch.empty? sch = OpenStudio::Model::ScheduleRuleset.new(mdl, 0) sch.setName(id) sch.setScheduleTypeLimits(onoff) sch.defaultDaySchedule.setName("OSut|Shade|Ruleset|Default") else sch = sch.get end # Summer cooling rule. id = "OSut|SHADE|ScheduleRule" rule = mdl.getScheduleRuleByName(id) if rule.empty? may = OpenStudio::MonthOfYear.new("May") october = OpenStudio::MonthOfYear.new("Oct") start = OpenStudio::Date.new(may, 1) finish = OpenStudio::Date.new(october, 31) rule = OpenStudio::Model::ScheduleRule.new(sch) rule.setName(id) rule.setStartDate(start) rule.setEndDate(finish) rule.setApplyAllDays(true) rule.daySchedule.setName("OSut|Shade|Rule|Default") rule.daySchedule.addValue(OpenStudio::Time.new(0,24,0,0), 1) else rule = rule.get end # Shade object. id = "OSut|Shade" shd = mdl.getShadeByName(id) if shd.empty? shd = OpenStudio::Model::Shade.new(mdl) shd.setName(id) else shd = shd.get end # Shading control (unique to each call). id = "OSut|ShadingControl" ctl = OpenStudio::Model::ShadingControl.new(shd) ctl.setName(id) ctl.setSchedule(sch) ctl.setShadingControlType("OnIfHighOutdoorAirTempAndHighSolarOnWindow") ctl.setSetpoint(18) # °C ctl.setSetpoint2(100) # W/m2 ctl.setMultipleSurfaceControlType("Group") ctl.setSubSurfaces(subs) end |
#genSlab(pltz = [], z = 0) ⇒ OpenStudio::Point3dVector
Generates an OpenStudio 3D point vector of a composite floor “slab”, a ‘union’ of multiple rectangular, horizontal floor “plates”. Each plate must either share an edge with (or encompass or overlap) any of the preceding plates in the array. The generated slab may not be convex.
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 |
# File 'lib/osut/utils.rb', line 5079 def genSlab(pltz = [], z = 0) mth = "OSut::#{__callee__}" slb = OpenStudio::Point3dVector.new bkp = OpenStudio::Point3dVector.new cl1 = Array cl2 = Hash cl3 = Numeric # Input validation. return mismatch("plates", pltz, cl1, mth, DBG, slb) unless pltz.is_a?(cl1) return mismatch( "Z", z, cl3, mth, DBG, slb) unless z.is_a?(cl3) pltz.each_with_index do |plt, i| id = "plate # #{i+1} (index #{i})" return mismatch(id, plt, cl1, mth, DBG, slb) unless plt.is_a?(cl2) return hashkey( id, plt, :x, mth, DBG, slb) unless plt.key?(:x ) return hashkey( id, plt, :y, mth, DBG, slb) unless plt.key?(:y ) return hashkey( id, plt, :dx, mth, DBG, slb) unless plt.key?(:dx) return hashkey( id, plt, :dy, mth, DBG, slb) unless plt.key?(:dy) x = plt[:x ] y = plt[:y ] dx = plt[:dx] dy = plt[:dy] return mismatch("#{id} X", x, cl3, mth, DBG, slb) unless x.is_a?(cl3) return mismatch("#{id} Y", y, cl3, mth, DBG, slb) unless y.is_a?(cl3) return mismatch("#{id} dX", dx, cl3, mth, DBG, slb) unless dx.is_a?(cl3) return mismatch("#{id} dY", dy, cl3, mth, DBG, slb) unless dy.is_a?(cl3) return zero( "#{id} dX", mth, ERR, slb) if dx.abs < TOL return zero( "#{id} dY", mth, ERR, slb) if dy.abs < TOL end # Join plates. pltz.each_with_index do |plt, i| id = "plate # #{i+1} (index #{i})" x = plt[:x ] y = plt[:y ] dx = plt[:dx] dy = plt[:dy] # Adjust X if dX < 0. x -= -dx if dx < 0 dx = -dx if dx < 0 # Adjust Y if dY < 0. y -= -dy if dy < 0 dy = -dy if dy < 0 vtx = [] vtx << OpenStudio::Point3d.new(x + dx, y + dy, 0) vtx << OpenStudio::Point3d.new(x + dx, y, 0) vtx << OpenStudio::Point3d.new(x, y, 0) vtx << OpenStudio::Point3d.new(x, y + dy, 0) if slb.empty? slb = vtx else slab = OpenStudio.join(slb, vtx, TOL2) slb = slab.get unless slab.empty? return invalid(id, mth, 0, ERR, bkp) if slab.empty? end end # Once joined, re-adjust Z-axis coordinates. unless z.zero? vtx = OpenStudio::Point3dVector.new slb.each { |pt| vtx << OpenStudio::Point3d.new(pt.x, pt.y, z) } slb = vtx end slb end |
#getCollinears(pts = nil, n = 0) ⇒ OpenStudio::Point3dVector
Returns sequential collinear points in an OpenStudio 3D point vector.
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 |
# File 'lib/osut/utils.rb', line 3192 def getCollinears(pts = nil, n = 0) mth = "OSut::#{__callee__}" pts = getUniques(pts) ok = n.respond_to?(:to_i) v = OpenStudio::Point3dVector.new return pts if pts.size < 3 return mismatch("n collinears", n, Integer, mth, DBG, v) unless ok ncolls = getNonCollinears(pts) return pts if ncolls.empty? to_p3Dv( pts.delete_if { |pt| holds?(ncolls, pt) } ) end |
#getHorizontalRidges(roofs = []) ⇒ Array
Identifies horizontal ridges along 2x sloped (roof?) surfaces (same space). The concept of ‘sloped’ is harmonized with OpenStudio’s “alignZPrime”. If successful, the returned Array holds ‘ridge’ Hashes. Each Hash holds: an :edge (OpenStudio::Point3dVector), the edge :length (Numeric), and :roofs (Array of 2x linked surfaces). Each surface may be linked to more than one horizontal ridge.
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 |
# File 'lib/osut/utils.rb', line 6019 def getHorizontalRidges(roofs = []) mth = "OSut::#{__callee__}" ridges = [] return ridges unless roofs.is_a?(Array) roofs = roofs.select { |s| s.is_a?(OpenStudio::Model::Surface) } roofs = roofs.select { |s| sloped?(s) } roofs.each do |roof| maxZ = roof.vertices.max_by(&:z).z next if roof.space.empty? space = roof.space.get getSegments(roof).each do |edge| next unless xyz?(edge, :z, maxZ) # Skip if already tracked. match = false ridges.each do |ridge| break if match edg = ridge[:edge] match = same?(edge, edg) || same?(edge, edg.reverse) end next if match ridge = { edge: edge, length: (edge[1] - edge[0]).length, roofs: [roof] } # Links another roof (same space)? match = false roofs.each do |ruf| break if match next if ruf == roof next if ruf.space.empty? next unless ruf.space.get == space getSegments(ruf).each do |edg| break if match next unless same?(edge, edg) || same?(edge, edg.reverse) ridge[:roofs] << ruf ridges << ridge match = true end end end end ridges end |
#getLineIntersection(s1 = [], s2 = []) ⇒ OpenStudio::Point3d?
Returns point of intersection of 2x 3D line segments.
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 |
# File 'lib/osut/utils.rb', line 2961 def getLineIntersection(s1 = [], s2 = []) s1 = getSegments(s1) s2 = getSegments(s2) return nil if s1.empty? return nil if s2.empty? s1 = s1.first s2 = s2.first # Matching segments? return nil if same?(s1, s2) return nil if same?(s1, s2.to_a.reverse) a1 = s1[0] a2 = s1[1] b1 = s2[0] b2 = s2[1] # Matching segment endpoints? return a1 if same?(a1, b1) return a2 if same?(a2, b1) return a1 if same?(a1, b2) return a2 if same?(a2, b2) # Segment endpoint along opposite segment? return a1 if pointAlongSegments?(a1, s2) return a2 if pointAlongSegments?(a2, s2) return b1 if pointAlongSegments?(b1, s1) return b2 if pointAlongSegments?(b2, s1) # Line segments as vectors. Skip if colinear. a = a2 - a1 b = b2 - b1 xab = a.cross(b) return nil if xab.length.round(4) < TOL2 # Link 1st point to other segment endpoints as vectors. Must be coplanar. a1b1 = b1 - a1 a1b2 = b2 - a1 xa1b1 = a.cross(a1b1) xa1b2 = a.cross(a1b2) xa1b1.normalize xa1b2.normalize xab.normalize return nil unless xab.cross(xa1b1).length.round(4) < TOL2 return nil unless xab.cross(xa1b2).length.round(4) < TOL2 # Reset. xa1b1 = a.cross(a1b1) xa1b2 = a.cross(a1b2) # Both segment endpoints can't be 'behind' point. return nil if a.dot(a1b1) < 0 && a.dot(a1b2) < 0 # Both in 'front' of point? Pick farthest from 'a'. if a.dot(a1b1) > 0 && a.dot(a1b2) > 0 lxa1b1 = xa1b1.length lxa1b2 = xa1b2.length c1 = lxa1b1.round(4) < lxa1b2.round(4) ? b1 : b2 else c1 = a.dot(a1b1) > 0 ? b1 : b2 end c1a1 = a1 - c1 xc1a1 = a.cross(c1a1) d1 = a1 + xc1a1 n = a.cross(xc1a1) dot = b.dot(n) n = n.reverseVector if dot < 0 f = c1a1.dot(n) / b.dot(n) p0 = c1 + scalar(b, f) # Intersection can't be 'behind' point. return nil if a.dot(p0 - a1) < 0 # Ensure intersection is sandwiched between endpoints. return nil unless pointAlongSegments?(p0, s2) && pointAlongSegments?(p0, s1) p0 end |
#getNonCollinears(pts = nil, n = 0) ⇒ OpenStudio::Point3dVector
Returns sequential non-collinear points in an OpenStudio 3D point vector.
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 |
# File 'lib/osut/utils.rb', line 3151 def getNonCollinears(pts = nil, n = 0) mth = "OSut::#{__callee__}" pts = getUniques(pts) ok = n.respond_to?(:to_i) v = OpenStudio::Point3dVector.new a = [] return pts if pts.size < 3 return mismatch("n non-collinears", n, Integer, mth, DBG, v) unless ok # Evaluate cross product of vectors of 3x sequential points. pts.each_with_index do |p2, i2| i1 = i2 - 1 i3 = i2 + 1 i3 = 0 if i3 == pts.size p1 = pts[i1] p3 = pts[i3] v13 = p3 - p1 v12 = p2 - p1 next if v12.cross(v13).length < TOL2 a << p2 end if holds?(a, pts[0]) a = a.rotate(-1) unless same?(a[0], pts[0]) end n = n.to_i a = a[0..n-1] if n > 0 a = a[n-1..-1] if n < 0 to_p3Dv(a) end |
#getRealignedFace(pts = nil, force = false) ⇒ Hash
Generates re-‘aligned’ polygon vertices wrt main axis of symmetry of its largest bounded box. Input polygon vertex Z-axis values must equal 0, and be counterclockwise. A Hash is returned with 6x key:value pairs … set: realigned (cloned) polygon vertices, box: its bounded box (wrt to :set), bbox: its bounding box, t: its translation transformation, r: its rotation transformation, and o: the origin coordinates of its axis of rotation. First, cloned polygon vertices are rotated so the longest axis of symmetry of its bounded box lies parallel to the X-axis; :o being the midpoint of the narrow side (of the bounded box) nearest to grid origin (0,0,0). If the axis of symmetry of the bounded box is already parallel to the X-axis, then the rotation step is skipped (unless force == true). Whether rotated or not, polygon vertices are then translated as to ensure one or more vertices are aligned along the X-axis and one or more vertices are aligned along the Y-axis (no vertices with negative X or Y coordinate values). To unalign the returned set of vertices (or its bounded box, or its bounding box), first inverse the translation transformation, then inverse the rotation transformation.
