Module: OpenCV::Cv
- Defined in:
- lib/ruby/ropencv/ropencv_types.rb,
lib/ruby/ropencv/ropencv_ruby.rb
Overview
wrapper for cv
Defined Under Namespace
Modules: DrawMatchesFlags, FREAK, FeatureEvaluator, Flann, Hamming, InputArray, Param, SVD, SelfSimDescriptor, SparseMat Classes: Algorithm, AlgorithmStruct, BFMatcher, BFMatcherStruct, BRISK, BRISKStruct, CascadeClassifier, CascadeClassifierStruct, DMatch, DMatchStruct, DescriptorExtractor, DescriptorExtractorStruct, DescriptorMatcher, DescriptorMatcherStruct, EM, EMStruct, FaceRecognizer, FaceRecognizerStruct, FastFeatureDetector, FastFeatureDetectorStruct, Feature2D, Feature2DStruct, FeatureDetector, FeatureDetectorStruct, FileNode, FileNodeStruct, FileStorage, FileStorageStruct, FlannBasedMatcher, FlannBasedMatcherStruct, GridAdaptedFeatureDetector, GridAdaptedFeatureDetectorStruct, HOGDescriptor, HOGDescriptorStruct, KDTree, KDTreeStruct, KeyPoint, KeyPointStruct, MSER, MSERStruct, Mat, MatStruct, Moments, MomentsStruct, ORB, ORBStruct, Point, Point2d, Point2dStruct, Point2f, Point2fStruct, Point3d, Point3dStruct, Point3f, Point3fStruct, PointStruct, PyramidAdaptedFeatureDetector, PyramidAdaptedFeatureDetectorStruct, RNG, RNGStruct, Range, RangeStruct, Rect, RectStruct, RotatedRect, RotatedRectStruct, SIFT, SIFTStruct, SURF, SURFStruct, Scalar, ScalarStruct, SimpleBlobDetector, SimpleBlobDetectorStruct, Size, Size2f, Size2fStruct, SizeStruct, StarDetector, StarDetectorStruct, StereoBM, StereoBMStruct, StereoSGBM, StereoSGBMStruct, StereoVar, StereoVarStruct, String, StringStruct, Subdiv2D, Subdiv2DStruct, TermCriteria, TermCriteriaStruct, Vec2d, Vec2dStruct, Vec3d, Vec3dStruct, Vec4d, Vec4dStruct, Vec4f, Vec4fStruct, Vec6f, Vec6fStruct, VideoCapture, VideoCaptureStruct, VideoWriter, VideoWriterStruct
Constants collapse
- CV_MAX_DIM =
32
- IPL_BORDER_CONSTANT =
0
- IPL_BORDER_REPLICATE =
1
- IPL_BORDER_REFLECT =
2
- IPL_BORDER_WRAP =
3
- IPL_BORDER_REFLECT_101 =
4
- IPL_BORDER_TRANSPARENT =
5
- CV_LMEDS =
4
- CV_RANSAC =
8
- CV_ITERATIVE =
0
- CV_EPNP =
1
- CV_P3P =
2
- CV_CALIB_USE_INTRINSIC_GUESS =
0x00001
- CV_CALIB_FIX_ASPECT_RATIO =
0x00002
- CV_CALIB_FIX_PRINCIPAL_POINT =
0x00004
- CV_CALIB_ZERO_TANGENT_DIST =
0x00008
- CV_CALIB_FIX_FOCAL_LENGTH =
0x00010
- CV_CALIB_FIX_K1 =
0x00020
- CV_CALIB_FIX_K2 =
0x00040
- CV_CALIB_FIX_K3 =
0x00080
- CV_CALIB_FIX_K4 =
0x00800
- CV_CALIB_FIX_K5 =
0x01000
- CV_CALIB_FIX_K6 =
0x02000
- CV_CALIB_RATIONAL_MODEL =
0x04000
- CV_CALIB_THIN_PRISM_MODEL =
0x08000
- CV_CALIB_FIX_S1_S2_S3_S4 =
0x10000
- CV_CALIB_FIX_INTRINSIC =
0x00100
- CV_CALIB_SAME_FOCAL_LENGTH =
0x00200
- CV_CALIB_ZERO_DISPARITY =
0x00400
- CV_FM_7POINT =
1
- CV_FM_8POINT =
2
- CV_FM_LMEDS =
4
- CV_FM_RANSAC =
8
- CV_AFM_4POINT =
16
- CV_AFM_LMEDS =
32
- CV_AFM_RANSAC =
64
- CV_WINDOW_NORMAL =
0x00000000
- CV_WINDOW_AUTOSIZE =
0x00000001
- CV_WINDOW_OPENGL =
0x00001000
- CV_WINDOW_FULLSCREEN =
1
- CV_WINDOW_FREERATIO =
0x00000100
- CV_WINDOW_KEEPRATIO =
0x00000000
- CV_WND_PROP_FULLSCREEN =
0
- CV_WND_PROP_AUTOSIZE =
1
- CV_WND_PROP_ASPECT_RATIO =
2
- CV_WND_PROP_OPENGL =
3
- CV_8U =
0
- CV_8S =
1
- CV_16U =
2
- CV_16S =
3
- CV_32S =
4
- CV_32F =
5
- CV_64F =
6
- CV_8UC1 =
(1-1)*8 + CV_8U
- CV_8UC2 =
(2-1)*8 + CV_8U
- CV_8UC3 =
(3-1)*8 + CV_8U
- CV_8UC4 =
(4-1)*8 + CV_8U
- CV_8SC1 =
(1-1)*8 + CV_8S
- CV_8SC2 =
(2-1)*8 + CV_8S
- CV_8SC3 =
(3-1)*8 + CV_8S
- CV_8SC4 =
(4-1)*8 + CV_8S
- CV_16UC1 =
(1-1)*8 + CV_16U
- CV_16UC2 =
(2-1)*8 + CV_16U
- CV_16UC3 =
(3-1)*8 + CV_16U
- CV_16UC4 =
(4-1)*8 + CV_16U
- CV_16SC1 =
(1-1)*8 + CV_16S
- CV_16SC2 =
(2-1)*8 + CV_16S
- CV_16SC3 =
(3-1)*8 + CV_16S
- CV_16SC4 =
(4-1)*8 + CV_16S
- CV_32SC1 =
(1-1)*8 + CV_32S
- CV_32SC2 =
(2-1)*8 + CV_32S
- CV_32SC3 =
(3-1)*8 + CV_32S
- CV_32SC4 =
(4-1)*8 + CV_32S
- CV_32FC1 =
(1-1)*8 + CV_32F
- CV_32FC2 =
(2-1)*8 + CV_32F
- CV_32FC3 =
(3-1)*8 + CV_32F
- CV_32FC4 =
(4-1)*8 + CV_32F
- CV_64FC1 =
(1-1)*8 + CV_64F
- CV_64FC2 =
(2-1)*8 + CV_64F
- CV_64FC3 =
(3-1)*8 + CV_64F
- CV_64FC4 =
(4-1)*8 + CV_64F
- CV_CN_MAX =
512
- CV_CN_SHIFT =
3
- CV_DEPTH_MAX =
(1 << CV_CN_SHIFT)
- CV_MAT_CN_MASK =
((CV_CN_MAX - 1) << CV_CN_SHIFT)
- CV_MAT_TYPE_MASK =
(CV_DEPTH_MAX*CV_CN_MAX - 1)
- CV_MAT_CONT_FLAG_SHIFT =
14
- CV_MAT_CONT_FLAG =
(1 << CV_MAT_CONT_FLAG_SHIFT)
- CV_SUBMAT_FLAG_SHIFT =
15
- CV_SUBMAT_FLAG =
(1 << CV_SUBMAT_FLAG_SHIFT)
- DECOMP_LU =
0
- DECOMP_SVD =
1
- DECOMP_EIG =
2
- DECOMP_CHOLESKY =
3
- DECOMP_QR =
4
- DECOMP_NORMAL =
16
- NORM_INF =
1
- NORM_L1 =
2
- NORM_L2 =
4
- NORM_L2SQR =
5
- NORM_HAMMING =
6
- NORM_HAMMING2 =
7
