Module: Cluster
- Defined in:
- lib/rbcluster/node.rb,
lib/rbcluster/tree.rb,
lib/rbcluster/version.rb,
ext/rbcluster/rbcluster.c
Defined Under Namespace
Constant Summary collapse
- VERSION =
"0.0.2"
- C_VERSION =
rb_str_new2(CLUSTERVERSION)
Class Method Summary collapse
- .clusterdistance(*args) ⇒ Object
- .cuttree(nodes, clusters) ⇒ Object
- .distancematrix(*args) ⇒ Object
-
.kcluster(*args) ⇒ Object
main function.
- .kmedoids(*args) ⇒ Object
- .mean(ary) ⇒ Object
- .median(ary) ⇒ Object
- .pca(data) ⇒ Object
- .somcluster(*args) ⇒ Object
- .treecluster(*args) ⇒ Object
Class Method Details
.clusterdistance(*args) ⇒ Object
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# File 'ext/rbcluster/rbcluster.c', line 460
VALUE rbcluster_clusterdistance(int argc, VALUE* argv, VALUE self) {
VALUE data, index1, index2, opts;
int nrows, ncols;
rb_scan_args(argc, argv, "31", &data, &index1, &index2, &opts);
double** rows = rbcluster_ary_to_rows(data, &nrows, &ncols);
int nidx1, nidx2;
int* idx1 = rbcluster_parse_index(index1, &nidx1);
int* idx2 = rbcluster_parse_index(index2, &nidx2);
int** mask = rbcluster_create_mask(nrows, ncols);
double* weight = rbcluster_create_weight(ncols);
char method = 'a';
char dist = 'e';
int transpose = 0;
if(opts != Qnil) {
rbcluster_parse_mask(opts, mask, nrows, ncols);
rbcluster_parse_weight(opts, &weight, ncols);
rbcluster_parse_char(opts, "dist", &dist);
rbcluster_parse_char(opts, "method", &method);
rbcluster_parse_bool(opts, "transpose", &transpose);
}
double result = clusterdistance(
nrows,
ncols,
rows,
mask,
weight,
nidx1,
nidx2,
idx1,
idx2,
dist,
method,
transpose
);
free(weight);
free(idx1);
free(idx2);
rbcluster_free_rows(rows, nrows);
rbcluster_free_mask(mask, nrows);
return DBL2NUM(result);
}
|
.cuttree(nodes, clusters) ⇒ Object
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
# File 'ext/rbcluster/rbcluster.c', line 780
VALUE rbcluster_cuttree(VALUE self, VALUE nodes, VALUE clusters) {
int nelements, nclusters;
nclusters = NUM2INT(clusters);
Node* cnodes = rbcluster_ary_to_nodes(nodes, &nelements);
int n = nelements + 1;
if(nclusters < 1) {
rb_raise(rb_eArgError, "nclusters must be >= 1");
}
if(nclusters > n) {
rb_raise(rb_eArgError, "more clusters requested than items available");
}
int clusterid[n];
cuttree(n, cnodes, nclusters, clusterid);
free(cnodes);
if(clusterid[0] == -1) {
rb_raise(rb_eNoMemError, "could not allocate memory for cuttree()");
}
return rbcluster_ints2rb(clusterid, (long)n);
}
|
.distancematrix(*args) ⇒ Object
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# File 'ext/rbcluster/rbcluster.c', line 388
VALUE rbcluster_distancematrix(int argc, VALUE* argv, VALUE self) {
VALUE data, opts;
int nrows, ncols, i, j;
rb_scan_args(argc, argv, "11", &data, &opts);
double** rows = rbcluster_ary_to_rows(data, &nrows, &ncols);
char dist = 'e';
int transpose = 0;
int** mask = rbcluster_create_mask(nrows, ncols);
double* weight = rbcluster_create_weight(ncols);
if(opts != Qnil) {
Check_Type(opts, T_HASH);
VALUE val;