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 |
# File 'lib/osut/utils.rb', line 4352 def getRealignedFace(pts = nil, force = false) mth = "OSut::#{__callee__}" out = { set: nil, box: nil, bbox: nil, t: nil, r: nil, o: nil } pts = poly(pts, false, true) return out if pts.empty? return invalid("aligned plane", mth, 1, DBG, out) unless xyz?(pts, :z) return invalid("clockwise pts", mth, 1, DBG, out) if clockwise?(pts) # Optionally force rotation so bounded box ends up wider than taller. # Strongly suggested for flat surfaces like roofs (see 'sloped?'). unless [true, false].include?(force) log(DBG, "Ignoring force input (#{mth})") force = false end o = OpenStudio::Point3d.new(0, 0, 0) w = width(pts) h = height(pts) d = h > w ? h : w sgs = {} box = boundedBox(pts) return invalid("bounded box", mth, 0, DBG, out) if box.empty? segments = getSegments(box) return invalid("bounded box segments", mth, 0, DBG, out) if segments.empty? # Deterministic ID of box rotation/translation 'origin'. segments.each_with_index do |sg, idx| sgs[sg] = {} sgs[sg][:idx] = idx sgs[sg][:mid] = midpoint(sg[0], sg[1]) sgs[sg][:l ] = (sg[1] - sg[0]).length sgs[sg][:mo ] = (sgs[sg][:mid] - o).length end sgs = sgs.sort_by { |sg, s| s[:mo] }.first(2).to_h if square?(box) sgs = sgs.sort_by { |sg, s| s[:l ] }.first(2).to_h unless square?(box) sgs = sgs.sort_by { |sg, s| s[:mo] }.first(2).to_h unless square?(box) sg0 = sgs.values[0] sg1 = sgs.values[1] if (sg0[:mo]).round(2) == (sg1[:mo]).round(2) i = sg1[:mid].y.round(2) < sg0[:mid].y.round(2) ? sg1[:idx] : sg0[:idx] else i = sg0[:idx] end k = i + 2 < segments.size ? i + 2 : i - 2 origin = midpoint(segments[i][0], segments[i][1]) terminal = midpoint(segments[k][0], segments[k][1]) seg = terminal - origin right = OpenStudio::Point3d.new(origin.x + d, origin.y , 0) - origin north = OpenStudio::Point3d.new(origin.x, origin.y + d, 0) - origin axis = OpenStudio::Point3d.new(origin.x, origin.y , d) - origin angle = OpenStudio::getAngle(right, seg) angle = -angle if north.dot(seg) < 0 # Skip rotation if bounded box is already aligned along XY grid (albeit # 'narrow'), i.e. if the angle is 90°. if angle.round(3) == (Math::PI/2).round(3) angle = 0 unless force end r = OpenStudio.createRotation(origin, axis, angle) pts = to_p3Dv(r.inverse * pts) box = to_p3Dv(r.inverse * box) dX = pts.min_by(&:x).x dY = pts.min_by(&:y).y xy = OpenStudio::Point3d.new(origin.x + dX, origin.y + dY, 0) origin2 = xy - origin t = OpenStudio.createTranslation(origin2) set = to_p3Dv(t.inverse * pts) box = to_p3Dv(t.inverse * box) bbox = outline([set]) out[:set ] = blc(set) out[:box ] = blc(box) out[:bbox] = blc(bbox) out[:t ] = t out[:r ] = r out[:o ] = origin out end |
#getRoofs(spaces = []) ⇒ Array<OpenStudio::Model::Surface>
Returns outdoor-facing, space-related roof surfaces. These include outdoor-facing roofs of each space per se, as well as any outdoor-facing roof surface of unoccupied spaces immediately above (e.g. plenums, attics) overlapping any of the ceiling surfaces of each space. It does not include surfaces labelled as ‘RoofCeiling’, which do not comply with ASHRAE 90.1 or NECB tilt criteria - see ‘roof?’.
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 |
# File 'lib/osut/utils.rb', line 5165 def getRoofs(spaces = []) mth = "OSut::#{__callee__}" up = OpenStudio::Point3d.new(0,0,1) - OpenStudio::Point3d.new(0,0,0) roofs = [] spaces = spaces.is_a?(OpenStudio::Model::Space) ? [spaces] : spaces spaces = spaces.respond_to?(:to_a) ? spaces.to_a : [] spaces = spaces.select { |space| space.is_a?(OpenStudio::Model::Space) } # Space-specific outdoor-facing roof surfaces. roofs = facets(spaces, "Outdoors", "RoofCeiling") roofs = roofs.select { |roof| roof?(roof) } spaces.each do |space| # When unoccupied spaces are involved (e.g. plenums, attics), the target # space may not share the same local transformation as the space(s) above. # Fetching site transformation. t0 = transforms(space) next unless t0[:t] t0 = t0[:t] facets(space, "Surface", "RoofCeiling").each do |ceiling| cv0 = t0 * ceiling.vertices floor = ceiling.adjacentSurface next if floor.empty? other = floor.get.space next if other.empty? other = other.get next if other.partofTotalFloorArea ti = transforms(other) next unless ti[:t] ti = ti[:t] # @todo: recursive call for stacked spaces as atria (via AirBoundaries). facets(other, "Outdoors", "RoofCeiling").each do |ruf| next unless roof?(ruf) rvi = ti * ruf.vertices cst = cast(cv0, rvi, up) next unless overlaps?(cst, rvi, false) roofs << ruf unless roofs.include?(ruf) end end end roofs end |
#getSegments(pts = nil) ⇒ OpenStudio::Point3dVectorVector
Returns paired sequential points as (non-zero length) line segments. If the set strictly holds 2x unique points, a single segment is returned. Otherwise, the returned number of segments equals the number of unique points.
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 |
# File 'lib/osut/utils.rb', line 2806 def getSegments(pts = nil) mth = "OSut::#{__callee__}" vv = OpenStudio::Point3dVectorVector.new pts = getUniques(pts) return vv if pts.size < 2 pts.each_with_index do |p1, i1| i2 = i1 + 1 i2 = 0 if i2 == pts.size p2 = pts[i2] line = OpenStudio::Point3dVector.new line << p1 line << p2 vv << line break if pts.size == 2 end vv end |
#getTriads(pts = nil, co = false) ⇒ OpenStudio::Point3dVectorVector
Returns points as (non-zero length) ‘triads’, i.e. 3x sequential points. If the set holds less than 3x unique points, an empty triad is returned. Otherwise, the returned number of triads equals the number of unique points. If non-collinearity is requested, then the number of returned triads equals the number of non-collinear points.
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 |
# File 'lib/osut/utils.rb', line 2853 def getTriads(pts = nil, co = false) mth = "OSut::#{__callee__}" vv = OpenStudio::Point3dVectorVector.new pts = getUniques(pts) return vv if pts.size < 2 pts.each_with_index do |p1, i1| i2 = i1 + 1 i2 = 0 if i2 == pts.size i3 = i2 + 1 i3 = 0 if i3 == pts.size p2 = pts[i2] p3 = pts[i3] tri = OpenStudio::Point3dVector.new tri << p1 tri << p2 tri << p3 vv << tri end vv end |
#getUniques(pts = nil, n = 0) ⇒ OpenStudio::Point3dVector
Returns unique OpenStudio 3D points from an OpenStudio 3D point vector.
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 |
# File 'lib/osut/utils.rb', line 2779 def getUniques(pts = nil, n = 0) mth = "OSut::#{__callee__}" pts = to_p3Dv(pts) ok = n.respond_to?(:to_i) v = OpenStudio::Point3dVector.new return v if pts.empty? return mismatch("n unique points", n, Integer, mth, DBG, v) unless ok pts.each { |pt| v << pt unless holds?(v, pt) } n = n.to_i n = 0 unless n.abs < v.size v = v[0..n] if n > 0 v = v[n..-1] if n < 0 v end |
#glazingAirFilmRSi(usi = 5.85) ⇒ Float, 0.1216
Returns total air film resistance of a fenestrated construction (m2•K/W)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
# File 'lib/osut/utils.rb', line 941 def glazingAirFilmRSi(usi = 5.85) # The sum of thermal resistances of calculated exterior and interior film # coefficients under standard winter conditions are taken from: # # https://bigladdersoftware.com/epx/docs/9-6/engineering-reference/ # window-calculation-module.html#simple-window-model # # These remain acceptable approximations for flat windows, yet likely # unsuitable for subsurfaces with curved or projecting shapes like domed # skylights. The solution here is considered an adequate fix for reporting, # awaiting eventual OpenStudio (and EnergyPlus) upgrades to report NFRC 100 # (or ISO) air film resistances under standard winter conditions. # # For U-factors above 8.0 W/m2•K (or invalid input), the function returns # 0.1216 m2•K/W, which corresponds to a construction with a single glass # layer thickness of 2mm & k = ~0.6 W/m.K. # # The EnergyPlus Engineering calculations were designed for vertical # windows - not horizontal, slanted or domed surfaces - use with caution. mth = "OSut::#{__callee__}" cl = Numeric return mismatch("usi", usi, cl, mth, DBG, 0.1216) unless usi.is_a?(cl) return invalid("usi", mth, 1, WRN, 0.1216) if usi > 8.0 return negative("usi", mth, WRN, 0.1216) if usi < 0 return zero("usi", mth, WRN, 0.1216) if usi.abs < TOL rsi = 1 / (0.025342 * usi + 29.163853) # exterior film, next interior film return rsi + 1 / (0.359073 * Math.log(usi) + 6.949915) if usi < 5.85 return rsi + 1 / (1.788041 * usi - 2.886625) end |
#grossRoofArea(spaces = []) ⇒ Object
Returns the “gross roof area” above selected conditioned, occupied spaces. This includes all roof surfaces of indirectly-conditioned, unoccupied spaces like plenums (if located above any of the selected spaces). This also includes roof surfaces of unconditioned or unenclosed spaces like attics, if vertically-overlapping any ceiling of occupied spaces below; attic roof sections above uninsulated soffits are excluded, for instance. It does not include surfaces labelled as ‘RoofCeiling’, which do not comply with ASHRAE 90.1 or NECB tilt criteria - see ‘roof?’.
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 |
# File 'lib/osut/utils.rb', line 5892 def grossRoofArea(spaces = []) mth = "OSut::#{__callee__}" up = OpenStudio::Point3d.new(0,0,1) - OpenStudio::Point3d.new(0,0,0) rm2 = 0 rfs = {} spaces = spaces.is_a?(OpenStudio::Model::Space) ? [spaces] : spaces spaces = spaces.respond_to?(:to_a) ? spaces.to_a : [] spaces = spaces.select { |space| space.is_a?(OpenStudio::Model::Space) } spaces = spaces.select { |space| space.partofTotalFloorArea } spaces = spaces.reject { |space| unconditioned?(space) } return invalid("spaces", mth, 1, DBG, 0) if spaces.empty? # The method is very similar to OpenStudio-Standards' : # find_exposed_conditioned_roof_surfaces(model) # # github.com/NREL/openstudio-standards/blob/ # be81bd88dc55a44d8cce3ee6daf29c768032df6a/lib/openstudio-standards/ # standards/Standards.Surface.rb#L99 # # ... yet differs with regards to attics with overhangs/soffits. # Start with roof surfaces of occupied, conditioned spaces. spaces.each do |space| facets(space, "Outdoors", "RoofCeiling").each do |roof| next if rfs.key?(roof) next unless roof?(roof) rfs[roof] = {m2: roof.grossArea, m: space.multiplier} end end # Roof surfaces of unoccupied, conditioned spaces above (e.g. plenums)? # @todo: recursive call for stacked spaces as atria (via AirBoundaries). spaces.each do |space| facets(space, "Surface", "RoofCeiling").each do |ceiling| floor = ceiling.adjacentSurface next if floor.empty? other = floor.get.space next if other.empty? other = other.get next if other.partofTotalFloorArea next if unconditioned?(other) facets(other, "Outdoors", "RoofCeiling").each do |roof| next if rfs.key?(roof) next unless roof?(roof) rfs[roof] = {m2: roof.grossArea, m: other.multiplier} end end end # Roof surfaces of unoccupied, unconditioned spaces above (e.g. attics)? # @todo: recursive call for stacked spaces as atria (via AirBoundaries). spaces.each do |space| # When taking overlaps into account, the target space may not share the # same local transformation as the space(s) above. t0 = transforms(space) next unless t0[:t] t0 = t0[:t] facets(space, "Surface", "RoofCeiling").each do |ceiling| cv0 = t0 * ceiling.vertices floor = ceiling.adjacentSurface next if floor.empty? other = floor.get.space next if other.empty? other = other.get next if other.partofTotalFloorArea next unless unconditioned?(other) ti = transforms(other) next unless ti[:t] ti = ti[:t] facets(other, "Outdoors", "RoofCeiling").each do |roof| next unless roof?(roof) rvi = ti * roof.vertices cst = cast(cv0, rvi, up) next if cst.empty? # The overlap calculation fails for roof and ceiling surfaces with # previously-added leader lines. # # @todo: revise approach for attics ONCE skylight wells have been added. olap = nil olap = overlap(cst, rvi, false) next if olap.empty? m2 = OpenStudio.getArea(olap) next if m2.empty? m2 = m2.get next unless m2.round(2) > 0 rfs[roof] = {m2: 0, m: other.multiplier} unless rfs.key?(roof) rfs[roof][:m2] += m2 end end end rfs.values.each { |rf| rm2 += rf[:m2] * rf[:m] } rm2 end |
#heatingTemperatureSetpoints?(model = nil) ⇒ Bool, false
Validates if model has zones with valid heating temperature setpoints.
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 |
# File 'lib/osut/utils.rb', line 1615 def heatingTemperatureSetpoints?(model = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Model return mismatch("model", model, cl, mth, DBG, false) unless model.is_a?(cl) model.getThermalZones.each do |zone| return true if maxHeatScheduledSetpoint(zone)[:spt] end false end |
#height(pts = nil) ⇒ Float, 0.0
Returns ‘height’ of a set of OpenStudio 3D points.