- NORM_TYPE_MASK =
7
- NORM_RELATIVE =
8
- NORM_MINMAX =
32
- CMP_EQ =
0
- CMP_GT =
1
- CMP_GE =
2
- CMP_LT =
3
- CMP_LE =
4
- CMP_NE =
5
- GEMM_1_T =
1
- GEMM_2_T =
2
- GEMM_3_T =
4
- DFT_INVERSE =
1
- DFT_SCALE =
2
- DFT_ROWS =
4
- DFT_COMPLEX_OUTPUT =
16
- DFT_REAL_OUTPUT =
32
- DCT_INVERSE =
DFT_INVERSE
- DCT_ROWS =
DFT_ROWS
- DEPTH_MASK_8U =
1 << CV_8U
- DEPTH_MASK_8S =
1 << CV_8S
- DEPTH_MASK_16U =
1 << CV_16U
- DEPTH_MASK_16S =
1 << CV_16S
- DEPTH_MASK_32S =
1 << CV_32S
- DEPTH_MASK_32F =
1 << CV_32F
- DEPTH_MASK_64F =
1 << CV_64F
- DEPTH_MASK_ALL =
(DEPTH_MASK_64F<<1)-1
- DEPTH_MASK_ALL_BUT_8S =
DEPTH_MASK_ALL & ~DEPTH_MASK_8S
- DEPTH_MASK_FLT =
DEPTH_MASK_32F + DEPTH_MASK_64F
- MAGIC_MASK =
0xFFFF0000
- TYPE_MASK =
0x00000FFF
- DEPTH_MASK =
7
- SORT_EVERY_ROW =
0
- SORT_EVERY_COLUMN =
1
- SORT_ASCENDING =
0
- SORT_DESCENDING =
16
- COVAR_SCRAMBLED =
0
- COVAR_NORMAL =
1
- COVAR_USE_AVG =
2
- COVAR_SCALE =
4
- COVAR_ROWS =
8
- COVAR_COLS =
16
- KMEANS_RANDOM_CENTERS =
0
- KMEANS_PP_CENTERS =
2
- KMEANS_USE_INITIAL_LABELS =
1
- FONT_HERSHEY_SIMPLEX =
0
- FONT_HERSHEY_PLAIN =
1
- FONT_HERSHEY_DUPLEX =
2
- FONT_HERSHEY_COMPLEX =
3
- FONT_HERSHEY_TRIPLEX =
4
- FONT_HERSHEY_COMPLEX_SMALL =
5
- FONT_HERSHEY_SCRIPT_SIMPLEX =
6
- FONT_HERSHEY_SCRIPT_COMPLEX =
7
- FONT_ITALIC =
16
- BORDER_REPLICATE =
IPL_BORDER_REPLICATE
- BORDER_CONSTANT =
IPL_BORDER_CONSTANT
- BORDER_REFLECT =
IPL_BORDER_REFLECT
- BORDER_WRAP =
IPL_BORDER_WRAP
- BORDER_REFLECT_101 =
IPL_BORDER_REFLECT_101
- BORDER_REFLECT101 =
BORDER_REFLECT_101
- BORDER_TRANSPARENT =
IPL_BORDER_TRANSPARENT
- BORDER_DEFAULT =
BORDER_REFLECT_101
- BORDER_ISOLATED =
16
- KERNEL_GENERAL =
0
- KERNEL_SYMMETRICAL =
1
- KERNEL_ASYMMETRICAL =
2
- KERNEL_SMOOTH =
4
- KERNEL_INTEGER =
8
- MORPH_ERODE =
CV_MOP_ERODE
- MORPH_DILATE =
CV_MOP_DILATE
- MORPH_OPEN =
CV_MOP_OPEN
- MORPH_CLOSE =
CV_MOP_CLOSE
- MORPH_GRADIENT =
CV_MOP_GRADIENT
- MORPH_TOPHAT =
CV_MOP_TOPHAT
- MORPH_BLACKHAT =
CV_MOP_BLACKHAT
- MORPH_RECT =
0
- MORPH_CROSS =
1
- MORPH_ELLIPSE =
2
- GHT_POSITION =
0
- GHT_SCALE =
1
- GHT_ROTATION =
2
- INTER_NEAREST =
CV_INTER_NN
- INTER_LINEAR =
CV_INTER_LINEAR
- INTER_CUBIC =
CV_INTER_CUBIC
- INTER_AREA =
CV_INTER_AREA
- INTER_LANCZOS4 =
CV_INTER_LANCZOS4
- INTER_MAX =
7
- WARP_INVERSE_MAP =
CV_WARP_INVERSE_MAP
- INTER_BITS =
5
- INTER_BITS2 =
INTER_BITS*2
- INTER_TAB_SIZE =
(1<<INTER_BITS)
- INTER_TAB_SIZE2 =
INTER_TAB_SIZE*INTER_TAB_SIZE
- THRESH_BINARY =
CV_THRESH_BINARY
- THRESH_BINARY_INV =
CV_THRESH_BINARY_INV
- THRESH_TRUNC =
CV_THRESH_TRUNC
- THRESH_TOZERO =
CV_THRESH_TOZERO
- THRESH_TOZERO_INV =
CV_THRESH_TOZERO_INV
- THRESH_MASK =
CV_THRESH_MASK
- THRESH_OTSU =
CV_THRESH_OTSU
- ADAPTIVE_THRESH_MEAN_C =
0
- ADAPTIVE_THRESH_GAUSSIAN_C =
1
- PROJ_SPHERICAL_ORTHO =
0
- PROJ_SPHERICAL_EQRECT =
1
- GC_BGD =
0
- GC_FGD =
1
- GC_PR_BGD =
2
- GC_PR_FGD =
3
- GC_INIT_WITH_RECT =
0
- GC_INIT_WITH_MASK =
1
- GC_EVAL =
2
- DIST_LABEL_CCOMP =
0
- DIST_LABEL_PIXEL =
1
- FLOODFILL_FIXED_RANGE =
1 << 16
- FLOODFILL_MASK_ONLY =
1 << 17
- COLOR_BGR2BGRA =
0
- COLOR_RGB2RGBA =
COLOR_BGR2BGRA
- COLOR_BGRA2BGR =
1
- COLOR_RGBA2RGB =
COLOR_BGRA2BGR
- COLOR_BGR2RGBA =
2
- COLOR_RGB2BGRA =
COLOR_BGR2RGBA
- COLOR_RGBA2BGR =
3
- COLOR_BGRA2RGB =
COLOR_RGBA2BGR
- COLOR_BGR2RGB =
4
- COLOR_RGB2BGR =
COLOR_BGR2RGB
- COLOR_BGRA2RGBA =
5
- COLOR_RGBA2BGRA =
COLOR_BGRA2RGBA
- COLOR_BGR2GRAY =
6
- COLOR_RGB2GRAY =
7
- COLOR_GRAY2BGR =
8
- COLOR_GRAY2RGB =
COLOR_GRAY2BGR
- COLOR_GRAY2BGRA =
9
- COLOR_GRAY2RGBA =
COLOR_GRAY2BGRA
- COLOR_BGRA2GRAY =
10
- COLOR_RGBA2GRAY =
11
- COLOR_BGR2BGR565 =
12
- COLOR_RGB2BGR565 =
13
- COLOR_BGR5652BGR =
14
- COLOR_BGR5652RGB =
15
- COLOR_BGRA2BGR565 =
16
- COLOR_RGBA2BGR565 =
17
- COLOR_BGR5652BGRA =
18
- COLOR_BGR5652RGBA =
19
- COLOR_GRAY2BGR565 =
20
- COLOR_BGR5652GRAY =
21
- COLOR_BGR2BGR555 =
22
- COLOR_RGB2BGR555 =
23
- COLOR_BGR5552BGR =
24
- COLOR_BGR5552RGB =
25
- COLOR_BGRA2BGR555 =
26
- COLOR_RGBA2BGR555 =
27
- COLOR_BGR5552BGRA =
28
- COLOR_BGR5552RGBA =
29
- COLOR_GRAY2BGR555 =
30
- COLOR_BGR5552GRAY =
31
- COLOR_BGR2XYZ =
32
- COLOR_RGB2XYZ =
33
- COLOR_XYZ2BGR =
34
- COLOR_XYZ2RGB =
35
- COLOR_BGR2YCrCb =
36
- COLOR_RGB2YCrCb =
37
- COLOR_YCrCb2BGR =
38
- COLOR_YCrCb2RGB =
39
- COLOR_BGR2HSV =
40
- COLOR_RGB2HSV =
41
- COLOR_BGR2Lab =
44
- COLOR_RGB2Lab =
45
- COLOR_BayerBG2BGR =
46
- COLOR_BayerGB2BGR =
47
- COLOR_BayerRG2BGR =
48
- COLOR_BayerGR2BGR =
49
- COLOR_BayerBG2RGB =
COLOR_BayerRG2BGR
- COLOR_BayerGB2RGB =
COLOR_BayerGR2BGR
- COLOR_BayerRG2RGB =
COLOR_BayerBG2BGR
- COLOR_BayerGR2RGB =