rbcluster_parse_mask(opts, mask, nrows, ncols);
rbcluster_parse_weight(opts, &weight, ncols);
rbcluster_parse_char(opts, "dist", &dist);
rbcluster_parse_bool(opts, "transpose", &transpose);
}
VALUE result = Qnil;
double** distances = distancematrix(
nrows,
ncols,
rows,
mask,
weight,
dist,
transpose
);
if(distances) {
result = rb_ary_new();
for(i = 0; i < nrows; ++i) {
VALUE row = rb_ary_new();
for(j = 0; j < i; ++j){
rb_ary_push(row, DBL2NUM(distances[i][j]));
}
// first row is NULL
if(i != 0) {
free(distances[i]);
}
rb_ary_push(result, row);
}
}
free(weight);
rbcluster_free_rows(rows, nrows);
rbcluster_free_mask(mask, nrows);
return result;
}
|
.kcluster(*args) ⇒ Object
main function
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'ext/rbcluster/rbcluster.c', line 230
VALUE rbcluster_kcluster(int argc, VALUE* argv, VALUE self) {
VALUE arr, opts;
int nrows, ncols, i, j;
rb_scan_args(argc, argv, "11", &arr, &opts);
double** data = rbcluster_ary_to_rows(arr, &nrows, &ncols);
int** mask = rbcluster_create_mask(nrows, ncols);
// defaults
int nclusters = 2;
int transpose = 0;
int npass = 1;
char method = 'a';
char dist = 'e';
double* weight = rbcluster_create_weight(nrows);
int* clusterid = malloc(nrows*sizeof(int));
int ifound = 0;
double error;
// options
if(opts != Qnil) {
Check_Type(opts, T_HASH);
VALUE val;
rbcluster_parse_int(opts, "clusters", &nclusters);
rbcluster_parse_mask(opts, mask, nrows, ncols);
rbcluster_parse_weight(opts, &weight, ncols);
rbcluster_parse_bool(opts, "transpose", &transpose);
rbcluster_parse_int(opts, "passes", &npass);
rbcluster_parse_char(opts, "method", &method);
rbcluster_parse_char(opts, "dist", &dist);
}
kcluster(
nclusters,
nrows,
ncols,
data,
mask,
weight,
transpose,
npass,
method,
dist,
clusterid,
&error,
&ifound
);
VALUE result = rbcluster_ints2rb(clusterid, nrows);
rbcluster_free_rows(data, nrows);
rbcluster_free_mask(mask, nrows);
free(weight);
free(clusterid);
return rb_ary_new3(3, result, DBL2NUM(error), INT2NUM(ifound));
}
|
.kmedoids(*args) ⇒ Object
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# File 'ext/rbcluster/rbcluster.c', line 292
VALUE rbcluster_kmedoids(int argc, VALUE* argv, VALUE self) {
VALUE data, opts;
rb_scan_args(argc, argv, "11", &data, &opts);
Check_Type(data, T_ARRAY);
int nitems = (int)RARRAY_LEN(data);
int nclusters = 2;
int npass = 1;
// populate 'distances' from the input Array
double** distances = malloc(nitems*sizeof(double*));
int i, j;
VALUE row, num;
for(i = 0; i < nitems; ++i) {
row = rb_ary_entry(data, i);
// TODO: better error message
Check_Type(row, T_ARRAY);
if(RARRAY_LEN(row) != i) {
rb_raise(rb_eArgError,
"expected row %d to have exactly %d elements, got %ld", i, i, RARRAY_LEN(row));
}
if(i == 0) {
distances[i] = NULL;
} else {
distances[i] = malloc(i*sizeof(double));
}
for(j = 0; j < i; ++j) {
distances[i][j] = NUM2DBL(rb_ary_entry(row, j));
}
}
if(opts != Qnil) {
rbcluster_parse_int(opts, "clusters", &nclusters);
rbcluster_parse_int(opts, "passes", &npass);
// TODO: initialid