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 |
# File 'lib/osut/utils.rb', line 2711 def height(pts = nil) pts = to_p3Dv(pts) return 0 if pts.size < 2 min = pts.min_by(&:z).z max = pts.max_by(&:z).z return max - min if (max - min).abs > TOL pts.max_by(&:y).y - pts.min_by(&:y).y end |
#holds?(pts = nil, p1 = nil) ⇒ Bool, false
Returns true if an OpenStudio 3D point is part of a set of 3D points.
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 |
# File 'lib/osut/utils.rb', line 2484 def holds?(pts = nil, p1 = nil) mth = "OSut::#{__callee__}" pts = to_p3Dv(pts) cl = OpenStudio::Point3d return mismatch("point", p1, cl, mth, DBG, false) unless p1.is_a?(cl) pts.each { |pt| return true if same?(p1, pt) } false end |
#holdsConstruction?(set = nil, bse = nil, gr = false, ex = false, tp = "") ⇒ Bool, false
Validates if a default construction set holds a base construction.
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
# File 'lib/osut/utils.rb', line 756 def holdsConstruction?(set = nil, bse = nil, gr = false, ex = false, tp = "") mth = "OSut::#{__callee__}" cl1 = OpenStudio::Model::DefaultConstructionSet cl2 = OpenStudio::Model::ConstructionBase ck1 = set.respond_to?(NS) ck2 = bse.respond_to?(NS) return invalid("set" , mth, 1, DBG, false) unless ck1 return invalid("base", mth, 2, DBG, false) unless ck2 id1 = set.nameString id2 = bse.nameString ck1 = set.is_a?(cl1) ck2 = bse.is_a?(cl2) ck3 = [true, false].include?(gr) ck4 = [true, false].include?(ex) ck5 = tp.respond_to?(:to_s) return mismatch(id1, set, cl1, mth, DBG, false) unless ck1 return mismatch(id2, bse, cl2, mth, DBG, false) unless ck2 return invalid("ground" , mth, 3, DBG, false) unless ck3 return invalid("exterior" , mth, 4, DBG, false) unless ck4 return invalid("surface type", mth, 5, DBG, false) unless ck5 type = trim(tp).downcase ck1 = ["floor", "wall", "roofceiling"].include?(type) return invalid("surface type", mth, 5, DBG, false) unless ck1 constructions = nil if gr unless set.defaultGroundContactSurfaceConstructions.empty? constructions = set.defaultGroundContactSurfaceConstructions.get end elsif ex unless set.defaultExteriorSurfaceConstructions.empty? constructions = set.defaultExteriorSurfaceConstructions.get end else unless set.defaultInteriorSurfaceConstructions.empty? constructions = set.defaultInteriorSurfaceConstructions.get end end return false unless constructions case type when "roofceiling" unless constructions.roofCeilingConstruction.empty? construction = constructions.roofCeilingConstruction.get return true if construction == bse end when "floor" unless constructions.floorConstruction.empty? construction = constructions.floorConstruction.get return true if construction == bse end else unless constructions.wallConstruction.empty? construction = constructions.wallConstruction.get return true if construction == bse end end false end |
#insulatingLayer(lc = nil) ⇒ Hash
Identifies a layered construction’s (opaque) insulating layer. The method returns a 3-keyed hash :index, the insulating layer index [0, n layers) within the layered construction; :type, either :standard or :massless; and :r, material thermal resistance in m2•K/W.
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
# File 'lib/osut/utils.rb', line 1043 def insulatingLayer(lc = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::LayeredConstruction res = { index: nil, type: nil, r: 0.0 } i = 0 # iterator return invalid("lc", mth, 1, DBG, res) unless lc.respond_to?(NS) id = lc.nameString return mismatch(id, lc, cl1, mth, DBG, res) unless lc.is_a?(cl) lc.layers.each do |m| unless m.to_MasslessOpaqueMaterial.empty? m = m.to_MasslessOpaqueMaterial.get if m.thermalResistance < 0.001 || m.thermalResistance < res[:r] i += 1 next else res[:r ] = m.thermalResistance res[:index] = i res[:type ] = :massless end end unless m.to_StandardOpaqueMaterial.empty? m = m.to_StandardOpaqueMaterial.get k = m.thermalConductivity d = m.thickness if d < 0.003 || k > 3.0 || d / k < res[:r] i += 1 next else res[:r ] = d / k res[:index] = i res[:type ] = :standard end end i += 1 end res end |
#lineIntersects?(l = [], s = []) ⇒ Bool, false
Validates whether 3D line segment intersects 3D segments (e.g. polygon).
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 |
# File 'lib/osut/utils.rb', line 3051 def lineIntersects?(l = [], s = []) l = getSegments(l) s = getSegments(s) return nil if l.empty? return nil if s.empty? l = l.first s.each { |segment| return true if getLineIntersection(l, segment) } false end |
#maxHeatScheduledSetpoint(zone = nil) ⇒ Hash
Returns MAX zone heating temperature schedule setpoint [°C] and whether zone has an active dual setpoint thermostat.
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 |
# File 'lib/osut/utils.rb', line 1441 def maxHeatScheduledSetpoint(zone = nil) # Largely inspired from Parker & Marrec's "thermal_zone_heated?" procedure. # The solution here is a tad more relaxed to encompass SEMIHEATED zones as # per Canadian NECB criteria (basically any space with at least 10 W/m2 of # installed heating equipement, i.e. below freezing in Canada). # # github.com/NREL/openstudio-standards/blob/ # 58964222d25783e9da4ae292e375fb0d5c902aa5/lib/openstudio-standards/ # standards/Standards.ThermalZone.rb#L910 mth = "OSut::#{__callee__}" cl = OpenStudio::Model::ThermalZone res = { spt: nil, dual: false } return invalid("zone", mth, 1, DBG, res) unless zone.respond_to?(NS) id = zone.nameString return mismatch(id, zone, cl, mth, DBG, res) unless zone.is_a?(cl) # Zone radiant heating? Get schedule from radiant system. zone.equipment.each do |equip| sched = nil unless equip.to_ZoneHVACHighTemperatureRadiant.empty? equip = equip.to_ZoneHVACHighTemperatureRadiant.get unless equip.heatingSetpointTemperatureSchedule.empty? sched = equip.heatingSetpointTemperatureSchedule.get end end unless equip.to_ZoneHVACLowTemperatureRadiantElectric.empty? equip = equip.to_ZoneHVACLowTemperatureRadiantElectric.get sched = equip.heatingSetpointTemperatureSchedule end unless equip.to_ZoneHVACLowTempRadiantConstFlow.empty? equip = equip.to_ZoneHVACLowTempRadiantConstFlow.get coil = equip.heatingCoil unless coil.to_CoilHeatingLowTempRadiantConstFlow.empty? coil = coil.to_CoilHeatingLowTempRadiantConstFlow.get unless coil.heatingHighControlTemperatureSchedule.empty? sched = c.heatingHighControlTemperatureSchedule.get end end end unless equip.to_ZoneHVACLowTempRadiantVarFlow.empty? equip = equip.to_ZoneHVACLowTempRadiantVarFlow.get coil = equip.heatingCoil unless coil.to_CoilHeatingLowTempRadiantVarFlow.empty? coil = coil.to_CoilHeatingLowTempRadiantVarFlow.get unless coil.heatingControlTemperatureSchedule.empty? sched = coil.heatingControlTemperatureSchedule.get end end end next unless sched unless sched.to_ScheduleRuleset.empty? sched = sched.to_ScheduleRuleset.get max = scheduleRulesetMinMax(sched)[:max] if max res[:spt] = max unless res[:spt] res[:spt] = max if res[:spt] < max end end unless sched.to_ScheduleConstant.empty? sched = sched.to_ScheduleConstant.get max = scheduleConstantMinMax(sched)[:max] if max res[:spt] = max unless res[:spt] res[:spt] = max if res[:spt] < max end end unless sched.to_ScheduleCompact.empty? sched = sched.to_ScheduleCompact.get max = scheduleCompactMinMax(sched)[:max] if max res[:spt] = max unless res[:spt] res[:spt] = max if res[:spt] < max end end end return res if zone.thermostat.empty? tstat = zone.thermostat.get res[:spt] = nil unless tstat.to_ThermostatSetpointDualSetpoint.empty? && tstat.to_ZoneControlThermostatStagedDualSetpoint.empty? unless tstat.to_ThermostatSetpointDualSetpoint.empty? tstat = tstat.to_ThermostatSetpointDualSetpoint.get else tstat = tstat.to_ZoneControlThermostatStagedDualSetpoint.get end unless tstat.heatingSetpointTemperatureSchedule.empty? res[:dual] = true sched = tstat.heatingSetpointTemperatureSchedule.get unless sched.to_ScheduleRuleset.empty? sched = sched.to_ScheduleRuleset.get max = scheduleRulesetMinMax(sched)[:max] if max res[:spt] = max unless res[:spt] res[:spt] = max if res[:spt] < max end dd = sched.winterDesignDaySchedule unless dd.values.empty? res[:spt] = dd.values.max unless res[:spt] res[:spt] = dd.values.max if res[:spt] < dd.values.max end end unless sched.to_ScheduleConstant.empty? sched = sched.to_ScheduleConstant.get max = scheduleConstantMinMax(sched)[:max] if max res[:spt] = max unless res[:spt] res[:spt] = max if res[:spt] < max end end unless sched.to_ScheduleCompact.empty? sched = sched.to_ScheduleCompact.get max = scheduleCompactMinMax(sched)[:max] if max res[:spt] = max unless res[:spt] res[:spt] = max if res[:spt] < max end end unless sched.to_ScheduleYear.empty? sched = sched.to_ScheduleYear.get sched.getScheduleWeeks.each do |week| next if week.winterDesignDaySchedule.empty? dd = week.winterDesignDaySchedule.get next unless dd.values.empty? res[:spt] = dd.values.max unless res[:spt] res[:spt] = dd.values.max if res[:spt] < dd.values.max end end end end res end |
#medialBox(pts = nil) ⇒ OpenStudio::Point3dVector
Generates a BLC box bounded within a triangle (midpoint theorem).
pts [Set<OpenStudio::Point3d>] triangular polygon
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 |
# File 'lib/osut/utils.rb', line 4085 def medialBox(pts = nil) mth = "OSut::#{__callee__}" bkp = OpenStudio::Point3dVector.new box = [] pts = poly(pts, true, true, true) return bkp if pts.empty? return invalid("triangle", mth, 1, ERR, bkp) unless pts.size == 3 t = xyz?(pts, :z) ? nil : OpenStudio::Transformation.alignFace(pts) pts = poly(pts, false, false, false, t) if t return bkp if pts.empty? pts = to_p3Dv(pts.to_a.reverse) if clockwise?(pts) # Generate vertical plane along longest segment. mpoints = [] sgs = getSegments(pts) longest = sgs.max_by { |s| OpenStudio.getDistanceSquared(s.first, s.last) } plane = verticalPlane(longest.first, longest.last) # Fetch midpoints of other 2 segments. sgs.each { |s| mpoints << midpoint(s.first, s.last) unless s == longest } return bkp unless mpoints.size == 2 # Generate medial bounded box. box << plane.project(mpoints.first) box << mpoints.first box << mpoints.last box << plane.project(mpoints.last) box = getNonCollinears(box).to_a return bkp unless box.size == 4 box = clockwise?(box) ? blc(box.reverse) : blc(box) return bkp unless rectangular?(box) return bkp unless fits?(box, pts) box = to_p3Dv(t * box) if t box end |
#midpoint(p1 = nil, p2 = nil) ⇒ OpenStudio::Point3d?
Returns midpoint coordinates of line segment.
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 |
# File 'lib/osut/utils.rb', line 2730 def midpoint(p1 = nil, p2 = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Point3d return mismatch("point 1", p1, cl, mth) unless p1.is_a?(cl) return mismatch("point 2", p2, cl, mth) unless p2.is_a?(cl) return invalid("same points", mth, 0) if same?(p1, p2) midX = p1.x + (p2.x - p1.x)/2 midY = p1.y + (p2.y - p1.y)/2 midZ = p1.z + (p2.z - p1.z)/2 OpenStudio::Point3d.new(midX, midY, midZ) end |
#minCoolScheduledSetpoint(zone = nil) ⇒ Hash
Returns MIN zone cooling temperature schedule setpoint [°C] and whether zone has an active dual setpoint thermostat.