COLOR_BayerGB2BGR
- COLOR_BGR2Luv =
50
- COLOR_RGB2Luv =
51
- COLOR_BGR2HLS =
52
- COLOR_RGB2HLS =
53
- COLOR_HSV2BGR =
54
- COLOR_HSV2RGB =
55
- COLOR_Lab2BGR =
56
- COLOR_Lab2RGB =
57
- COLOR_Luv2BGR =
58
- COLOR_Luv2RGB =
59
- COLOR_HLS2BGR =
60
- COLOR_HLS2RGB =
61
- COLOR_BayerBG2BGR_VNG =
62
- COLOR_BayerGB2BGR_VNG =
63
- COLOR_BayerRG2BGR_VNG =
64
- COLOR_BayerGR2BGR_VNG =
65
- COLOR_BayerBG2RGB_VNG =
COLOR_BayerRG2BGR_VNG
- COLOR_BayerGB2RGB_VNG =
COLOR_BayerGR2BGR_VNG
- COLOR_BayerRG2RGB_VNG =
COLOR_BayerBG2BGR_VNG
- COLOR_BayerGR2RGB_VNG =
COLOR_BayerGB2BGR_VNG
- COLOR_BGR2HSV_FULL =
66
- COLOR_RGB2HSV_FULL =
67
- COLOR_BGR2HLS_FULL =
68
- COLOR_RGB2HLS_FULL =
69
- COLOR_HSV2BGR_FULL =
70
- COLOR_HSV2RGB_FULL =
71
- COLOR_HLS2BGR_FULL =
72
- COLOR_HLS2RGB_FULL =
73
- COLOR_LBGR2Lab =
74
- COLOR_LRGB2Lab =
75
- COLOR_LBGR2Luv =
76
- COLOR_LRGB2Luv =
77
- COLOR_Lab2LBGR =
78
- COLOR_Lab2LRGB =
79
- COLOR_Luv2LBGR =
80
- COLOR_Luv2LRGB =
81
- COLOR_BGR2YUV =
82
- COLOR_RGB2YUV =
83
- COLOR_YUV2BGR =
84
- COLOR_YUV2RGB =
85
- COLOR_BayerBG2GRAY =
86
- COLOR_BayerGB2GRAY =
87
- COLOR_BayerRG2GRAY =
88
- COLOR_BayerGR2GRAY =
89
- COLOR_YUV2RGB_NV12 =
90
- COLOR_YUV2BGR_NV12 =
91
- COLOR_YUV2RGB_NV21 =
92
- COLOR_YUV2BGR_NV21 =
93
- COLOR_YUV420sp2RGB =
COLOR_YUV2RGB_NV21
- COLOR_YUV420sp2BGR =
COLOR_YUV2BGR_NV21
- COLOR_YUV2RGBA_NV12 =
94
- COLOR_YUV2BGRA_NV12 =
95
- COLOR_YUV2RGBA_NV21 =
96
- COLOR_YUV2BGRA_NV21 =
97
- COLOR_YUV420sp2RGBA =
COLOR_YUV2RGBA_NV21
- COLOR_YUV420sp2BGRA =
COLOR_YUV2BGRA_NV21
- COLOR_YUV2RGB_YV12 =
98
- COLOR_YUV2BGR_YV12 =
99
- COLOR_YUV2RGB_IYUV =
100
- COLOR_YUV2BGR_IYUV =
101
- COLOR_YUV2RGB_I420 =
COLOR_YUV2RGB_IYUV
- COLOR_YUV2BGR_I420 =
COLOR_YUV2BGR_IYUV
- COLOR_YUV420p2RGB =
COLOR_YUV2RGB_YV12
- COLOR_YUV420p2BGR =
COLOR_YUV2BGR_YV12
- COLOR_YUV2RGBA_YV12 =
102
- COLOR_YUV2BGRA_YV12 =
103
- COLOR_YUV2RGBA_IYUV =
104
- COLOR_YUV2BGRA_IYUV =
105
- COLOR_YUV2RGBA_I420 =
COLOR_YUV2RGBA_IYUV
- COLOR_YUV2BGRA_I420 =
COLOR_YUV2BGRA_IYUV
- COLOR_YUV420p2RGBA =
COLOR_YUV2RGBA_YV12
- COLOR_YUV420p2BGRA =
COLOR_YUV2BGRA_YV12
- COLOR_YUV2GRAY_420 =
106
- COLOR_YUV2GRAY_NV21 =
COLOR_YUV2GRAY_420
- COLOR_YUV2GRAY_NV12 =
COLOR_YUV2GRAY_420
- COLOR_YUV2GRAY_YV12 =
COLOR_YUV2GRAY_420
- COLOR_YUV2GRAY_IYUV =
COLOR_YUV2GRAY_420
- COLOR_YUV2GRAY_I420 =
COLOR_YUV2GRAY_420
- COLOR_YUV420sp2GRAY =
COLOR_YUV2GRAY_420
- COLOR_YUV420p2GRAY =
COLOR_YUV2GRAY_420
- COLOR_YUV2RGB_UYVY =
107
- COLOR_YUV2BGR_UYVY =
108
- COLOR_YUV2RGB_Y422 =
COLOR_YUV2RGB_UYVY
- COLOR_YUV2BGR_Y422 =
COLOR_YUV2BGR_UYVY
- COLOR_YUV2RGB_UYNV =
COLOR_YUV2RGB_UYVY
- COLOR_YUV2BGR_UYNV =
COLOR_YUV2BGR_UYVY
- COLOR_YUV2RGBA_UYVY =
111
- COLOR_YUV2BGRA_UYVY =
112
- COLOR_YUV2RGBA_Y422 =
COLOR_YUV2RGBA_UYVY
- COLOR_YUV2BGRA_Y422 =
COLOR_YUV2BGRA_UYVY
- COLOR_YUV2RGBA_UYNV =
COLOR_YUV2RGBA_UYVY
- COLOR_YUV2BGRA_UYNV =
COLOR_YUV2BGRA_UYVY
- COLOR_YUV2RGB_YUY2 =
115
- COLOR_YUV2BGR_YUY2 =
116
- COLOR_YUV2RGB_YVYU =
117
- COLOR_YUV2BGR_YVYU =
118
- COLOR_YUV2RGB_YUYV =
COLOR_YUV2RGB_YUY2
- COLOR_YUV2BGR_YUYV =
COLOR_YUV2BGR_YUY2
- COLOR_YUV2RGB_YUNV =
COLOR_YUV2RGB_YUY2
- COLOR_YUV2BGR_YUNV =
COLOR_YUV2BGR_YUY2
- COLOR_YUV2RGBA_YUY2 =
119
- COLOR_YUV2BGRA_YUY2 =
120
- COLOR_YUV2RGBA_YVYU =
121
- COLOR_YUV2BGRA_YVYU =
122
- COLOR_YUV2RGBA_YUYV =
COLOR_YUV2RGBA_YUY2
- COLOR_YUV2BGRA_YUYV =
COLOR_YUV2BGRA_YUY2
- COLOR_YUV2RGBA_YUNV =
COLOR_YUV2RGBA_YUY2
- COLOR_YUV2BGRA_YUNV =
COLOR_YUV2BGRA_YUY2
- COLOR_YUV2GRAY_UYVY =
123
- COLOR_YUV2GRAY_YUY2 =
124
- COLOR_YUV2GRAY_Y422 =
COLOR_YUV2GRAY_UYVY
- COLOR_YUV2GRAY_UYNV =
COLOR_YUV2GRAY_UYVY
- COLOR_YUV2GRAY_YVYU =
COLOR_YUV2GRAY_YUY2
- COLOR_YUV2GRAY_YUYV =
COLOR_YUV2GRAY_YUY2
- COLOR_YUV2GRAY_YUNV =
COLOR_YUV2GRAY_YUY2
- COLOR_RGBA2mRGBA =
125
- COLOR_mRGBA2RGBA =
126
- COLOR_COLORCVT_MAX =
127
- TM_SQDIFF =
0
- TM_SQDIFF_NORMED =
1
- TM_CCORR =
2
- TM_CCORR_NORMED =
3
- TM_CCOEFF =
4
- TM_CCOEFF_NORMED =
5
- RETR_EXTERNAL =
CV_RETR_EXTERNAL
- RETR_LIST =
CV_RETR_LIST
- RETR_CCOMP =
CV_RETR_CCOMP
- RETR_TREE =
CV_RETR_TREE
- RETR_FLOODFILL =
CV_RETR_FLOODFILL
- CHAIN_APPROX_NONE =
CV_CHAIN_APPROX_NONE
- CHAIN_APPROX_SIMPLE =
CV_CHAIN_APPROX_SIMPLE
- CHAIN_APPROX_TC89_L1 =
CV_CHAIN_APPROX_TC89_L1
- CHAIN_APPROX_TC89_KCOS =
CV_CHAIN_APPROX_TC89_KCOS
- INPAINT_NS =
CV_INPAINT_NS
- INPAINT_TELEA =
CV_INPAINT_TELEA
- CASCADE_DO_CANNY_PRUNING =
1
- CASCADE_SCALE_IMAGE =
2
- CASCADE_FIND_BIGGEST_OBJECT =
4
- CASCADE_DO_ROUGH_SEARCH =
8
- LMEDS =
CV_LMEDS
- RANSAC =
CV_RANSAC
- ITERATIVE =
CV_ITERATIVE
- EPNP =
CV_EPNP
- P3P =
CV_P3P