}
int* clusterid = malloc(nitems*sizeof(int));
double error;
int ifound;
// void kmedoids (int nclusters, int nelements, double** distance,
// int npass, int clusterid[], double* error, int* ifound);
kmedoids(
nclusters,
nitems,
distances,
npass,
clusterid,
&error,
&ifound
);
VALUE result = rbcluster_ints2rb(clusterid, nitems);
free(clusterid);
for(i = 1; i < nitems; ++i) free(distances[i]);
return rb_ary_new3(3, result, DBL2NUM(error), INT2NUM(ifound));
}
|
.mean(ary) ⇒ Object
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# File 'ext/rbcluster/rbcluster.c', line 372
VALUE rbcluster_mean(VALUE self, VALUE ary) {
Check_Type(ary, T_ARRAY);
long len = RARRAY_LEN(ary);
double arr[len];
int i;
VALUE num;
for(i = 0; i < len; ++i) {
num = rb_ary_entry(ary, i);
arr[i] = NUM2DBL(num);
}
return DBL2NUM(mean((int)len, arr));
}
|
.median(ary) ⇒ Object
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# File 'ext/rbcluster/rbcluster.c', line 356
VALUE rbcluster_median(VALUE self, VALUE ary) {
Check_Type(ary, T_ARRAY);
long len = RARRAY_LEN(ary);
double arr[len];
int i;
VALUE num;
for(i = 0; i < len; ++i) {
num = rb_ary_entry(ary, i);
arr[i] = NUM2DBL(num);
}
return DBL2NUM(median((int)len, arr));
}
|
.pca(data) ⇒ Object
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
# File 'ext/rbcluster/rbcluster.c', line 721
VALUE rbcluster_pca(VALUE self, VALUE data) {
int nrows, ncols, i, j;
double** u = rbcluster_ary_to_rows(data, &nrows, &ncols);
int ndata = min(nrows, ncols);
double** v = malloc(ndata*sizeof(double*));
for(i = 0; i < ndata; ++i) {
v[i] = malloc(ndata*sizeof(double));
}
double* w = malloc(ndata*sizeof(double));
double* means = malloc(ncols*sizeof(double));
// calculate the mean of each column
for(j = 0; j < ncols; ++j) {
means[j] = 0.0;
for(i = 0; i < nrows; ++i) {
means[j] += u[i][j];
}
means[j] /= nrows;
}
// subtract the mean of each column
for(i = 0; i < nrows; ++i) {
for(j = 0; j < ncols; ++j) {
u[i][j] = u[i][j] - means[j];
}
}
int ok = pca(nrows, ncols, u, v, w);
if(ok == -1) {
rb_raise(rb_eNoMemError, "could not allocate memory");
} else if(ok > 0) {
rb_raise(rb_eStandardError, "svd failed to converge");
}
VALUE mean = rbcluster_doubles2rb(means, ncols);
VALUE eigenvalues = rbcluster_doubles2rb(w, ndata);
VALUE coordinates = Qnil;
VALUE pc = Qnil;
if(nrows >= ncols) {
coordinates = rbcluster_rows2rb(u, nrows, ncols);
pc = rbcluster_rows2rb(v, ndata, ndata);
} else {
pc = rbcluster_rows2rb(u, nrows, ncols);
coordinates = rbcluster_rows2rb(v, ndata, ndata);
}
rbcluster_free_rows(u, nrows);
rbcluster_free_rows(v, ndata);
free(w);
free(means);
return rb_ary_new3(4, mean, coordinates, pc, eigenvalues);
}
|
.somcluster(*args) ⇒ Object
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
# File 'ext/rbcluster/rbcluster.c', line 618
VALUE rbcluster_somcluster(int argc, VALUE* argv, VALUE self) {
VALUE data, opts;
rb_scan_args(argc, argv, "11", &data, &opts);
int nrows, ncols;
double** rows = rbcluster_ary_to_rows(data, &nrows, &ncols);