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 |
# File 'lib/osut/utils.rb', line 1635 def minCoolScheduledSetpoint(zone = nil) # Largely inspired from Parker & Marrec's "thermal_zone_cooled?" procedure. # # github.com/NREL/openstudio-standards/blob/ # 99cf713750661fe7d2082739f251269c2dfd9140/lib/openstudio-standards/ # standards/Standards.ThermalZone.rb#L1058 mth = "OSut::#{__callee__}" cl = OpenStudio::Model::ThermalZone res = { spt: nil, dual: false } return invalid("zone", mth, 1, DBG, res) unless zone.respond_to?(NS) id = zone.nameString return mismatch(id, zone, cl, mth, DBG, res) unless zone.is_a?(cl) # Zone radiant cooling? Get schedule from radiant system. zone.equipment.each do |equip| sched = nil unless equip.to_ZoneHVACLowTempRadiantConstFlow.empty? equip = equip.to_ZoneHVACLowTempRadiantConstFlow.get coil = equip.coolingCoil unless coil.to_CoilCoolingLowTempRadiantConstFlow.empty? coil = coil.to_CoilCoolingLowTempRadiantConstFlow.get unless coil.coolingLowControlTemperatureSchedule.empty? sched = coil.coolingLowControlTemperatureSchedule.get end end end unless equip.to_ZoneHVACLowTempRadiantVarFlow.empty? equip = equip.to_ZoneHVACLowTempRadiantVarFlow.get coil = equip.coolingCoil unless coil.to_CoilCoolingLowTempRadiantVarFlow.empty? coil = coil.to_CoilCoolingLowTempRadiantVarFlow.get unless coil.coolingControlTemperatureSchedule.empty? sched = coil.coolingControlTemperatureSchedule.get end end end next unless sched unless sched.to_ScheduleRuleset.empty? sched = sched.to_ScheduleRuleset.get min = scheduleRulesetMinMax(sched)[:min] if min res[:spt] = min unless res[:spt] res[:spt] = min if res[:spt] > min end end unless sched.to_ScheduleConstant.empty? sched = sched.to_ScheduleConstant.get min = scheduleConstantMinMax(sched)[:min] if min res[:spt] = min unless res[:spt] res[:spt] = min if res[:spt] > min end end unless sched.to_ScheduleCompact.empty? sched = sched.to_ScheduleCompact.get min = scheduleCompactMinMax(sched)[:min] if min res[:spt] = min unless res[:spt] res[:spt] = min if res[:spt] > min end end end return res if zone.thermostat.empty? tstat = zone.thermostat.get res[:spt] = nil unless tstat.to_ThermostatSetpointDualSetpoint.empty? && tstat.to_ZoneControlThermostatStagedDualSetpoint.empty? unless tstat.to_ThermostatSetpointDualSetpoint.empty? tstat = tstat.to_ThermostatSetpointDualSetpoint.get else tstat = tstat.to_ZoneControlThermostatStagedDualSetpoint.get end unless tstat.coolingSetpointTemperatureSchedule.empty? res[:dual] = true sched = tstat.coolingSetpointTemperatureSchedule.get unless sched.to_ScheduleRuleset.empty? sched = sched.to_ScheduleRuleset.get min = scheduleRulesetMinMax(sched)[:min] if min res[:spt] = min unless res[:spt] res[:spt] = min if res[:spt] > min end dd = sched.summerDesignDaySchedule unless dd.values.empty? res[:spt] = dd.values.min unless res[:spt] res[:spt] = dd.values.min if res[:spt] > dd.values.min end end unless sched.to_ScheduleConstant.empty? sched = sched.to_ScheduleConstant.get min = scheduleConstantMinMax(sched)[:min] if min res[:spt] = min unless res[:spt] res[:spt] = min if res[:spt] > min end end unless sched.to_ScheduleCompact.empty? sched = sched.to_ScheduleCompact.get min = scheduleCompactMinMax(sched)[:min] if min res[:spt] = min unless res[:spt] res[:spt] = min if res[:spt] > min end end unless sched.to_ScheduleYear.empty? sched = sched.to_ScheduleYear.get sched.getScheduleWeeks.each do |week| next if week.summerDesignDaySchedule.empty? dd = week.summerDesignDaySchedule.get next unless dd.values.empty? res[:spt] = dd.values.min unless res[:spt] res[:spt] = dd.values.min if res[:spt] > dd.values.min end end end end res end |
#nearest(pts = nil, p01 = nil) ⇒ Integer?
Returns OpenStudio 3D point (in a set) nearest to a point of reference, e.g. grid origin. If left unspecified, the method systematically returns the bottom-left corner (BLC) of any horizontal set. If more than one point fits the initial criteria, the method relies on deterministic sorting through triangulation.
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 |
# File 'lib/osut/utils.rb', line 2507 def nearest(pts = nil, p01 = nil) mth = "OSut::#{__callee__}" l = 100 d01 = 10000 d02 = 0 d03 = 0 idx = nil pts = to_p3Dv(pts) return idx if pts.empty? p03 = OpenStudio::Point3d.new( l,-l,-l) p02 = OpenStudio::Point3d.new( l, l, l) p01 = OpenStudio::Point3d.new(-l,-l,-l) unless p01 return mismatch("point", p01, cl, mth) unless p01.is_a?(OpenStudio::Point3d) pts.each_with_index { |pt, i| return i if same?(pt, p01) } pts.each_with_index do |pt, i| length01 = (pt - p01).length length02 = (pt - p02).length length03 = (pt - p03).length if length01.round(2) == d01.round(2) if length02.round(2) == d02.round(2) if length03.round(2) > d03.round(2) idx = i d03 = length03 end elsif length02.round(2) > d02.round(2) idx = i d03 = length03 d02 = length02 end elsif length01.round(2) < d01.round(2) idx = i d01 = length01 d02 = length02 d03 = length03 end end idx end |
#nextUp(pts = nil, pt = nil) ⇒ OpenStudio::Point3d?
Returns next sequential point in an OpenStudio 3D point vector.
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 |
# File 'lib/osut/utils.rb', line 2678 def nextUp(pts = nil, pt = nil) mth = "OSut::#{__callee__}" pts = to_p3Dv(pts) cl = OpenStudio::Point3d return mismatch("point", pt, cl, mth) unless pt.is_a?(cl) return invalid("points (2+)", mth, 1, WRN) if pts.size < 2 pair = pts.each_cons(2).find { |p1, _| same?(p1, pt) } pair.nil? ? pts.first : pair.last end |
#offset(p1 = nil, w = 0, v = 0) ⇒ OpenStudio::Point3dVector
Generates offset vertices (by width) for a 3- or 4-sided, convex polygon. If width is negative, the vertices are contracted inwards.
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 |
# File 'lib/osut/utils.rb', line 3727 def offset(p1 = nil, w = 0, v = 0) mth = "OSut::#{__callee__}" pts = poly(p1, true, true, false, true, :cw) return invalid("points", mth, 1, DBG, p1) unless [3, 4].include?(pts.size) mismatch("width", w, Numeric, mth) unless w.respond_to?(:to_f) mismatch("version", v, Integer, mth) unless v.respond_to?(:to_i) iv = pts.size == 4 ? true : false vs = OpenStudio.openStudioVersion.split(".").join.to_i v = v.respond_to?(:to_i) ? v.to_i : vs w = w.respond_to?(:to_f) ? w.to_f : 0 return p1 if w.abs < 0.0254 unless v < 340 t = OpenStudio::Transformation.alignFace(p1) offset = OpenStudio.buffer(pts, w, TOL) return p1 if offset.empty? return to_p3Dv(t * offset.get.reverse) else # brute force approach pz = {} pz[:A] = {} pz[:B] = {} pz[:C] = {} pz[:D] = {} if iv pz[:A][:p] = OpenStudio::Point3d.new(p1[0].x, p1[0].y, p1[0].z) pz[:B][:p] = OpenStudio::Point3d.new(p1[1].x, p1[1].y, p1[1].z) pz[:C][:p] = OpenStudio::Point3d.new(p1[2].x, p1[2].y, p1[2].z) pz[:D][:p] = OpenStudio::Point3d.new(p1[3].x, p1[3].y, p1[3].z) if iv pzAp = pz[:A][:p] pzBp = pz[:B][:p] pzCp = pz[:C][:p] pzDp = pz[:D][:p] if iv # Generate vector pairs, from next point & from previous point. # :f_n : "from next" # :f_p : "from previous" # # # # # # # A <---------- B # ^ # \ # \ # C (or D) # pz[:A][:f_n] = pzAp - pzBp pz[:A][:f_p] = pzAp - pzCp unless iv pz[:A][:f_p] = pzAp - pzDp if iv pz[:B][:f_n] = pzBp - pzCp pz[:B][:f_p] = pzBp - pzAp pz[:C][:f_n] = pzCp - pzAp unless iv pz[:C][:f_n] = pzCp - pzDp if iv pz[:C][:f_p] = pzCp - pzBp pz[:D][:f_n] = pzDp - pzAp if iv pz[:D][:f_p] = pzDp - pzCp if iv # Generate 3D plane from vectors. # # # | <<< 3D plane ... from point A, with normal B>A # | # | # | # <---------- A <---------- B # |\ # | \ # | \ # | C (or D) # pz[:A][:pl_f_n] = OpenStudio::Plane.new(pzAp, pz[:A][:f_n]) pz[:A][:pl_f_p] = OpenStudio::Plane.new(pzAp, pz[:A][:f_p]) pz[:B][:pl_f_n] = OpenStudio::Plane.new(pzBp, pz[:B][:f_n]) pz[:B][:pl_f_p] = OpenStudio::Plane.new(pzBp, pz[:B][:f_p]) pz[:C][:pl_f_n] = OpenStudio::Plane.new(pzCp, pz[:C][:f_n]) pz[:C][:pl_f_p] = OpenStudio::Plane.new(pzCp, pz[:C][:f_p]) pz[:D][:pl_f_n] = OpenStudio::Plane.new(pzDp, pz[:D][:f_n]) if iv pz[:D][:pl_f_p] = OpenStudio::Plane.new(pzDp, pz[:D][:f_p]) if iv # Project an extended point (pC) unto 3D plane. # # pC <<< projected unto extended B>A 3D plane # eC | # \ | # \ | # \| # <---------- A <---------- B # |\ # | \ # | \ # | C (or D) # pz[:A][:p_n_pl] = pz[:A][:pl_f_n].project(pz[:A][:p] + pz[:A][:f_p]) pz[:A][:n_p_pl] = pz[:A][:pl_f_p].project(pz[:A][:p] + pz[:A][:f_n]) pz[:B][:p_n_pl] = pz[:B][:pl_f_n].project(pz[:B][:p] + pz[:B][:f_p]) pz[:B][:n_p_pl] = pz[:B][:pl_f_p].project(pz[:B][:p] + pz[:B][:f_n]) pz[:C][:p_n_pl] = pz[:C][:pl_f_n].project(pz[:C][:p] + pz[:C][:f_p]) pz[:C][:n_p_pl] = pz[:C][:pl_f_p].project(pz[:C][:p] + pz[:C][:f_n]) pz[:D][:p_n_pl] = pz[:D][:pl_f_n].project(pz[:D][:p] + pz[:D][:f_p]) if iv pz[:D][:n_p_pl] = pz[:D][:pl_f_p].project(pz[:D][:p] + pz[:D][:f_n]) if iv # Generate vector from point (e.g. A) to projected extended point (pC). # # pC # eC ^ # \ | # \ | # \| # <---------- A <---------- B # |\ # | \ # | \ # | C (or D) # pz[:A][:n_p_n_pl] = pz[:A][:p_n_pl] - pzAp pz[:A][:n_n_p_pl] = pz[:A][:n_p_pl] - pzAp pz[:B][:n_p_n_pl] = pz[:B][:p_n_pl] - pzBp pz[:B][:n_n_p_pl] = pz[:B][:n_p_pl] - pzBp pz[:C][:n_p_n_pl] = pz[:C][:p_n_pl] - pzCp pz[:C][:n_n_p_pl] = pz[:C][:n_p_pl] - pzCp pz[:D][:n_p_n_pl] = pz[:D][:p_n_pl] - pzDp if iv pz[:D][:n_n_p_pl] = pz[:D][:n_p_pl] - pzDp if iv # Fetch angle between both extended vectors (A>pC & A>pB), # ... then normalize (Cn). # # pC # eC ^ # \ | # \ Cn # \| # <---------- A <---------- B # |\ # | \ # | \ # | C (or D) # a1 = OpenStudio.getAngle(pz[:A][:n_p_n_pl], pz[:A][:n_n_p_pl]) a2 = OpenStudio.getAngle(pz[:B][:n_p_n_pl], pz[:B][:n_n_p_pl]) a3 = OpenStudio.getAngle(pz[:C][:n_p_n_pl], pz[:C][:n_n_p_pl]) a4 = OpenStudio.getAngle(pz[:D][:n_p_n_pl], pz[:D][:n_n_p_pl]) if iv # Generate new 3D points A', B', C' (and D') ... zigzag. # # # # # A' ---------------------- B' # \ # \ A <---------- B # \ \ # \ \ # \ \ # C' C pz[:A][:f_n].normalize pz[:A][:n_p_n_pl].normalize pzAp = pzAp + scalar(pz[:A][:n_p_n_pl], w) pzAp = pzAp + scalar(pz[:A][:f_n], w * Math.tan(a1/2)) pz[:B][:f_n].normalize pz[:B][:n_p_n_pl].normalize pzBp = pzBp + scalar(pz[:B][:n_p_n_pl], w) pzBp = pzBp + scalar(pz[:B][:f_n], w * Math.tan(a2/2)) pz[:C][:f_n].normalize pz[:C][:n_p_n_pl].normalize pzCp = pzCp + scalar(pz[:C][:n_p_n_pl], w) pzCp = pzCp + scalar(pz[:C][:f_n], w * Math.tan(a3/2)) pz[:D][:f_n].normalize if iv pz[:D][:n_p_n_pl].normalize if iv pzDp = pzDp + scalar(pz[:D][:n_p_n_pl], w) if iv pzDp = pzDp + scalar(pz[:D][:f_n], w * Math.tan(a4/2)) if iv # Re-convert to OpenStudio 3D points. vec = OpenStudio::Point3dVector.new vec << OpenStudio::Point3d.new(pzAp.x, pzAp.y, pzAp.z) vec << OpenStudio::Point3d.new(pzBp.x, pzBp.y, pzBp.z) vec << OpenStudio::Point3d.new(pzCp.x, pzCp.y, pzCp.z) vec << OpenStudio::Point3d.new(pzDp.x, pzDp.y, pzDp.z) if iv return vec end end |
#outline(a = [], bfr = 0, flat = true) ⇒ OpenStudio::Point3dVector
Generates a ULC OpenStudio 3D point vector (a bounding box) that surrounds multiple (smaller) OpenStudio 3D point vectors. The generated, 4-point outline is optionally buffered (or offset). Frame and Divider frame widths are taken into account.