- CALIB_CB_ADAPTIVE_THRESH =
1
- CALIB_CB_NORMALIZE_IMAGE =
2
- CALIB_CB_FILTER_QUADS =
4
- CALIB_CB_FAST_CHECK =
8
- CALIB_CB_SYMMETRIC_GRID =
1
- CALIB_CB_ASYMMETRIC_GRID =
2
- CALIB_CB_CLUSTERING =
4
- CALIB_USE_INTRINSIC_GUESS =
CV_CALIB_USE_INTRINSIC_GUESS
- CALIB_FIX_ASPECT_RATIO =
CV_CALIB_FIX_ASPECT_RATIO
- CALIB_FIX_PRINCIPAL_POINT =
CV_CALIB_FIX_PRINCIPAL_POINT
- CALIB_ZERO_TANGENT_DIST =
CV_CALIB_ZERO_TANGENT_DIST
- CALIB_FIX_FOCAL_LENGTH =
CV_CALIB_FIX_FOCAL_LENGTH
- CALIB_FIX_K1 =
CV_CALIB_FIX_K1
- CALIB_FIX_K2 =
CV_CALIB_FIX_K2
- CALIB_FIX_K3 =
CV_CALIB_FIX_K3
- CALIB_FIX_K4 =
CV_CALIB_FIX_K4
- CALIB_FIX_K5 =
CV_CALIB_FIX_K5
- CALIB_FIX_K6 =
CV_CALIB_FIX_K6
- CALIB_RATIONAL_MODEL =
CV_CALIB_RATIONAL_MODEL
- CALIB_FIX_INTRINSIC =
CV_CALIB_FIX_INTRINSIC
- CALIB_SAME_FOCAL_LENGTH =
CV_CALIB_SAME_FOCAL_LENGTH
- CALIB_ZERO_DISPARITY =
CV_CALIB_ZERO_DISPARITY
- FM_7POINT =
CV_FM_7POINT
- FM_8POINT =
CV_FM_8POINT
- FM_LMEDS =
CV_FM_LMEDS
- FM_RANSAC =
CV_FM_RANSAC
- WINDOW_NORMAL =
CV_WINDOW_NORMAL
- WINDOW_AUTOSIZE =
CV_WINDOW_AUTOSIZE
- WINDOW_OPENGL =
CV_WINDOW_OPENGL
- WND_PROP_FULLSCREEN =
CV_WND_PROP_FULLSCREEN
- WND_PROP_AUTOSIZE =
CV_WND_PROP_AUTOSIZE
- WND_PROP_ASPECT_RATIO =
CV_WND_PROP_ASPECTRATIO
- WND_PROP_OPENGL =
CV_WND_PROP_OPENGL
- EVENT_MOUSEMOVE =
0
- EVENT_LBUTTONDOWN =
1
- EVENT_RBUTTONDOWN =
2
- EVENT_MBUTTONDOWN =
3
- EVENT_LBUTTONUP =
4
- EVENT_RBUTTONUP =
5
- EVENT_MBUTTONUP =
6
- EVENT_LBUTTONDBLCLK =
7
- EVENT_RBUTTONDBLCLK =
8
- EVENT_MBUTTONDBLCLK =
9
- EVENT_FLAG_LBUTTON =
1
- EVENT_FLAG_RBUTTON =
2
- EVENT_FLAG_MBUTTON =
4
- EVENT_FLAG_CTRLKEY =
8
- EVENT_FLAG_SHIFTKEY =
16
- EVENT_FLAG_ALTKEY =
32
- IMREAD_UNCHANGED =
-1
- IMREAD_GRAYSCALE =
0
- IMREAD_COLOR =
1
- IMREAD_ANYDEPTH =
2
- IMREAD_ANYCOLOR =
4
- IMWRITE_JPEG_QUALITY =
1
- IMWRITE_PNG_COMPRESSION =
16
- IMWRITE_PNG_STRATEGY =
17
- IMWRITE_PNG_BILEVEL =
18
- IMWRITE_PNG_STRATEGY_DEFAULT =
0
- IMWRITE_PNG_STRATEGY_FILTERED =
1
- IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY =
2
- IMWRITE_PNG_STRATEGY_RLE =
3
- IMWRITE_PNG_STRATEGY_FIXED =
4
- IMWRITE_PXM_BINARY =
32
- ROTATION =
1
- TRANSLATION =
2
- RIGID_BODY_MOTION =
4
- COLORMAP_AUTUMN =
0
- COLORMAP_BONE =
1
- COLORMAP_JET =
2
- COLORMAP_WINTER =
3
- COLORMAP_RAINBOW =
4
- COLORMAP_OCEAN =
5
- COLORMAP_SUMMER =
6
- COLORMAP_SPRING =
7
- COLORMAP_COOL =
8
- COLORMAP_HSV =
9
- COLORMAP_PINK =
10
- COLORMAP_HOT =
11
Class Method Summary collapse
-
.absdiff(_src1, _src2, dst) ⇒ Object
wrapper for void cv::absdiff(const cv::Mat src1, const cv::Mat src2, cv::Mat dst).
-
.accumulate(src, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulate(const cv::Mat src, cv::Mat dst, const cv::Mat mask=Mat()).
-
.accumulate_product(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulateProduct(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat()).
-
.accumulate_square(src, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulateSquare(const cv::Mat src, cv::Mat dst, const cv::Mat mask=Mat()).
-
.accumulate_weighted(src, dst, alpha, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulateWeighted(const cv::Mat src, cv::Mat dst, double alpha, const cv::Mat mask=Mat()).
-
.adaptive_threshold(src, dst, max_value, adaptive_method, threshold_type, block_size, c) ⇒ Object
wrapper for void cv::adaptiveThreshold(const cv::Mat src, cv::Mat dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C).
-
.add(_src1, _src2, dst, mask = Cv::Mat.new(), dtype = -1)) ⇒ Object
wrapper for void cv::add(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat(), int dtype=-1).
-
.add_weighted(_src1, alpha, _src2, beta, gamma, dst, dtype = -1)) ⇒ Object
wrapper for void cv::addWeighted(const cv::Mat src1, double alpha, const cv::Mat src2, double beta, double gamma, cv::Mat dst, int dtype=-1).
-
.apply_color_map(src, dst, colormap) ⇒ Object
wrapper for void cv::applyColorMap(const cv::Mat src, cv::Mat dst, int colormap).
-
.approx_polydp(curve, approx_curve, epsilon, closed) ⇒ Object
wrapper for void cv::approxPolyDP(const cv::Mat curve, cv::Mat approxCurve, double epsilon, bool closed).
-
.arc_length(curve, closed) ⇒ Object
wrapper for double cv::arcLength(const cv::Mat curve, bool closed).
-
.batch_distance(_src1, _src2, dist, dtype, nidx, norm_type = NORM_L2, k = 0, mask = Cv::Mat.new(), update = 0, crosscheck = false) ⇒ Object
wrapper for void cv::batchDistance(const cv::Mat src1, const cv::Mat src2, cv::Mat dist, int dtype, cv::Mat nidx, int normType=NORM_L2, int K=0, const cv::Mat mask=Mat(), int update=0, bool crosscheck=false).