int** mask = rbcluster_create_mask(nrows, ncols);
double* weight = rbcluster_create_weight(ncols);
int transpose = 0;
char dist = 'e';
int nxgrid = 2;
int nygrid = 1;
double inittau = 0.02;
int niter = 1;
if(opts != Qnil) {
rbcluster_parse_mask(opts, mask, nrows, ncols);
rbcluster_parse_weight(opts, &weight, ncols);
rbcluster_parse_bool(opts, "transpose", &transpose);
rbcluster_parse_int(opts, "nxgrid", &nxgrid);
rbcluster_parse_int(opts, "nygrid", &nygrid);
rbcluster_parse_double(opts, "inittau", &inittau);
rbcluster_parse_int(opts, "niter", &niter);
rbcluster_parse_char(opts, "dist", &dist);
}
int i, j, k;
double*** celldata = rbcluster_create_celldata(nygrid, nxgrid, ncols);
int clusterid[nrows][2];
somcluster(
nrows,
ncols,
rows,
mask,
weight,
transpose,
nxgrid,
nygrid,
inittau,
niter,
dist,
celldata,
clusterid
);
VALUE rb_celldata = rb_ary_new2(nxgrid);
VALUE rb_clusterid = rb_ary_new2(nrows);
VALUE iarr, jarr;
for(i = 0; i < nxgrid; ++i) {
iarr = rb_ary_new2(nygrid);
for(j = 0; j < nygrid; ++j) {
jarr = rb_ary_new2(ncols);
for(k = 0; k < ncols; ++k) {
rb_ary_push(jarr, DBL2NUM(celldata[i][j][k]));
}
rb_ary_push(iarr, jarr);
}
rb_ary_push(rb_celldata, iarr);
}
VALUE inner_arr;
for(i = 0; i < nrows; ++i) {
inner_arr = rb_ary_new2(2);
rb_ary_push(inner_arr, INT2FIX(clusterid[i][0]));
rb_ary_push(inner_arr, INT2FIX(clusterid[i][1]));
rb_ary_push(rb_clusterid, inner_arr);
}
free(weight);
rbcluster_free_rows(rows, nrows);
rbcluster_free_mask(mask, nrows);
rbcluster_free_celldata(celldata, nxgrid, nygrid);
return rb_ary_new3(2, rb_clusterid, rb_celldata);
}
|
.treecluster(*args) ⇒ Object
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
# File 'ext/rbcluster/rbcluster.c', line 563
VALUE rbcluster_treecluster(int argc, VALUE* argv, VALUE self) {
VALUE data, opts;
rb_scan_args(argc, argv, "11", &data, &opts);
int nrows, ncols;
double** rows = rbcluster_ary_to_rows(data, &nrows, &ncols);
int** mask = rbcluster_create_mask(nrows, ncols);
double* weight = rbcluster_create_weight(ncols);
int transpose = 0;
char dist = 'e';
char method = 'a';
// TODO: allow passing a distance matrix instead of data.
double** distmatrix = NULL;
// options
if(opts != Qnil) {
rbcluster_parse_mask(opts, mask, nrows, ncols);
rbcluster_parse_weight(opts, &weight, ncols);
rbcluster_parse_char(opts, "dist", &dist);
rbcluster_parse_char(opts, "method", &method);
rbcluster_parse_bool(opts, "transpose", &transpose);
if(TYPE(opts) == T_HASH && rb_hash_aref(opts, ID2SYM(rb_intern("distancematrix"))) != Qnil) {
rb_raise(rb_eNotImpError, "passing a distance matrix to treecluster() is not yet implemented");
}
}
Node* tree = treecluster(
nrows,
ncols,
rows,
mask,
weight,
transpose,
dist,
method,
distmatrix
);
VALUE result = rb_ary_new2(nrows - 1);
for(int i = 0; i < nrows - 1; ++i) {
rb_ary_push(result, rbcluster_create_node(&tree[i]));
}
free(tree);
free(weight);
rbcluster_free_rows(rows, nrows);
rbcluster_free_mask(mask, nrows);
VALUE args[] = { result };
return rb_class_new_instance(1, args, rbcluster_cTree);
}
|