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 |
# File 'lib/osut/utils.rb', line 3941 def outline(a = [], bfr = 0, flat = true) mth = "OSut::#{__callee__}" flat = true unless [true, false].include?(flat) xMIN = nil xMAX = nil yMIN = nil yMAX = nil a2 = [] out = OpenStudio::Point3dVector.new cl = Array return mismatch("array", a, cl, mth, DBG, out) unless a.is_a?(cl) return empty("array", mth, DBG, out) if a.empty? mismatch("buffer", bfr, Numeric, mth) unless bfr.respond_to?(:to_f) bfr = bfr.to_f if bfr.respond_to?(:to_f) bfr = 0 unless bfr.respond_to?(:to_f) bfr = 0 if bfr < 0.0254 vtx = poly(a.first) return out if vtx.empty? t = OpenStudio::Transformation.alignFace(vtx) a.each do |pts| points = poly(pts, false, true, false, t) points = flatten(points) if flat next if points.empty? a2 << points end a2.each do |pts| minX = pts.min_by(&:x).x maxX = pts.max_by(&:x).x minY = pts.min_by(&:y).y maxY = pts.max_by(&:y).y # Consider frame width, if frame-and-divider-enabled sub surface. if pts.respond_to?(:allowWindowPropertyFrameAndDivider) fd = pts.windowPropertyFrameAndDivider w = 0 w = fd.get.frameWidth unless fd.empty? if w > TOL minX -= w maxX += w minY -= w maxY += w end end xMIN = minX if xMIN.nil? xMAX = maxX if xMAX.nil? yMIN = minY if yMIN.nil? yMAX = maxY if yMAX.nil? xMIN = [xMIN, minX].min xMAX = [xMAX, maxX].max yMIN = [yMIN, minY].min yMAX = [yMAX, maxY].max end return negative("outline width", mth, DBG, out) if xMAX < xMIN return negative("outline height", mth, DBG, out) if yMAX < yMIN return zero("outline width", mth, DBG, out) if (xMIN - xMAX).abs < TOL return zero("outline height", mth, DBG, out) if (yMIN - yMAX).abs < TOL # Generate ULC point 3D vector. out << OpenStudio::Point3d.new(xMIN, yMAX, 0) out << OpenStudio::Point3d.new(xMIN, yMIN, 0) out << OpenStudio::Point3d.new(xMAX, yMIN, 0) out << OpenStudio::Point3d.new(xMAX, yMAX, 0) # Apply buffer, apply ULC (options). out = offset(out, bfr, 300) if bfr > 0.0254 to_p3Dv(t * out) end |
#overlap(p1 = nil, p2 = nil, flat = false) ⇒ OpenStudio::Point3dVector
Returns intersection of overlapping polygons, empty if non intersecting. If the optional 3rd argument is left as false, the 2nd polygon may only overlap if it shares the 3D plane equation of the 1st one. If the 3rd argument is instead set to true, then the 2nd polygon is first cast onto the 3D plane of the 1st one; the method therefore returns (as overlap) the intersection of a projection of the 2nd polygon onto the 1st one. The method returns the smallest of the 2 polygons if either fits within the larger one.
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 |
# File 'lib/osut/utils.rb', line 3582 def overlap(p1 = nil, p2 = nil, flat = false) mth = "OSut::#{__callee__}" flat = false unless [true, false].include?(flat) face = OpenStudio::Point3dVector.new p01 = poly(p1) p02 = poly(p2) return empty("points 1", mth, DBG, face) if p01.empty? return empty("points 2", mth, DBG, face) if p02.empty? return p01 if fits?(p01, p02) return p02 if fits?(p02, p01) if xyz?(p01, :z) t = nil cw1 = clockwise?(p01) a1 = cw1 ? p01.to_a.reverse : p01.to_a a2 = p02.to_a a2 = flatten(a2).to_a if flat return invalid("points 2", mth, 2, DBG, face) unless xyz?(a2, :z) cw2 = clockwise?(a2) a2 = a2.reverse if cw2 else t = OpenStudio::Transformation.alignFace(p01) a1 = t.inverse * p01 a2 = t.inverse * p02 a2 = flatten(a2).to_a if flat return invalid("points 2", mth, 2, DBG, face) unless xyz?(a2, :z) cw2 = clockwise?(a2) a2 = a2.reverse if cw2 end # Return either (transformed) polygon if one fits into the other. p1t = p01 if t p2t = to_p3Dv(cw2 ? t * a2 : t * a2.reverse) else if cw1 p2t = to_p3Dv(cw2 ? a2.reverse : a2) else p2t = to_p3Dv(cw2 ? a2 : a2.reverse) end end return p1t if fits?(a1, a2) return p2t if fits?(a2, a1) area1 = OpenStudio.getArea(a1) area2 = OpenStudio.getArea(a2) return empty("points 1 area", mth, ERR, face) if area1.empty? return empty("points 2 area", mth, ERR, face) if area2.empty? area1 = area1.get area2 = area2.get union = OpenStudio.join(a1.reverse, a2.reverse, TOL2) return face if union.empty? union = union.get area = OpenStudio.getArea(union) return face if area.empty? area = area.get delta = area1 + area2 - area if area > TOL return face if area.round(2) == area1.round(2) return face if area.round(2) == area2.round(2) return face if delta.round(2) == 0 end res = OpenStudio.intersect(a1.reverse, a2.reverse, TOL) return face if res.empty? res = res.get res1 = res.polygon1 return face if res1.empty? to_p3Dv(t ? t * res1.reverse : res1.reverse) end |
#overlaps?(p1 = nil, p2 = nil, flat = false) ⇒ Bool, false
Determines whether OpenStudio polygons overlap.
3672 3673 3674 |
# File 'lib/osut/utils.rb', line 3672 def overlaps?(p1 = nil, p2 = nil, flat = false) overlap(p1, p2, flat).empty? ? false : true end |
#parallel?(p1 = nil, p2 = nil) ⇒ Bool, false
Validates whether 2 polygons are parallel, regardless of their direction.
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 |
# File 'lib/osut/utils.rb', line 3398 def parallel?(p1 = nil, p2 = nil) p1 = poly(p1, false, true) p2 = poly(p2, false, true) return false if p1.empty? return false if p2.empty? n1 = OpenStudio.getOutwardNormal(p1) n2 = OpenStudio.getOutwardNormal(p2) return false if n1.empty? return false if n2.empty? n1.get.dot(n2.get).abs > 0.99 end |
#plenum?(space = nil) ⇒ Bool, false
Validates whether a space is an indirectly-conditioned plenum.
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 |
# File 'lib/osut/utils.rb', line 1884 def plenum?(space = nil) # Largely inspired from NREL's "space_plenum?": # # github.com/NREL/openstudio-standards/blob/ # 58964222d25783e9da4ae292e375fb0d5c902aa5/lib/openstudio-standards/ # standards/Standards.Space.rb#L1384 # # Ideally, "plenum?" should be in sync with OpenStudio SDK's "isPlenum" # method, which solely looks for either HVAC air mixer objects: # - AirLoopHVACReturnPlenum # - AirLoopHVACSupplyPlenum # # Of the OpenStudio-Standards Prototype models, only the LargeOffice # holds AirLoopHVACReturnPlenum objects. OpenStudio-Standards' method # "space_plenum?" indeed catches them by checking if the space is # "partofTotalFloorArea" (which internally has an "isPlenum" check). So # "isPlenum" closely follows ASHRAE 90.1 2016's definition of "plenum": # # "plenum": a compartment or chamber ... # - to which one or more ducts are connected # - that forms a part of the air distribution system, and # - that is NOT USED for occupancy or storage. # # Canadian NECB 2020 has the following (not as well) defined term: # "plenum": a chamber forming part of an air duct system. # ... we'll assume that a space shall also be considered # UNOCCUPIED if it's "part of an air duct system". # # As intended, "isPlenum" would NOT identify as a "plenum" any vented # UNCONDITIONED or UNENCLOSED attic or crawlspace - good. Yet "isPlenum" # would also ignore dead air spaces integrating ducted return air. The # SDK's "partofTotalFloorArea" would be more suitable in such cases, as # long as modellers have, a priori, set this parameter to FALSE. # # By initially relying on the SDK's "partofTotalFloorArea", "space_plenum?" # ends up catching a MUCH WIDER range of spaces, which aren't caught by # "isPlenum". This includes attics, crawlspaces, non-plenum air spaces above # ceiling tiles, and any other UNOCCUPIED space in a model. The term # "plenum" in this context is more of a catch-all shorthand - to be used # with caution. For instance, "space_plenum?" shouldn't be used (in # isolation) to determine whether an UNOCCUPIED space should have its # envelope insulated ("plenum") or not ("attic"). # # In contrast to OpenStudio-Standards' "space_plenum?", the method below # strictly returns FALSE if a space is indeed "partofTotalFloorArea". It # also returns FALSE if the space is a vestibule. Otherwise, it needs more # information to determine if such an UNOCCUPIED space is indeed a # plenum. Beyond these 2x criteria, a space is considered a plenum if: # # CASE A: it includes the substring "plenum" (case insensitive) in its # spaceType's name, or in the latter's standardsSpaceType string; # # CASE B: "isPlenum" == TRUE in an OpenStudio model WITH HVAC airloops; OR # # CASE C: its zone holds an 'inactive' thermostat (i.e. can't extract valid # setpoints) in an OpenStudio model with setpoint temperatures. # # If a modeller is instead simply interested in identifying UNOCCUPIED # spaces that are INDIRECTLYCONDITIONED (not necessarily plenums), then the # following combination is likely more reliable and less confusing: # - SDK's partofTotalFloorArea == FALSE # - OSut's unconditioned? == FALSE mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Space return mismatch("space", space, cl, mth, DBG, false) unless space.is_a?(cl) return false if space.partofTotalFloorArea return false if vestibule?(space) # CASE A: "plenum" spaceType. unless space.spaceType.empty? type = space.spaceType.get return true if type.nameString.downcase.include?("plenum") unless type.standardsSpaceType.empty? type = type.standardsSpaceType.get.downcase return true if type.include?("plenum") end end # CASE B: "isPlenum" == TRUE if airloops. return space.isPlenum if airLoopsHVAC?(space.model) # CASE C: zone holds an 'inactive' thermostat. zone = space.thermalZone heated = heatingTemperatureSetpoints?(space.model) cooled = coolingTemperatureSetpoints?(space.model) if heated || cooled return false if zone.empty? zone = zone.get heat = maxHeatScheduledSetpoint(zone) cool = minCoolScheduledSetpoint(zone) return false if heat[:spt] || cool[:spt] # directly CONDITIONED return heat[:dual] || cool[:dual] # FALSE if both are nilled end false end |
#pointAlongSegment?(p0 = nil, sg = []) ⇒ Bool, false
Validates whether a 3D point lies ~along a 3D point segment, i.e. less than 10mm from any segment.
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 |
# File 'lib/osut/utils.rb', line 2904 def pointAlongSegment?(p0 = nil, sg = []) mth = "OSut::#{__callee__}" cl1 = OpenStudio::Point3d cl2 = OpenStudio::Point3dVector return mismatch( "point", p0, cl1, mth, DBG, false) unless p0.is_a?(cl1) return mismatch("segment", sg, cl2, mth, DBG, false) unless segment?(sg) return true if holds?(sg, p0) a = sg.first b = sg.last ab = b - a abn = b - a abn.normalize ap = p0 - a sp = ap.dot(abn) return false if sp < 0 apd = scalar(abn, sp) return false if apd.length > ab.length + TOL ap0 = a + apd return true if (p0 - ap0).length.round(2) <= TOL false end |
#pointAlongSegments?(p0 = nil, sgs = []) ⇒ Bool, false
Validates whether a 3D point lies anywhere ~along a set of 3D point segments, i.e. less than 10mm from any segment.