-
.bilateral_filter(src, dst, d, sigma_color, sigma_space, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::bilateralFilter(const cv::Mat src, cv::Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT).
-
.bitwise_and(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_and(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat()).
-
.bitwise_not(src, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_not(const cv::Mat src, cv::Mat dst, const cv::Mat mask=Mat()).
-
.bitwise_or(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_or(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat()).
-
.bitwise_xor(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_xor(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat()).
-
.blur(src, dst, ksize, anchor = Cv::Point.new(-1,-1), border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::blur(const cv::Mat src, cv::Mat dst, const cv::Size ksize, const cv::Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT).
-
.border_interpolate(p, len, border_type) ⇒ Object
wrapper for int cv::borderInterpolate(int p, int len, int borderType).
-
.bounding_rect(points) ⇒ Object
wrapper for cv::Rect cv::boundingRect(const cv::Mat points).
-
.box_filter(src, dst, ddepth, ksize, anchor = Cv::Point.new(-1,-1), normalize = true, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::boxFilter(const cv::Mat src, cv::Mat dst, int ddepth, const cv::Size ksize, const cv::Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT).
-
.calc_back_project(images, channels, hist, dst, ranges, scale) ⇒ Object
wrapper for void cv::calcBackProject(const vector_Mat images, const vector_int channels, const cv::Mat hist, cv::Mat dst, const vector_float ranges, double scale).
-
.calc_covar_matrix(samples, covar, mean, flags, ctype = CV_64F) ⇒ Object
wrapper for void cv::calcCovarMatrix(const cv::Mat samples, cv::Mat covar, cv::Mat mean, int flags, int ctype=CV_64F).
-
.calc_hist(images, channels, mask, hist, hist_size, ranges, accumulate = false) ⇒ Object
wrapper for void cv::calcHist(const vector_Mat images, const vector_int channels, const cv::Mat mask, cv::Mat hist, const vector_int histSize, const vector_float ranges, bool accumulate=false).
-
.calibrate_camera(object_points, image_points, image_size, camera_matrix, dist_coeffs, rvecs, tvecs, flags = 0, criteria = Cv::TermCriteria.new( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON)) ⇒ Object
wrapper for double cv::calibrateCamera(const vector_Mat objectPoints, const vector_Mat imagePoints, const cv::Size imageSize, cv::Mat cameraMatrix, cv::Mat distCoeffs, vector_Mat rvecs, vector_Mat tvecs, int flags=0, const cv::TermCriteria criteria=TermCriteria( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON)).
-
.calibration_matrix_values(camera_matrix, image_size, aperture_width, aperture_height, fovx, fovy, focal_length, principal_point, aspect_ratio) ⇒ Object
wrapper for void cv::calibrationMatrixValues(const cv::Mat cameraMatrix, const cv::Size imageSize, double apertureWidth, double apertureHeight, double fovx, double fovy, double focalLength, cv::Point2d principalPoint, double aspectRatio).
-
.canny(image, edges, _threshold1, _threshold2, aperture_size = 3, _l2gradient = false) ⇒ Object
wrapper for void cv::Canny(const cv::Mat image, cv::Mat edges, double threshold1, double threshold2, int apertureSize=3, bool L2gradient=false).
-
.cart_to_polar(x, y, magnitude, angle, angle_in_degrees = false) ⇒ Object
wrapper for void cv::cartToPolar(const cv::Mat x, const cv::Mat y, cv::Mat magnitude, cv::Mat angle, bool angleInDegrees=false).
-
.chamer_matching(img, templ, results, cost, templ_scale = 1, max_matches = 20, min_match_distance = 1.0, pad_x = 3, pad_y = 3, scales = 5, min_scale = 0.6, max_scale = 1.6, orientation_weight = 0.5, truncate = 20) ⇒ Object
wrapper for int cv::chamerMatching(cv::Mat img, cv::Mat templ, vector_vector_Point results, vector_float cost, double templScale=1, int maxMatches=20, double minMatchDistance=1.0, int padX=3, int padY=3, int scales=5, double minScale=0.6, double maxScale=1.6, double orientationWeight=0.5, double truncate=20).
-
.check_hardware_support(feature) ⇒ Object
wrapper for bool cv::checkHardwareSupport(int feature).
-
.check_range(a, quiet = true, pos = 0, min_val = -DBL_MAX,, max_val = DBL_MAX) ⇒ Object
wrapper for bool cv::checkRange(const cv::Mat a, bool quiet=true, cv::Point *pos=0, double minVal=-DBL_MAX, double maxVal=DBL_MAX).
-
.circle(img, center, radius, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::circle(cv::Mat img, const cv::Point center, int radius, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0).
-
.clip_line(img_rect, _pt1, _pt2) ⇒ Object
wrapper for bool cv::clipLine(const cv::Rect imgRect, cv::Point pt1, cv::Point pt2).
-
.compare(_src1, _src2, dst, cmpop) ⇒ Object
wrapper for void cv::compare(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, int cmpop).
-
.compare_hist(_h1, _h2, method) ⇒ Object
wrapper for double cv::compareHist(const cv::Mat H1, const cv::Mat H2, int method).
-
.complete_symm(mtx, lower_to_upper = false) ⇒ Object
wrapper for void cv::completeSymm(cv::Mat mtx, bool lowerToUpper=false).
-
.composert(_rvec1, _tvec1, _rvec2, _tvec2, _rvec3, _tvec3, _dr3dr1 = Cv::Mat.new(), _dr3dt1 = Cv::Mat.new(), _dr3dr2 = Cv::Mat.new(), _dr3dt2 = Cv::Mat.new(), _dt3dr1 = Cv::Mat.new(), _dt3dt1 = Cv::Mat.new(), _dt3dr2 = Cv::Mat.new(), _dt3dt2 = Cv::Mat.new()) ⇒ Object
wrapper for void cv::composeRT(const cv::Mat rvec1, const cv::Mat tvec1, const cv::Mat rvec2, const cv::Mat tvec2, cv::Mat rvec3, cv::Mat tvec3, cv::Mat dr3dr1=Mat(), cv::Mat dr3dt1=Mat(), cv::Mat dr3dr2=Mat(), cv::Mat dr3dt2=Mat(), cv::Mat dt3dr1=Mat(), cv::Mat dt3dt1=Mat(), cv::Mat dt3dr2=Mat(), cv::Mat dt3dt2=Mat()).
-
.contour_area(contour, oriented = false) ⇒ Object
wrapper for double cv::contourArea(const cv::Mat contour, bool oriented=false).
-
.convert_maps(_map1, _map2, _dstmap1, _dstmap2, _dstmap1type, nninterpolation = false) ⇒ Object
wrapper for void cv::convertMaps(const cv::Mat map1, const cv::Mat map2, cv::Mat dstmap1, cv::Mat dstmap2, int dstmap1type, bool nninterpolation=false).
-
.convert_points_from_homogeneous(src, dst) ⇒ Object
wrapper for void cv::convertPointsFromHomogeneous(const cv::Mat src, cv::Mat dst).
-
.convert_points_to_homogeneous(src, dst) ⇒ Object
wrapper for void cv::convertPointsToHomogeneous(const cv::Mat src, cv::Mat dst).
-
.convert_scale_abs(src, dst, alpha = 1, beta = 0) ⇒ Object
wrapper for void cv::convertScaleAbs(const cv::Mat src, cv::Mat dst, double alpha=1, double beta=0).
-
.convex_hull(points, hull, clockwise = false, return_points = true) ⇒ Object
wrapper for void cv::convexHull(const cv::Mat points, cv::Mat hull, bool clockwise=false, bool returnPoints=true).
-
.convexity_defects(contour, convexhull, convexity_defects) ⇒ Object
wrapper for void cv::convexityDefects(const cv::Mat contour, const cv::Mat convexhull, cv::Mat convexityDefects).
-
.copy_make_border(src, dst, top, bottom, left, right, border_type, value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::copyMakeBorder(const cv::Mat src, cv::Mat dst, int top, int bottom, int left, int right, int borderType, const cv::Scalar value=Scalar()).
-
.corner_eigen_vals_and_vecs(src, dst, block_size, ksize, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::cornerEigenValsAndVecs(const cv::Mat src, cv::Mat dst, int blockSize, int ksize, int borderType=BORDER_DEFAULT).
