Class: Libsvm::SvmParameter
- Inherits:
-
Object
- Object
- Libsvm::SvmParameter
- Defined in:
- lib/libsvm/svm_parameter.rb,
ext/libsvm/libsvm.c
Overview
Represents the learning parameter struct.
The parameters in this object control how the SVM model is trained specifically.
This class represents the struct svm_parameter.
Instance Attribute Summary collapse
-
#c ⇒ Float
The parameter C to use for this model.
-
#cache_size ⇒ Integer
Size of the kernel cache, in megabytes.
-
#coef0 ⇒ Float
Coeffectient 0, relevant for kernel types SIGMOID and POLY.
-
#degree ⇒ Integer
Degree parameter, relevant for POLY kernel type.
-
#eps ⇒ Float
Stopping criterion parameter.
-
#gamma ⇒ Float
Gamma parameter, relevant for kernel types RBF, SIGMOID and POLY.
-
#kernel_type ⇒ LINEAR, ...
Type of kernel to use.
-
#label_weights ⇒ Hash
Hash with indices of labels as keys and weights as values.
-
#nu ⇒ Float
The nu parameter in nu-SVM, nu-SVR, and one-class-SVM (i.e. when the Libsvm::SvmParameter#svm_type is given as NU_SVC, NU_SVR or ONE_CLASS).
-
#p ⇒ Float
The epsilon in epsilon-insensitive loss function of epsilon-SVM regression (i.e. when the Libmsvm::SvmParameter#svm_type is given as Libsvm::SvmType::EPSILON_SVR).
-
#probability ⇒ Integer
Integer interpreted as boolean value.
-
#shrinking ⇒ Integer
Integer interpreted as boolean value.
-
#svm_type ⇒ C_SVC, ...
Type of SVM to use.
Instance Attribute Details
#c ⇒ Float
The parameter C to use for this model.
|
# File 'lib/libsvm/svm_parameter.rb', line 64
|
#cache_size ⇒ Integer
Size of the kernel cache, in megabytes.
|
# File 'lib/libsvm/svm_parameter.rb', line 52
|
#coef0 ⇒ Float
Coeffectient 0, relevant for kernel types SIGMOID and POLY.
|
# File 'lib/libsvm/svm_parameter.rb', line 45
|
#degree ⇒ Integer
Degree parameter, relevant for POLY kernel type.
|
# File 'lib/libsvm/svm_parameter.rb', line 31
|
#eps ⇒ Float
Stopping criterion parameter.
|
# File 'lib/libsvm/svm_parameter.rb', line 58
|
#gamma ⇒ Float
Gamma parameter, relevant for kernel types RBF, SIGMOID and POLY.
|
# File 'lib/libsvm/svm_parameter.rb', line 38
|
#kernel_type ⇒ LINEAR, ...
Type of kernel to use.
|
# File 'lib/libsvm/svm_parameter.rb', line 23
|
#label_weights ⇒ Hash
Hash with indices of labels as keys and weights as values.
These weights are used to change the penalty for specific labels (classes). If the weight for a label is not changed, it is set to 1.0.
|
# File 'lib/libsvm/svm_parameter.rb', line 70
|
#nu ⇒ Float
The nu parameter in nu-SVM, nu-SVR, and one-class-SVM (i.e. when the Libsvm::SvmParameter#svm_type is given as NU_SVC, NU_SVR or ONE_CLASS).
|
# File 'lib/libsvm/svm_parameter.rb', line 80
|
#p ⇒ Float
The epsilon in epsilon-insensitive loss function of epsilon-SVM regression (i.e. when the Libmsvm::SvmParameter#svm_type is given as Libsvm::SvmType::EPSILON_SVR).
|
# File 'lib/libsvm/svm_parameter.rb', line 89
|
#probability ⇒ Integer
Integer interpreted as boolean value.
Controls if the model can create probability values for classifications in addition to the classification.
|
# File 'lib/libsvm/svm_parameter.rb', line 105
|
#shrinking ⇒ Integer
Integer interpreted as boolean value.
Controls if shrinking heuristics is used.
|
# File 'lib/libsvm/svm_parameter.rb', line 97
|
#svm_type ⇒ C_SVC, ...
Type of SVM to use. This parameter controls if the model classifies or performs regression, if a one-class model is built, or if the NU variant of SVM is used.
|
# File 'lib/libsvm/svm_parameter.rb', line 14
|