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 |
# File 'lib/osut/utils.rb', line 2940 def pointAlongSegments?(p0 = nil, sgs = []) mth = "OSut::#{__callee__}" cl1 = OpenStudio::Point3d cl2 = OpenStudio::Point3dVectorVector sgs = sgs.is_a?(cl2) ? sgs : getSegments(sgs) return empty("segments", mth, DBG, false) if sgs.empty? return mismatch("point", p0, cl, mth, DBG, false) unless p0.is_a?(cl1) sgs.each { |sg| return true if pointAlongSegment?(p0, sg) } false end |
#pointWithinPolygon?(p0 = nil, s = [], entirely = false) ⇒ Bool, false
Validates whether 3D point is within a 3D polygon. If option ‘entirely’ is set to true, then the method returns false if point lies along any of the polygon edges, or is very near any of its vertices.
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 |
# File 'lib/osut/utils.rb', line 3332 def pointWithinPolygon?(p0 = nil, s = [], entirely = false) mth = "OSut::#{__callee__}" cl = OpenStudio::Point3d s = poly(s, false, true, true) return empty("polygon", mth, DBG, false) if s.empty? return mismatch("point", p0, cl, mth, DBG, false) unless p0.is_a?(cl) n = OpenStudio.getOutwardNormal(s) return invalid("plane/normal", mth, 2, DBG, false) if n.empty? n = n.get pl = OpenStudio::Plane.new(s.first, n) return false unless pl.pointOnPlane(p0) entirely = false unless [true, false].include?(entirely) segments = getSegments(s) # Along polygon edges, or near vertices? if pointAlongSegments?(p0, segments) return false if entirely return true unless entirely end segments.each do |segment| # - draw vector from segment midpoint to point # - scale 1000x (assuming no building surface would be 1km wide) # - convert vector to an independent line segment # - loop through polygon segments, tally the number of intersections # - avoid double-counting polygon vertices as intersections # - return false if number of intersections is even mid = midpoint(segment.first, segment.last) mpV = scalar(mid - p0, 1000) p1 = p0 + mpV ctr = 0 # Skip if ~collinear. next if mpV.cross(segment.last - segment.first).length.round(4) < TOL2 segments.each do |sg| intersect = getLineIntersection([p0, p1], sg) next unless intersect # Skip test altogether if one of the polygon vertices. if holds?(s, intersect) ctr = 0 break else ctr += 1 end end next if ctr.zero? return false if ctr.even? end true end |
#poly(pts = nil, vx = false, uq = false, co = false, tt = false, sq = :no) ⇒ OpenStudio::Point3dVector
Returns an OpenStudio 3D point vector as basis for a valid OpenStudio 3D polygon. In addition to basic OpenStudio polygon tests (e.g. all points sharing the same 3D plane, non-self-intersecting), the method can optionally check for convexity, or ensure uniqueness and/or non-collinearity. Returned vector can also be ‘aligned’, as well as in UpperLeftCorner (ULC), BottomLeftCorner (BLC), in clockwise (or counterclockwise) sequence.
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 |
# File 'lib/osut/utils.rb', line 3222 def poly(pts = nil, vx = false, uq = false, co = false, tt = false, sq = :no) mth = "OSut::#{__callee__}" pts = to_p3Dv(pts) cl = OpenStudio::Transformation v = OpenStudio::Point3dVector.new vx = false unless [true, false].include?(vx) uq = false unless [true, false].include?(uq) co = false unless [true, false].include?(co) # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Exit if mismatched/invalid arguments. ok1 = tt == true || tt == false || tt.is_a?(cl) ok2 = sq == :no || sq == :ulc || sq == :blc || sq == :cw return invalid("transformation", mth, 5, DBG, v) unless ok1 return invalid("sequence", mth, 6, DBG, v) unless ok2 # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Minimum 3 points? p3 = getNonCollinears(pts, 3) return empty("polygon (non-collinears < 3)", mth, ERR, v) if p3.size < 3 # Coplanar? pln = OpenStudio::Plane.new(p3) pts.each do |pt| return empty("plane", mth, ERR, v) unless pln.pointOnPlane(pt) end t = OpenStudio::Transformation.alignFace(pts) at = (t.inverse * pts).reverse if tt.is_a?(cl) att = (tt.inverse * pts).reverse if same?(at, att) a = att a = ulc(a).to_a if clockwise?(a) t = nil else t = xyz?(att, :z) ? nil : OpenStudio::Transformation.alignFace(att) a = t ? (t.inverse * att).reverse : att end else a = at end # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Ensure uniqueness and/or non-collinearity. Preserve original sequence. p0 = a.first a = getUniques(a).to_a if uq a = getNonCollinears(a).to_a if co i0 = a.index { |pt| same?(pt, p0) } a = a.rotate(i0) unless i0.nil? # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Check for convexity (optional). if vx && a.size > 3 zen = OpenStudio::Point3d.new(0, 0, 1000) getTriads(a).each do |trio| p1 = trio[0] p2 = trio[1] p3 = trio[2] v12 = p2 - p1 v13 = p3 - p1 x = (zen - p1).cross(v12) return v if x.dot(v13).round(4) > 0 end end # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # Alter sequence (optional). if tt.is_a?(cl) case sq when :ulc a = t ? to_p3Dv(t * ulc(a.reverse)) : to_p3Dv(ulc(a.reverse)) when :blc a = t ? to_p3Dv(t * blc(a.reverse)) : to_p3Dv(blc(a.reverse)) when :cw a = t ? to_p3Dv(t * a) : to_p3Dv(a) else a = t ? to_p3Dv(t * a.reverse) : to_p3Dv(a.reverse) end else case sq when :ulc a = tt ? to_p3Dv(ulc(a.reverse)) : to_p3Dv(t * ulc(a.reverse)) when :blc a = tt ? to_p3Dv(blc(a.reverse)) : to_p3Dv(t * blc(a.reverse)) when :cw a = tt ? to_p3Dv(a) : to_p3Dv(t * a) else a = tt ? to_p3Dv(a.reverse) : to_p3Dv(t * a.reverse) end end a end |
#rectangular?(pts = nil) ⇒ Bool, false
Validates whether an OpenStudio polygon is a rectangle (4x sides + 2x diagonals of equal length, meeting at midpoints).
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 |
# File 'lib/osut/utils.rb', line 3491 def rectangular?(pts = nil) pts = poly(pts, false, false, false) return false if pts.empty? return false unless pts.size == 4 m1 = midpoint(pts[0], pts[2]) m2 = midpoint(pts[1], pts[3]) return false unless same?(m1, m2) diag1 = pts[2] - pts[0] diag2 = pts[3] - pts[1] return true if (diag1.length - diag2.length).abs < TOL false end |
#refrigerated?(space = nil) ⇒ Bool, false
Validates whether a space can be considered as REFRIGERATED.
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 |
# File 'lib/osut/utils.rb', line 2100 def refrigerated?(space = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Space tg0 = "refrigerated" return mismatch("space", space, cl, mth, DBG, false) unless space.is_a?(cl) # 1. First check OSut's REFRIGERATED status. status = space.additionalProperties.getFeatureAsString(tg0) unless status.empty? status = status.get return status if [true, false].include?(status) log(ERR, "Unknown #{space.nameString} REFRIGERATED #{status} (#{mth})") end # 2. Else, compare design heating/cooling setpoints. stps = setpoints(space) return false unless stps[:heating].nil? return false if stps[:cooling].nil? return true if stps[:cooling] < 15 false end |
#roof?(pts = nil) ⇒ Bool, false
Validates whether a polygon can be considered a valid ‘roof’ surface, as per ASHRAE 90.1 & Canadian NECBs, i.e. outward normal within 60° from vertical
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 |
# File 'lib/osut/utils.rb', line 3420 def roof?(pts = nil) ray = OpenStudio::Point3d.new(0,0,1) - OpenStudio::Point3d.new(0,0,0) dut = Math.cos(60 * Math::PI / 180) pts = poly(pts, false, true, true) return false if pts.empty? dot = ray.dot(OpenStudio.getOutwardNormal(pts).get) return false if dot.round(2) <= 0 return true if dot.round(2) == 1 dot.round(4) >= dut.round(4) end |
#rsi(lc = nil, film = 0.0, t = 0.0) ⇒ Float, 0.0
Returns a construction’s ‘standard calc’ thermal resistance (m2•K/W), which includes air film resistances. It excludes insulating effects of shades, screens, etc. in the case of fenestrated constructions.
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 |
# File 'lib/osut/utils.rb', line 983 def rsi(lc = nil, film = 0.0, t = 0.0) # This is adapted from BTAP's Material Module "get_conductance" (P. Lopez) # # https://github.com/NREL/OpenStudio-Prototype-Buildings/blob/ # c3d5021d8b7aef43e560544699fb5c559e6b721d/lib/btap/measures/ # btap_equest_converter/envelope.rb#L122 mth = "OSut::#{__callee__}" cl1 = OpenStudio::Model::LayeredConstruction cl2 = Numeric return invalid("lc", mth, 1, DBG, 0.0) unless lc.respond_to?(NS) id = lc.nameString return mismatch(id, lc, cl1, mth, DBG, 0.0) unless lc.is_a?(cl1) return mismatch("film", film, cl2, mth, DBG, 0.0) unless film.is_a?(cl2) return mismatch("temp K", t, cl2, mth, DBG, 0.0) unless t.is_a?(cl2) t += 273.0 # °C to K return negative("temp K", mth, ERR, 0.0) if t < 0 return negative("film", mth, ERR, 0.0) if film < 0 rsi = film lc.layers.each do |m| # Fenestration materials first. empty = m.to_SimpleGlazing.empty? return 1 / m.to_SimpleGlazing.get.uFactor unless empty empty = m.to_StandardGlazing.empty? rsi += m.to_StandardGlazing.get.thermalResistance unless empty empty = m.to_RefractionExtinctionGlazing.empty? rsi += m.to_RefractionExtinctionGlazing.get.thermalResistance unless empty empty = m.to_Gas.empty? rsi += m.to_Gas.get.getThermalResistance(t) unless empty empty = m.to_GasMixture.empty? rsi += m.to_GasMixture.get.getThermalResistance(t) unless empty # Opaque materials next. empty = m.to_StandardOpaqueMaterial.empty? rsi += m.to_StandardOpaqueMaterial.get.thermalResistance unless empty empty = m.to_MasslessOpaqueMaterial.empty? rsi += m.to_MasslessOpaqueMaterial.get.thermalResistance unless empty empty = m.to_RoofVegetation.empty? rsi += m.to_RoofVegetation.get.thermalResistance unless empty empty = m.to_AirGap.empty? rsi += m.to_AirGap.get.thermalResistance unless empty end rsi end |
#same?(s1 = nil, s2 = nil, indexed = true) ⇒ Bool, false
Returns true if 2 sets of OpenStudio 3D points are nearly equal.
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 |
# File 'lib/osut/utils.rb', line 2428 def same?(s1 = nil, s2 = nil, indexed = true) mth = "OSut::#{__callee__}" s1 = to_p3Dv(s1).to_a s2 = to_p3Dv(s2).to_a return false if s1.empty? return false if s2.empty? return false unless s1.size == s2.size indexed = true unless [true, false].include?(indexed) if indexed xOK = (s1[0].x - s2[0].x).abs < TOL yOK = (s1[0].y - s2[0].y).abs < TOL zOK = (s1[0].z - s2[0].z).abs < TOL if xOK && yOK && zOK && s1.size == 1 return true else indx = nil s2.each_with_index do |pt, i| break if indx xOK = (s1[0].x - s2[i].x).abs < TOL yOK = (s1[0].y - s2[i].y).abs < TOL zOK = (s1[0].z - s2[i].z).abs < TOL indx = i if xOK && yOK && zOK end return false unless indx s2 = to_p3Dv(s2).to_a s2.rotate!(indx) end end # OpenStudio.isAlmostEqual3dPt(p1, p2, TOL) # ... from v350 onwards. s1.size.times.each do |i| xOK = (s1[i].x - s2[i].x).abs < TOL yOK = (s1[i].y - s2[i].y).abs < TOL zOK = (s1[i].z - s2[i].z).abs < TOL return false unless xOK && yOK && zOK end true end |
#scalar(v = OpenStudio::Vector3d.new, m = 0) ⇒ OpenStudio::Vector3d
Returns a scalar product of an OpenStudio Vector3d.
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 |
# File 'lib/osut/utils.rb', line 2374 def scalar(v = OpenStudio::Vector3d.new, m = 0) mth = "OSut::#{__callee__}" cl = OpenStudio::Vector3d ok = m.respond_to?(:to_f) return mismatch("vector", v, cl, mth, DBG, v) unless v.is_a?(cl) return mismatch("m", m, Numeric, mth, DBG, v) unless ok m = m.to_f OpenStudio::Vector3d.new(m * v.x, m * v.y, m * v.z) end |
#scheduleCompactMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values of a schedule (compact).