-
.corner_harris(src, dst, block_size, ksize, k, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::cornerHarris(const cv::Mat src, cv::Mat dst, int blockSize, int ksize, double k, int borderType=BORDER_DEFAULT).
-
.corner_min_eigen_val(src, dst, block_size, ksize = 3, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::cornerMinEigenVal(const cv::Mat src, cv::Mat dst, int blockSize, int ksize=3, int borderType=BORDER_DEFAULT).
-
.corner_sub_pix(image, corners, win_size, zero_zone, criteria) ⇒ Object
wrapper for void cv::cornerSubPix(const cv::Mat image, cv::Mat corners, const cv::Size winSize, const cv::Size zeroZone, const cv::TermCriteria criteria).
-
.correct_matches(f, _points1, _points2, _new_points1, _new_points2) ⇒ Object
wrapper for void cv::correctMatches(const cv::Mat F, const cv::Mat points1, const cv::Mat points2, cv::Mat newPoints1, cv::Mat newPoints2).
-
.count_non_zero(src) ⇒ Object
wrapper for int cv::countNonZero(const cv::Mat src).
-
.create_eigen_face_recognizer(num_components = 0, threshold = DBL_MAX) ⇒ Object
wrapper for Ptr_FaceRecognizer cv::createEigenFaceRecognizer(int num_components=0, double threshold=DBL_MAX).
-
.create_fisher_face_recognizer(num_components = 0, threshold = DBL_MAX) ⇒ Object
wrapper for Ptr_FaceRecognizer cv::createFisherFaceRecognizer(int num_components=0, double threshold=DBL_MAX).
-
.create_hanning_window(dst, win_size, type) ⇒ Object
wrapper for void cv::createHanningWindow(cv::Mat dst, const cv::Size winSize, int type).
-
.createlbph_face_recognizer(radius = 1, neighbors = 8, grid_x = 8, grid_y = 8, threshold = DBL_MAX) ⇒ Object
wrapper for Ptr_FaceRecognizer cv::createLBPHFaceRecognizer(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold=DBL_MAX).
-
.cube_root(val) ⇒ Object
wrapper for float cv::cubeRoot(float val).
-
.cvt_color(src, dst, code, dst_cn = 0) ⇒ Object
wrapper for void cv::cvtColor(const cv::Mat src, cv::Mat dst, int code, int dstCn=0).
-
.dct(src, dst, flags = 0) ⇒ Object
wrapper for void cv::dct(const cv::Mat src, cv::Mat dst, int flags=0).
-
.decompose_projection_matrix(proj_matrix, camera_matrix, rot_matrix, trans_vect, rot_matrix_x = Cv::Mat.new(), rot_matrix_y = Cv::Mat.new(), rot_matrix_z = Cv::Mat.new(), euler_angles = Cv::Mat.new()) ⇒ Object
wrapper for void cv::decomposeProjectionMatrix(const cv::Mat projMatrix, cv::Mat cameraMatrix, cv::Mat rotMatrix, cv::Mat transVect, cv::Mat rotMatrixX=Mat(), cv::Mat rotMatrixY=Mat(), cv::Mat rotMatrixZ=Mat(), cv::Mat eulerAngles=Mat()).
-
.destroy_all_windows ⇒ Object
wrapper for void cv::destroyAllWindows().
-
.destroy_window(winname) ⇒ Object
wrapper for void cv::destroyWindow(const cv::String winname).
-
.determinant(mtx) ⇒ Object
wrapper for double cv::determinant(const cv::Mat mtx).
-
.dft(src, dst, flags = 0, nonzero_rows = 0) ⇒ Object
wrapper for void cv::dft(const cv::Mat src, cv::Mat dst, int flags=0, int nonzeroRows=0).
-
.dilate(src, dst, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) ⇒ Object
wrapper for void cv::dilate(const cv::Mat src, cv::Mat dst, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const cv::Scalar borderValue=morphologyDefaultBorderValue()).
-
.distance_transform(src, dst, distance_type, mask_size) ⇒ Object
wrapper for void cv::distanceTransform(const cv::Mat src, cv::Mat dst, int distanceType, int maskSize).
-
.distance_transform_with_labels(src, dst, labels, distance_type, mask_size, label_type = DIST_LABEL_CCOMP) ⇒ Object
wrapper for void cv::distanceTransform(const cv::Mat src, cv::Mat dst, cv::Mat labels, int distanceType, int maskSize, int labelType=DIST_LABEL_CCOMP).
-
.divide(*args) ⇒ Object
wrapper for overloaded method divide.
-
.draw_chessboard_corners(image, pattern_size, corners, pattern_was_found) ⇒ Object
wrapper for void cv::drawChessboardCorners(cv::Mat image, const cv::Size patternSize, const cv::Mat corners, bool patternWasFound).
-
.draw_contours(image, contours, contour_idx, color, thickness = 1, line_type = 8, hierarchy = Cv::Mat.new(), max_level = INT_MAX, offset = Cv::Point.new()) ⇒ Object
wrapper for void cv::drawContours(cv::Mat image, const vector_Mat contours, int contourIdx, const cv::Scalar color, int thickness=1, int lineType=8, const cv::Mat hierarchy=Mat(), int maxLevel=INT_MAX, const cv::Point offset=Point()).
-
.draw_data_matrix_codes(image, codes, corners) ⇒ Object
wrapper for void cv::drawDataMatrixCodes(cv::Mat image, const vector_string codes, const cv::Mat corners).
-
.draw_keypoints(image, keypoints, out_image, color = Cv::Scalar::all(-1), flags = DrawMatchesFlags::DEFAULT) ⇒ Object
wrapper for void cv::drawKeypoints(const cv::Mat image, const vector_KeyPoint keypoints, cv::Mat outImage, const cv::Scalar color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT).
-
.draw_matches(_img1, _keypoints1, _img2, _keypoints2, _matches1to2, out_img, match_color = Cv::Scalar::all(-1), single_point_color = Cv::Scalar::all(-1), matches_mask = VectorChar.new(), flags = DrawMatchesFlags::DEFAULT) ⇒ Object
wrapper for void cv::drawMatches(const cv::Mat img1, const vector_KeyPoint keypoints1, const cv::Mat img2, const vector_KeyPoint keypoints2, const vector_DMatch matches1to2, cv::Mat outImg, const cv::Scalar matchColor=Scalar::all(-1), const cv::Scalar singlePointColor=Scalar::all(-1), const vector_char matchesMask=vector_char(), int flags=DrawMatchesFlags::DEFAULT).
-
.eigen(src, compute_eigenvectors, eigenvalues, eigenvectors) ⇒ Object
wrapper for bool cv::eigen(const cv::Mat src, bool computeEigenvectors, cv::Mat eigenvalues, cv::Mat eigenvectors).
-
.ellipse(*args) ⇒ Object
wrapper for overloaded method ellipse.
-
.ellipse2_poly(center, axes, angle, arc_start, arc_end, delta, pts) ⇒ Object
wrapper for void cv::ellipse2Poly(const cv::Point center, const cv::Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point pts).
-
.equalize_hist(src, dst) ⇒ Object
wrapper for void cv::equalizeHist(const cv::Mat src, cv::Mat dst).
-
.erode(src, dst, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) ⇒ Object
wrapper for void cv::erode(const cv::Mat src, cv::Mat dst, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const cv::Scalar borderValue=morphologyDefaultBorderValue()).
-
.estimate_affine3d(src, dst, out, inliers, ransac_threshold = 3, confidence = 0.99) ⇒ Object
wrapper for int cv::estimateAffine3D(const cv::Mat src, const cv::Mat dst, cv::Mat out, cv::Mat inliers, double ransacThreshold=3, double confidence=0.99).
-
.exp(src, dst) ⇒ Object
wrapper for void cv::exp(const cv::Mat src, cv::Mat dst).
-
.extract_channel(src, dst, coi) ⇒ Object
wrapper for void cv::extractChannel(const cv::Mat src, cv::Mat dst, int coi).
-
.fast_atan2(y, x) ⇒ Object
wrapper for float cv::fastAtan2(float y, float x).
-
.fast_nl_means_denoising(src, dst, h = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoising(const cv::Mat src, cv::Mat dst, float h=3, int templateWindowSize=7, int searchWindowSize=21).
-
.fast_nl_means_denoising_colored(src, dst, h = 3, h_color = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoisingColored(const cv::Mat src, cv::Mat dst, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21).
