Method: Geocoder::Calculations#bearing_between

Defined in:
lib/geocoder/calculations.rb

#bearing_between(point1, point2, options = {}) ⇒ Object

Bearing between two points on Earth. Returns a number of degrees from due north (clockwise).

See Geocoder::Calculations.distance_between for ways of specifying the points. Also accepts an options hash:

  • :method - :linear or :spherical; the spherical method is “correct” in that it returns the shortest path (one along a great circle) but the linear method is less confusing (returns due east or west when given two points with the same latitude). Use Geocoder.configure(:distances => …) to configure calculation method.

Based on: www.movable-type.co.uk/scripts/latlong.html



118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/geocoder/calculations.rb', line 118

def bearing_between(point1, point2, options = {})

  # set default options
  options[:method] ||= Geocoder.config.distances
  options[:method] = :linear unless options[:method] == :spherical

  # convert to coordinate arrays
  point1 = extract_coordinates(point1)
  point2 = extract_coordinates(point2)

  # convert degrees to radians
  point1 = to_radians(point1)
  point2 = to_radians(point2)

  # compute deltas
  dlat = point2[0] - point1[0]
  dlon = point2[1] - point1[1]

  case options[:method]
  when :linear
    y = dlon
    x = dlat

  when :spherical
    y = Math.sin(dlon) * Math.cos(point2[0])
    x = Math.cos(point1[0]) * Math.sin(point2[0]) -
        Math.sin(point1[0]) * Math.cos(point2[0]) * Math.cos(dlon)
  end

  bearing = Math.atan2(x,y)
  # Answer is in radians counterclockwise from due east.
  # Convert to degrees clockwise from due north:
  (90 - to_degrees(bearing) + 360) % 360
end