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 |
# File 'lib/osut/utils.rb', line 1374 def scheduleCompactMinMax(sched = nil) # Largely inspired from Andrew Parker's # "schedule_compact_annual_min_max_value": # # github.com/NREL/openstudio-standards/blob/ # 99cf713750661fe7d2082739f251269c2dfd9140/lib/openstudio-standards/ # standards/Standards.ScheduleCompact.rb#L8 mth = "OSut::#{__callee__}" cl = OpenStudio::Model::ScheduleCompact vals = [] prev = "" res = { min: nil, max: nil } return invalid("sched", mth, 1, DBG, res) unless sched.respond_to?(NS) id = sched.nameString return mismatch(id, sched, cl, mth, DBG, res) unless sched.is_a?(cl) sched.extensibleGroups.each do |eg| if prev.include?("until") vals << eg.getDouble(0).get unless eg.getDouble(0).empty? end str = eg.getString(0) prev = str.get.downcase unless str.empty? end return empty("#{id} values", mth, ERR, res) if vals.empty? res[:min] = vals.min.is_a?(Numeric) ? vals.min : nil res[:max] = vals.min.is_a?(Numeric) ? vals.max : nil res end |
#scheduleConstantMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values of a schedule (constant).
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 |
# File 'lib/osut/utils.rb', line 1344 def scheduleConstantMinMax(sched = nil) # Largely inspired from David Goldwasser's # "schedule_constant_annual_min_max_value": # # github.com/NREL/openstudio-standards/blob/ # 99cf713750661fe7d2082739f251269c2dfd9140/lib/openstudio-standards/ # standards/Standards.ScheduleConstant.rb#L21 mth = "OSut::#{__callee__}" cl = OpenStudio::Model::ScheduleConstant res = { min: nil, max: nil } return invalid("sched", mth, 1, DBG, res) unless sched.respond_to?(NS) id = sched.nameString return mismatch(id, sched, cl, mth, DBG, res) unless sched.is_a?(cl) ok = sched.value.is_a?(Numeric) mismatch("#{id} value", sched.value, Numeric, mth, ERR, res) unless ok res[:min] = sched.value res[:max] = sched.value res end |
#scheduleIntervalMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values for schedule (interval).
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 |
# File 'lib/osut/utils.rb', line 1415 def scheduleIntervalMinMax(sched = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::ScheduleInterval vals = [] res = { min: nil, max: nil } return invalid("sched", mth, 1, DBG, res) unless sched.respond_to?(NS) id = sched.nameString return mismatch(id, sched, cl, mth, DBG, res) unless sched.is_a?(cl) vals = sched.timeSeries.values res[:min] = vals.min.is_a?(Numeric) ? vals.min : nil res[:max] = vals.max.is_a?(Numeric) ? vals.min : nil res end |
#scheduleRulesetMinMax(sched = nil) ⇒ Hash
Returns MIN/MAX values of a schedule (ruleset).
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 |
# File 'lib/osut/utils.rb', line 1312 def scheduleRulesetMinMax(sched = nil) # Largely inspired from David Goldwasser's # "schedule_ruleset_annual_min_max_value": # # github.com/NREL/openstudio-standards/blob/ # 99cf713750661fe7d2082739f251269c2dfd9140/lib/openstudio-standards/ # standards/Standards.ScheduleRuleset.rb#L124 mth = "OSut::#{__callee__}" cl = OpenStudio::Model::ScheduleRuleset res = { min: nil, max: nil } return invalid("sched", mth, 1, DBG, res) unless sched.respond_to?(NS) id = sched.nameString return mismatch(id, sched, cl, mth, DBG, res) unless sched.is_a?(cl) values = sched.defaultDaySchedule.values.to_a sched.scheduleRules.each { |rule| values += rule.daySchedule.values } res[:min] = values.min.is_a?(Numeric) ? values.min : nil res[:max] = values.max.is_a?(Numeric) ? values.max : nil res end |
#segment?(pts = nil) ⇒ Bool, false
Determines if a set of 3D points if a valid segment.
2834 2835 2836 2837 2838 2839 2840 2841 |
# File 'lib/osut/utils.rb', line 2834 def segment?(pts = nil) pts = to_p3Dv(pts) return false if pts.empty? return false unless pts.size == 2 return false if same?(pts[0], pts[1]) true end |
#semiheated?(space = nil) ⇒ Bool, false
Validates whether a space can be considered as SEMIHEATED as per NECB 2020 1.2.1.2. 2): design heating setpoint < 15°C (and non-REFRIGERATED).
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 |
# File 'lib/osut/utils.rb', line 2133 def semiheated?(space = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Space return mismatch("space", space, cl, mth, DBG, false) unless space.is_a?(cl) return false if refrigerated?(space) stps = setpoints(space) return false unless stps[:cooling].nil? return false if stps[:heating].nil? return true if stps[:heating] < 15 false end |
#setpoints(space = nil) ⇒ Hash
Retrieves a space’s (implicit or explicit) heating/cooling setpoints.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 |
# File 'lib/osut/utils.rb', line 1991 def setpoints(space = nil) mth = "OSut::#{__callee__}" cl1 = OpenStudio::Model::Space cl2 = String res = {heating: nil, cooling: nil} tg1 = "space_conditioning_category" tg2 = "indirectlyconditioned" cts = ["nonresconditioned", "resconditioned", "semiheated", "unconditioned"] cnd = nil return mismatch("space", space, cl1, mth, DBG, res) unless space.is_a?(cl1) # 1. Check for OpenStudio-Standards' space conditioning categories. if space.additionalProperties.hasFeature(tg1) cnd = space.additionalProperties.getFeatureAsString(tg1) if cnd.empty? cnd = nil else cnd = cnd.get if cts.include?(cnd.downcase) return res if cnd.downcase == "unconditioned" else invalid("#{tg1}:#{cnd}", mth, 0, ERR) cnd = nil end end end # 2. Check instead OSut's INDIRECTLYCONDITIONED (parent space) link. if cnd.nil? id = space.additionalProperties.getFeatureAsString(tg2) unless id.empty? id = id.get dad = space.model.getSpaceByName(id) if dad.empty? log(ERR, "Unknown space #{id} (#{mth})") else # Now focus on 'parent' space linked to INDIRECTLYCONDITIONED space. space = dad.get cnd = tg2 end end end # 3. Fetch space setpoints (if model indeed holds valid setpoints). heated = heatingTemperatureSetpoints?(space.model) cooled = coolingTemperatureSetpoints?(space.model) zone = space.thermalZone if heated || cooled return res if zone.empty? # UNCONDITIONED zone = zone.get res[:heating] = maxHeatScheduledSetpoint(zone)[:spt] res[:cooling] = minCoolScheduledSetpoint(zone)[:spt] end # 4. Reset if AdditionalProperties were found & valid. unless cnd.nil? if cnd.downcase == "unconditioned" res[:heating] = nil res[:cooling] = nil elsif cnd.downcase == "semiheated" res[:heating] = 14.0 if res[:heating].nil? res[:cooling] = nil elsif cnd.downcase.include?("conditioned") # "nonresconditioned", "resconditioned" or "indirectlyconditioned" res[:heating] = 21.0 if res[:heating].nil? # default res[:cooling] = 24.0 if res[:cooling].nil? # default end end # 5. Reset if plenum? if plenum?(space) res[:heating] = 21.0 if res[:heating].nil? # default res[:cooling] = 24.0 if res[:cooling].nil? # default end res end |
#sloped?(pts = nil) ⇒ Bool, false
Validates whether surface can be considered ‘sloped’ (i.e. not ~flat, as per OpenStudio Utilities’ “alignZPrime”). A vertical polygon returns true.
3473 3474 3475 3476 3477 3478 3479 3480 3481 |
# File 'lib/osut/utils.rb', line 3473 def sloped?(pts = nil) mth = "OSut::#{__callee__}" pts = poly(pts, false, true, true) return false if pts.empty? return false if facingUp?(pts) return false if facingDown?(pts) true end |
#spandrel?(s = nil) ⇒ Bool, false
Validates whether opaque surface can be considered as a curtain wall (or similar technology) spandrel, regardless of construction layers, by looking up AdditionalProperties or its identifier.
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 |
# File 'lib/osut/utils.rb', line 1097 def spandrel?(s = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Surface return invalid("surface", mth, 1, DBG, false) unless s.respond_to?(NS) id = s.nameString m1 = "#{id}:spandrel" m2 = "#{id}:spandrel:boolean" return mismatch(id, s, cl, mth) unless s.is_a?(cl) if s.additionalProperties.hasFeature("spandrel") val = s.additionalProperties.getFeatureAsBoolean("spandrel") return invalid(m1, mth, 1, ERR, false) if val.empty? val = val.get return invalid(m2, mth, 1, ERR, false) unless [true, false].include?(val) return val end id.downcase.include?("spandrel") end |
#square?(pts = nil) ⇒ Bool, false
Validates whether an OpenStudio polygon is a square (rectangular, 4x ~equal sides).
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 |
# File 'lib/osut/utils.rb', line 3515 def square?(pts = nil) d = nil pts = poly(pts, false, false, false) return false if pts.empty? return false unless rectangular?(pts) getSegments(pts).each do |pt| l = (pt[1] - pt[0]).length d = l unless d return false unless l.round(2) == d.round(2) end true end |
#standardOpaqueLayers?(lc = nil) ⇒ Bool, false
Validates if every material in a layered construction is standard & opaque.
898 899 900 901 902 903 904 905 906 907 |
# File 'lib/osut/utils.rb', line 898 def standardOpaqueLayers?(lc = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::LayeredConstruction return invalid("lc", mth, 1, DBG, false) unless lc.respond_to?(NS) return mismatch(lc.nameString, lc, cl, mth, DBG, false) unless lc.is_a?(cl) lc.layers.each { |m| return false if m.to_StandardOpaqueMaterial.empty? } true end |
#thickness(lc = nil) ⇒ Float, 0.0
Returns total (standard opaque) layered construction thickness (m).
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 |
# File 'lib/osut/utils.rb', line 916 def thickness(lc = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::LayeredConstruction return invalid("lc", mth, 1, DBG, 0.0) unless lc.respond_to?(NS) id = lc.nameString return mismatch(id, lc, cl, mth, DBG, 0.0) unless lc.is_a?(cl) ok = standardOpaqueLayers?(lc) log(ERR, "'#{id}' holds non-StandardOpaqueMaterial(s) (#{mth})") unless ok return 0.0 unless ok thickness = 0.0 lc.layers.each { |m| thickness += m.thickness } thickness end |
#to_p3Dv(pts = nil) ⇒ OpenStudio::Point3dVector
Returns OpenStudio 3D points as an OpenStudio point vector, validating points in the process (if Array).
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 |
# File 'lib/osut/utils.rb', line 2392 def to_p3Dv(pts = nil) mth = "OSut::#{__callee__}" cl1 = OpenStudio::Point3d cl2 = OpenStudio::Point3dVector cl3 = OpenStudio::Model::PlanarSurface cl4 = Array v = OpenStudio::Point3dVector.new if pts.is_a?(cl1) v << pts return v end return pts if pts.is_a?(cl2) return pts.vertices if pts.is_a?(cl3) return mismatch("points", pts, cl1, mth, DBG, v) unless pts.is_a?(cl4) pts.each do |pt| return mismatch("point", pt, cl4, mth, DBG, v) unless pt.is_a?(cl1) end pts.each { |pt| v << OpenStudio::Point3d.new(pt.x, pt.y, pt.z) } v end |
#toToplit(spaces = [], opts = {}) ⇒ Array<OpenStudio::Model::Space>
Preselects ideal spaces to toplight, based on ‘addSkylights’ options and key building model geometry attributes. Can be called from within ‘addSkylights’ by setting :ration (opts key:value argument) to ‘true’ (‘false’ by default). Alternatively, the method can be called prior to ‘addSkylights’. The set of filters stems from previous rounds of ‘addSkylights’ stress testing. It is intended as an option to prune away less ideal candidate spaces (irregular, smaller) in favour of (larger) candidates (notably with more suitable roof geometries). This is key when dealing with attic and plenums, where ‘addSkylights’ seeks to add skylight wells (relying on roof cut-outs and leader lines). Another check/outcome is whether to prioritize skylight allocation in already sidelit spaces - opts may be reset to ‘true’.