-
.fast_nl_means_denoising_colored_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h = 3, h_color = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoisingColoredMulti(const vector_Mat srcImgs, cv::Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21).
-
.fast_nl_means_denoising_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoisingMulti(const vector_Mat srcImgs, cv::Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, int templateWindowSize=7, int searchWindowSize=21).
-
.fill_convex_poly(img, points, color, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::fillConvexPoly(cv::Mat img, const cv::Mat points, const cv::Scalar color, int lineType=8, int shift=0).
-
.fill_poly(img, pts, color, line_type = 8, shift = 0, offset = Cv::Point.new()) ⇒ Object
wrapper for void cv::fillPoly(cv::Mat img, const vector_Mat pts, const cv::Scalar color, int lineType=8, int shift=0, const cv::Point offset=Point()).
-
.filter2d(src, dst, ddepth, kernel, anchor = Cv::Point.new(-1,-1), delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::filter2D(const cv::Mat src, cv::Mat dst, int ddepth, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT).
-
.filter_speckles(img, new_val, max_speckle_size, max_diff, buf = Cv::Mat.new()) ⇒ Object
wrapper for void cv::filterSpeckles(cv::Mat img, double newVal, int maxSpeckleSize, double maxDiff, cv::Mat buf=Mat()).
-
.find_chessboard_corners(image, pattern_size, corners, flags = CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE) ⇒ Object
wrapper for bool cv::findChessboardCorners(const cv::Mat image, const cv::Size patternSize, cv::Mat corners, int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE).
-
.find_circles_grid(image, pattern_size, centers, flags = CALIB_CB_SYMMETRIC_GRID, blob_detector = Cv::SimpleBlobDetector.new()) ⇒ Object
wrapper for bool cv::findCirclesGrid(const cv::Mat image, const cv::Size patternSize, cv::Mat centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr_FeatureDetector blobDetector=new SimpleBlobDetector()).
-
.find_circles_grid_default(image, pattern_size, centers, flags = CALIB_CB_SYMMETRIC_GRID) ⇒ Object
wrapper for bool cv::findCirclesGridDefault(const cv::Mat image, const cv::Size patternSize, cv::Mat centers, int flags=CALIB_CB_SYMMETRIC_GRID).
-
.find_contours(image, contours, hierarchy, mode, method, offset = Cv::Point.new()) ⇒ Object
wrapper for void cv::findContours(cv::Mat image, vector_Mat contours, cv::Mat hierarchy, int mode, int method, const cv::Point offset=Point()).
-
.find_data_matrix(image, codes, corners = Cv::Mat.new(), dmtx = VectorMat.new()) ⇒ Object
wrapper for void cv::findDataMatrix(const cv::Mat image, vector_string codes, cv::Mat corners=Mat(), vector_Mat dmtx=vector_Mat()).
-
.find_fundamental_mat(_points1, _points2, method = FM_RANSAC, _param1 = 3.0, _param2 = 0.99, mask = Cv::Mat.new()) ⇒ Object
wrapper for cv::Mat cv::findFundamentalMat(const cv::Mat points1, const cv::Mat points2, int method=FM_RANSAC, double param1=3., double param2=0.99, cv::Mat mask=Mat()).
-
.find_homography(src_points, dst_points, method = 0, ransac_reproj_threshold = 3, mask = Cv::Mat.new()) ⇒ Object
wrapper for cv::Mat cv::findHomography(const cv::Mat srcPoints, const cv::Mat dstPoints, int method=0, double ransacReprojThreshold=3, cv::Mat mask=Mat()).
-
.find_non_zero(src, idx) ⇒ Object
wrapper for void cv::findNonZero(const cv::Mat src, cv::Mat idx).
-
.fit_ellipse(points) ⇒ Object
wrapper for cv::RotatedRect cv::fitEllipse(const cv::Mat points).
-
.fit_line(points, line, dist_type, param, reps, aeps) ⇒ Object
wrapper for void cv::fitLine(const cv::Mat points, cv::Mat line, int distType, double param, double reps, double aeps).
-
.flip(src, dst, flip_code) ⇒ Object
wrapper for void cv::flip(const cv::Mat src, cv::Mat dst, int flipCode).
-
.flood_fill(image, mask, seed_point, new_val, rect = 0, lo_diff = Cv::Scalar.new(), up_diff = Cv::Scalar.new(), flags = 4) ⇒ Object
wrapper for int cv::floodFill(cv::Mat image, cv::Mat mask, const cv::Point seedPoint, const cv::Scalar newVal, cv::Rect *rect=0, const cv::Scalar loDiff=Scalar(), const cv::Scalar upDiff=Scalar(), int flags=4).
-
.gaussian_blur(src, dst, ksize, sigma_x, sigma_y = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::GaussianBlur(const cv::Mat src, cv::Mat dst, const cv::Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT).
-
.gemm(_src1, _src2, alpha, _src3, gamma, dst, flags = 0) ⇒ Object
wrapper for void cv::gemm(const cv::Mat src1, const cv::Mat src2, double alpha, const cv::Mat src3, double gamma, cv::Mat dst, int flags=0).
-
.get_affine_transform(src, dst) ⇒ Object
wrapper for cv::Mat cv::getAffineTransform(const cv::Mat src, const cv::Mat dst).
-
.get_build_information ⇒ Object
wrapper for cv::String cv::getBuildInformation().
-
.get_default_new_camera_matrix(camera_matrix, imgsize = Cv::Size.new(), center_principal_point = false) ⇒ Object
wrapper for cv::Mat cv::getDefaultNewCameraMatrix(const cv::Mat cameraMatrix, const cv::Size imgsize=Size(), bool centerPrincipalPoint=false).
-
.get_deriv_kernels(kx, ky, dx, dy, ksize, normalize = false, ktype = CV_32F) ⇒ Object
wrapper for void cv::getDerivKernels(cv::Mat kx, cv::Mat ky, int dx, int dy, int ksize, bool normalize=false, int ktype=CV_32F).
-
.get_gabor_kernel(ksize, sigma, theta, lambd, gamma, psi = CV_PI*0.5, ktype = CV_64F) ⇒ Object
wrapper for cv::Mat cv::getGaborKernel(const cv::Size ksize, double sigma, double theta, double lambd, double gamma, double psi=CV_PI*0.5, int ktype=CV_64F).
-
.get_gaussian_kernel(ksize, sigma, ktype = CV_64F) ⇒ Object
wrapper for cv::Mat cv::getGaussianKernel(int ksize, double sigma, int ktype=CV_64F).
-
.get_number_ofcp_us ⇒ Object
wrapper for int cv::getNumberOfCPUs().
-
.get_optimal_new_camera_matrix(camera_matrix, dist_coeffs, image_size, alpha, new_img_size = Cv::Size.new(), valid_pix_r_o_i = 0, center_principal_point = false) ⇒ Object
wrapper for cv::Mat cv::getOptimalNewCameraMatrix(const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Size imageSize, double alpha, const cv::Size newImgSize=Size(), cv::Rect *validPixROI=0, bool centerPrincipalPoint=false).
-
.get_optimaldft_size(vecsize) ⇒ Object
wrapper for int cv::getOptimalDFTSize(int vecsize).
-
.get_perspective_transform(src, dst) ⇒ Object
wrapper for cv::Mat cv::getPerspectiveTransform(const cv::Mat src, const cv::Mat dst).
-
.get_rect_sub_pix(image, patch_size, center, patch, patch_type = -1)) ⇒ Object
wrapper for void cv::getRectSubPix(const cv::Mat image, const cv::Size patchSize, const cv::Point2f center, cv::Mat patch, int patchType=-1).
-
.get_rotation_matrix2d(center, angle, scale) ⇒ Object
wrapper for cv::Mat cv::getRotationMatrix2D(const cv::Point2f center, double angle, double scale).
-
.get_structuring_element(shape, ksize, anchor = Cv::Point.new(-1,-1)) ⇒ Object
wrapper for cv::Mat cv::getStructuringElement(int shape, const cv::Size ksize, const cv::Point anchor=Point(-1,-1)).
-
.get_text_size(text, font_face, font_scale, thickness, base_line) ⇒ Object
wrapper for cv::Size cv::getTextSize(const cv::String text, int fontFace, double fontScale, int thickness, int *baseLine).
-
.get_tick_count ⇒ Object
wrapper for int64 cv::getTickCount().
-
.get_tick_frequency ⇒ Object
wrapper for double cv::getTickFrequency().