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 |
# File 'lib/osut/utils.rb', line 6092 def toToplit(spaces = [], opts = {}) mth = "OSut::#{__callee__}" gap4 = 0.4 # minimum skylight 16" width/depth (excluding frame width) w = 1.22 # default 48" x 48" skylight base w2 = w * w # Validate skylight size, if provided. if opts.key?(:size) if opts[:size].respond_to?(:to_f) w = opts[:size].to_f w2 = w * w return invalid(size, mth, 0, ERR, []) if w.round(2) < gap4 else return mismatch("size", opts[:size], Numeric, mth, DBG, []) end end # Accept single 'OpenStudio::Model::Space' (vs an array of spaces). Filter. # # Whether individual spaces are UNCONDITIONED (e.g. attics, unheated areas) # or flagged as NOT being part of the total floor area (e.g. unoccupied # plenums), should of course reflect actual design intentions. It's up to # modellers to correctly flag such cases - can't safely guess in lieu of # design/modelling team. # # A friendly reminder: 'addSkylights' should be called separately for # strictly SEMIHEATED spaces vs REGRIGERATED spaces vs all other CONDITIONED # spaces, as per 90.1 and NECB requirements. if spaces.respond_to?(:spaceType) || spaces.respond_to?(:to_a) spaces = spaces.respond_to?(:to_a) ? spaces.to_a : [spaces] spaces = spaces.select { |sp| sp.respond_to?(:spaceType) } spaces = spaces.select { |sp| sp.partofTotalFloorArea } spaces = spaces.reject { |sp| unconditioned?(sp) } spaces = spaces.reject { |sp| vestibule?(sp) } spaces = spaces.reject { |sp| getRoofs(sp).empty? } spaces = spaces.reject { |sp| sp.floorArea < 4 * w2 } spaces = spaces.sort_by(&:floorArea).reverse return empty("spaces", mth, WRN, 0) if spaces.empty? else return mismatch("spaces", spaces, Array, mth, DBG, 0) end # Unfenestrated spaces have no windows, glazed doors or skylights. By # default, 'addSkylights' will prioritize unfenestrated spaces (over all # existing sidelit ones) and maximize skylight sizes towards achieving the # required skylight area target. This concentrates skylights for instance in # typical (large) core spaces, vs (narrower) perimeter spaces. However, for # less conventional spatial layouts, this default approach can produce less # optimal skylight distributions. A balance is needed to prioritize large # unfenestrated spaces when appropriate on one hand, while excluding smaller # unfenestrated ones on the other. Here, exclusion is based on the average # floor area of spaces to toplight. fm2 = spaces.sum(&:floorArea) afm2 = fm2 / spaces.size unfen = spaces.reject { |sp| daylit?(sp) }.sort_by(&:floorArea).reverse # Target larger unfenestrated spaces, if sufficient in area. if unfen.empty? opts[:sidelit] = true else if spaces.size > unfen.size ufm2 = unfen.sum(&:floorArea) u0fm2 = unfen.first.floorArea if ufm2 > 0.33 * fm2 && u0fm2 > 3 * afm2 unfen = unfen.reject { |sp| sp.floorArea > 0.25 * afm2 } spaces = spaces.reject { |sp| unfen.include?(sp) } else opts[:sidelit] = true end end end espaces = {} rooms = [] toits = [] # Gather roof surfaces - possibly those of attics or plenums above. spaces.each do |sp| getRoofs(sp).each do |rf| espaces[sp] = {roofs: []} unless espaces.key?(sp) espaces[sp][:roofs] << rf unless espaces[sp][:roofs].include?(rf) end end # Priortize larger spaces. espaces = espaces.sort_by { |espace, _| espace.floorArea }.reverse # Prioritize larger roof surfaces. espaces.each do |_, datum| datum[:roofs] = datum[:roofs].sort_by(&:grossArea).reverse end # Single out largest roof in largest space, key when dealing with shared # attics or plenum roofs. espaces.each do |espace, datum| rfs = datum[:roofs].reject { |ruf| toits.include?(ruf) } next if rfs.empty? toits << rfs.sort { |ruf| ruf.grossArea }.reverse.first rooms << espace end log(INF, "No ideal toplit candidates (#{mth})") if rooms.empty? rooms end |
#transforms(group = nil) ⇒ Hash
Returns OpenStudio site/space transformation & rotation angle [0,2PI) rads.
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 |
# File 'lib/osut/utils.rb', line 2329 def transforms(group = nil) mth = "OSut::#{__callee__}" cl2 = OpenStudio::Model::PlanarSurfaceGroup res = { t: nil, r: nil } return invalid("group", mth, 2, DBG, res) unless group.respond_to?(NS) id = group.nameString mdl = group.model return mismatch(id, group, cl2, mth, DBG, res) unless group.is_a?(cl2) res[:t] = group.siteTransformation res[:r] = group.directionofRelativeNorth + mdl.getBuilding.northAxis res end |
#triad?(pts = nil) ⇒ Bool, false
Determines if a set of 3D points if a valid triad.
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 |
# File 'lib/osut/utils.rb', line 2884 def triad?(pts = nil) pts = to_p3Dv(pts) return false if pts.empty? return false unless pts.size == 3 return false if same?(pts[0], pts[1]) return false if same?(pts[0], pts[2]) return false if same?(pts[1], pts[2]) true end |
#triadBox(pts = nil) ⇒ Set<OpenStudio::Point3D>
Generates a BLC box from a triad (3D points). Points must be unique and non-collinear.
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 |
# File 'lib/osut/utils.rb', line 4027 def triadBox(pts = nil) mth = "OSut::#{__callee__}" bkp = OpenStudio::Point3dVector.new box = [] pts = getNonCollinears(pts) return bkp if pts.empty? t = xyz?(pts, :z) ? nil : OpenStudio::Transformation.alignFace(pts) pts = poly(pts, false, true, true, t) if t return bkp if pts.empty? return invalid("triad", mth, 1, ERR, bkp) unless pts.size == 3 pts = to_p3Dv(pts.to_a.reverse) if clockwise?(pts) p0 = pts[0] p1 = pts[1] p2 = pts[2] # Cast p0 unto vertical plane defined by p1/p2. pp0 = verticalPlane(p1, p2).project(p0) v00 = p0 - pp0 v11 = pp0 - p1 v10 = p0 - p1 v12 = p2 - p1 # Reset p0 and/or p1 if obtuse or acute. if v12.dot(v10) < 0 p0 = p1 + v00 elsif v12.dot(v10) > 0 if v11.length < v12.length p1 = pp0 else p0 = p1 + v00 end end p3 = p2 + v00 box << OpenStudio::Point3d.new(p0.x, p0.y, p0.z) box << OpenStudio::Point3d.new(p1.x, p1.y, p1.z) box << OpenStudio::Point3d.new(p2.x, p2.y, p2.z) box << OpenStudio::Point3d.new(p3.x, p3.y, p3.z) box = getNonCollinears(box, 4) return bkp unless box.size == 4 box = blc(box) return bkp unless rectangular?(box) box = to_p3Dv(t * box) if t box end |
#trueNormal(s = nil, r = 0) ⇒ OpenStudio::Vector3d?
Returns the site/true outward normal vector of a surface.
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 |
# File 'lib/osut/utils.rb', line 2353 def trueNormal(s = nil, r = 0) mth = "TBD::#{__callee__}" cl = OpenStudio::Model::PlanarSurface return mismatch("surface", s, cl, mth) unless s.is_a?(cl) return invalid("rotation angle", mth, 2) unless r.respond_to?(:to_f) r = -r.to_f * Math::PI / 180.0 vx = s.outwardNormal.x * Math.cos(r) - s.outwardNormal.y * Math.sin(r) vy = s.outwardNormal.x * Math.sin(r) + s.outwardNormal.y * Math.cos(r) vz = s.outwardNormal.z OpenStudio::Point3d.new(vx, vy, vz) - OpenStudio::Point3d.new(0, 0, 0) end |
#ulc(pts = nil) ⇒ OpenStudio::Point3dVector
Returns OpenStudio 3D points (min 3x) conforming to an UpperLeftCorner (ULC) convention. Points Z-axis values must be ~= 0. Points are returned counterclockwise.
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 |
# File 'lib/osut/utils.rb', line 3092 def ulc(pts = nil) mth = "OSut::#{__callee__}" v = OpenStudio::Point3dVector.new pts = to_p3Dv(pts).to_a return invalid("points (3+)", mth, 1, DBG, v) if pts.size < 3 return invalid("points (aligned)", mth, 1, DBG, v) unless xyz?(pts, :z) # Ensure counterclockwise sequence. pts = pts.reverse if clockwise?(pts) minX = pts.min_by(&:x).x i0 = nearest(pts) p0 = pts[i0] pts_x = pts.select { |pt| pt.x.round(2) == minX.round(2) }.reverse p1 = pts_x.max_by { |pt| (pt - p0).length } i1 = pts.index(p1) to_p3Dv(pts.rotate(i1)) end |
#unconditioned?(space = nil) ⇒ Bool, false
Validates if a space is UNCONDITIONED.
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 |
# File 'lib/osut/utils.rb', line 2082 def unconditioned?(space = nil) mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Space return mismatch("space", space, cl, mth, DBG, false) unless space.is_a?(cl) ok = false ok = setpoints(space)[:heating].nil? && setpoints(space)[:cooling].nil? ok end |
#verticalPlane(p1 = nil, p2 = nil) ⇒ OpenStudio::Plane?
Returns a vertical 3D plane from 2x 3D points, right-hand rule. Input points are considered last 2 (of 3) points forming the plane; the first point is assumed zenithal. Input points cannot align vertically.
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 |
# File 'lib/osut/utils.rb', line 2754 def verticalPlane(p1 = nil, p2 = nil) mth = "OSut::#{__callee__}" return mismatch("point 1", p1, cl, mth) unless p1.is_a?(OpenStudio::Point3d) return mismatch("point 2", p2, cl, mth) unless p2.is_a?(OpenStudio::Point3d) if (p1.x - p2.x).abs < TOL && (p1.y - p2.y).abs < TOL return invalid("vertically aligned points", mth) end zenith = OpenStudio::Point3d.new(p1.x, p1.y, (p2 - p1).length) points = OpenStudio::Point3dVector.new points << zenith points << p1 points << p2 OpenStudio::Plane.new(points) end |
#vestibule?(space = nil) ⇒ Bool, false
Validates whether space is a vestibule.
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 |
# File 'lib/osut/utils.rb', line 1812 def vestibule?(space = nil) # INFO: OpenStudio-Standards' "thermal_zone_vestibule" criteria: # - zones less than 200ft2; AND # - having infiltration using Design Flow Rate # # github.com/NREL/openstudio-standards/blob/ # 86bcd026a20001d903cc613bed6d63e94b14b142/lib/openstudio-standards/ # standards/Standards.ThermalZone.rb#L1264 # # This (unused) OpenStudio-Standards method likely needs revision; it would # return "false" if the thermal zone area were less than 200ft2. Not sure # which edition of 90.1 relies on a 200ft2 threshold (2010?); 90.1 2016 # doesn't. Yet even fixed, the method would nonetheless misidentify as # "vestibule" a small space along an exterior wall, such as a semiheated # storage space. # # The code below is intended as a simple short-term solution, basically # relying on AdditionalProperties, or (if missing) a "vestibule" substring # within a space's spaceType name (or the latter's standardsSpaceType). # # Alternatively, some future method could infer its status as a vestibule # based on a few basic features (common to all vintages): # - 1x+ outdoor-facing wall(s) holding 1x+ door(s) # - adjacent to 1x+ 'occupied' conditioned space(s) # - ideally, 1x+ door(s) between vestibule and 1x+ such adjacent space(s) # # An additional method parameter (i.e. std = :necb) could be added to # ensure supplementary Standard-specific checks, e.g. maximum floor area, # minimum distance between doors. # # Finally, an entirely separate method could be developed to first identify # whether "building entrances" (a defined term in 90.1) actually require # vestibules as per specific code requirements. Food for thought. mth = "OSut::#{__callee__}" cl = OpenStudio::Model::Space return mismatch("space", space, cl, mth, DBG, false) unless space.is_a?(cl) id = space.nameString m1 = "#{id}:vestibule" m2 = "#{id}:vestibule:boolean" if space.additionalProperties.hasFeature("vestibule") val = space.additionalProperties.getFeatureAsBoolean("vestibule") return invalid(m1, mth, 1, ERR, false) if val.empty? val = val.get return invalid(m2, mth, 1, ERR, false) unless [true, false].include?(val) return val end unless space.spaceType.empty? type = space.spaceType.get return false if type.nameString.downcase.include?("plenum") return true if type.nameString.downcase.include?("vestibule") unless type.standardsSpaceType.empty? type = type.standardsSpaceType.get.downcase return false if type.include?("plenum") return true if type.include?("vestibule") end end false end |
#width(pts = nil) ⇒ Float, 0.0
Returns ‘width’ of a set of OpenStudio 3D points.
2697 2698 2699 2700 2701 2702 |
# File 'lib/osut/utils.rb', line 2697 def width(pts = nil) pts = to_p3Dv(pts) return 0 if pts.size < 2 pts.max_by(&:x).x - pts.min_by(&:x).x end |
#xyz?(pts = nil, axs = :z, val = 0) ⇒ Bool, false
Validates whether 3D points share X, Y or Z coordinates.
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 |
# File 'lib/osut/utils.rb', line 2647 def xyz?(pts = nil, axs = :z, val = 0) mth = "OSut::#{__callee__}" pts = to_p3Dv(pts) ok1 = val.respond_to?(:to_f) ok2 = [:x, :y, :z].include?(axs) return false if pts.empty? return mismatch("val", val, Numeric, mth, DBG, false) unless ok1 return invalid("axis", mth, 2, DBG, false) unless ok2 val = val.to_f case axs when :x pts.each { |pt| return false if (pt.x - val).abs > TOL } when :y pts.each { |pt| return false if (pt.y - val).abs > TOL } else pts.each { |pt| return false if (pt.z - val).abs > TOL } end true end |