-
.get_trackbar_pos(trackbarname, winname) ⇒ Object
wrapper for int cv::getTrackbarPos(const cv::String trackbarname, const cv::String winname).
-
.get_valid_disparityroi(_roi1, _roi2, min_disparity, number_of_disparities, s_a_d_window_size) ⇒ Object
wrapper for cv::Rect cv::getValidDisparityROI(const cv::Rect roi1, const cv::Rect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize).
-
.get_window_property(winname, prop_id) ⇒ Object
wrapper for double cv::getWindowProperty(const cv::String winname, int prop_id).
-
.getcpu_tick_count ⇒ Object
wrapper for int64 cv::getCPUTickCount().
-
.good_features_to_track(image, corners, max_corners, quality_level, min_distance, mask = Cv::Mat.new(), block_size = 3, use_harris_detector = false, k = 0.04) ⇒ Object
wrapper for void cv::goodFeaturesToTrack(const cv::Mat image, cv::Mat corners, int maxCorners, double qualityLevel, double minDistance, const cv::Mat mask=Mat(), int blockSize=3, bool useHarrisDetector=false, double k=0.04).
-
.grab_cut(img, mask, rect, bgd_model, fgd_model, iter_count, mode = GC_EVAL) ⇒ Object
wrapper for void cv::grabCut(const cv::Mat img, cv::Mat mask, const cv::Rect rect, cv::Mat bgdModel, cv::Mat fgdModel, int iterCount, int mode=GC_EVAL).
-
.group_rectangles(rect_list, weights, group_threshold, eps = 0.2) ⇒ Object
wrapper for void cv::groupRectangles(vector_Rect rectList, vector_int weights, int groupThreshold, double eps=0.2).
-
.hconcat(src, dst) ⇒ Object
wrapper for void cv::hconcat(const vector_Mat src, cv::Mat dst).
-
.hough_circles(image, circles, method, dp, min_dist, _param1 = 100, _param2 = 100, min_radius = 0, max_radius = 0) ⇒ Object
wrapper for void cv::HoughCircles(const cv::Mat image, cv::Mat circles, int method, double dp, double minDist, double param1=100, double param2=100, int minRadius=0, int maxRadius=0).
-
.hough_lines(image, lines, rho, theta, threshold, srn = 0, stn = 0) ⇒ Object
wrapper for void cv::HoughLines(const cv::Mat image, cv::Mat lines, double rho, double theta, int threshold, double srn=0, double stn=0).
-
.hough_linesp(image, lines, rho, theta, threshold, min_line_length = 0, max_line_gap = 0) ⇒ Object
wrapper for void cv::HoughLinesP(const cv::Mat image, cv::Mat lines, double rho, double theta, int threshold, double minLineLength=0, double maxLineGap=0).
-
.hu_moments(m, hu) ⇒ Object
wrapper for void cv::HuMoments(const cv::Moments m, cv::Mat hu).
-
.idct(src, dst, flags = 0) ⇒ Object
wrapper for void cv::idct(const cv::Mat src, cv::Mat dst, int flags=0).
-
.idft(src, dst, flags = 0, nonzero_rows = 0) ⇒ Object
wrapper for void cv::idft(const cv::Mat src, cv::Mat dst, int flags=0, int nonzeroRows=0).
-
.imdecode(buf, flags) ⇒ Object
wrapper for cv::Mat cv::imdecode(const cv::Mat buf, int flags).
-
.imencode(ext, img, buf, params = VectorInt.new()) ⇒ Object
wrapper for bool cv::imencode(const cv::String ext, const cv::Mat img, vector_uchar buf, const vector_int params=vector_int()).
-
.imread(filename, flags = 1) ⇒ Object
wrapper for cv::Mat cv::imread(const cv::String filename, int flags=1).
-
.imshow(winname, mat) ⇒ Object
wrapper for void cv::imshow(const cv::String winname, const cv::Mat mat).
-
.imwrite(filename, img, params = VectorInt.new()) ⇒ Object
wrapper for bool cv::imwrite(const cv::String filename, const cv::Mat img, const vector_int params=vector_int()).
-
.in_range(src, lowerb, upperb, dst) ⇒ Object
wrapper for void cv::inRange(const cv::Mat src, const cv::Mat lowerb, const cv::Mat upperb, cv::Mat dst).
-
.init_camera_matrix2d(object_points, image_points, image_size, aspect_ratio = 1.0) ⇒ Object
wrapper for cv::Mat cv::initCameraMatrix2D(const vector_Mat objectPoints, const vector_Mat imagePoints, const cv::Size imageSize, double aspectRatio=1.).
-
.init_module_nonfree ⇒ Object
wrapper for bool cv::initModule_nonfree().
-
.init_undistort_rectify_map(camera_matrix, dist_coeffs, r, new_camera_matrix, size, _m1type, _map1, _map2) ⇒ Object
wrapper for void cv::initUndistortRectifyMap(const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Mat R, const cv::Mat newCameraMatrix, const cv::Size size, int m1type, cv::Mat map1, cv::Mat map2).
-
.init_wide_angle_proj_map(camera_matrix, dist_coeffs, image_size, dest_image_width, _m1type, _map1, _map2, proj_type = PROJ_SPHERICAL_EQRECT, alpha = 0) ⇒ Object
wrapper for float cv::initWideAngleProjMap(const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Size imageSize, int destImageWidth, int m1type, cv::Mat map1, cv::Mat map2, int projType=PROJ_SPHERICAL_EQRECT, double alpha=0).
-
.inpaint(src, inpaint_mask, dst, inpaint_radius, flags) ⇒ Object
wrapper for void cv::inpaint(const cv::Mat src, const cv::Mat inpaintMask, cv::Mat dst, double inpaintRadius, int flags).
-
.insert_channel(src, dst, coi) ⇒ Object
wrapper for void cv::insertChannel(const cv::Mat src, cv::Mat dst, int coi).
-
.integral(src, sum, sdepth = -1)) ⇒ Object
wrapper for void cv::integral(const cv::Mat src, cv::Mat sum, int sdepth=-1).
-
.integral2(src, sum, sqsum, sdepth = -1)) ⇒ Object
wrapper for void cv::integral(const cv::Mat src, cv::Mat sum, cv::Mat sqsum, int sdepth=-1).
-
.integral3(src, sum, sqsum, tilted, sdepth = -1)) ⇒ Object
wrapper for void cv::integral(const cv::Mat src, cv::Mat sum, cv::Mat sqsum, cv::Mat tilted, int sdepth=-1).
-
.intersect_convex_convex(__p1, __p2, __p12, handle_nested = true) ⇒ Object
wrapper for float cv::intersectConvexConvex(const cv::Mat _p1, const cv::Mat _p2, cv::Mat _p12, bool handleNested=true).
-
.invert(src, dst, flags = DECOMP_LU) ⇒ Object
wrapper for double cv::invert(const cv::Mat src, cv::Mat dst, int flags=DECOMP_LU).
-
.invert_affine_transform(m, i_m) ⇒ Object
wrapper for void cv::invertAffineTransform(const cv::Mat M, cv::Mat iM).
-
.is_contour_convex(contour) ⇒ Object
wrapper for bool cv::isContourConvex(const cv::Mat contour).
-
.kmeans(data, k, best_labels, criteria, attempts, flags, centers = Cv::Mat.new()) ⇒ Object
wrapper for double cv::kmeans(const cv::Mat data, int K, cv::Mat bestLabels, const cv::TermCriteria criteria, int attempts, int flags, cv::Mat centers=Mat()).
-
.laplacian(src, dst, ddepth, ksize = 1, scale = 1, delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::Laplacian(const cv::Mat src, cv::Mat dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT).
-
.line(img, _pt1, _pt2, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::line(cv::Mat img, const cv::Point pt1, const cv::Point pt2, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0).
-
.log(src, dst) ⇒ Object
wrapper for void cv::log(const cv::Mat src, cv::Mat dst).
-
.lut(src, lut, dst, interpolation = 0) ⇒ Object
wrapper for void cv::LUT(const cv::Mat src, const cv::Mat lut, cv::Mat dst, int interpolation=0).
-
.magnitude(x, y, magnitude) ⇒ Object
wrapper for void cv::magnitude(const cv::Mat x, const cv::Mat y, cv::Mat magnitude).
-
.mahalanobis(_v1, _v2, icovar) ⇒ Object
wrapper for double cv::Mahalanobis(const cv::Mat v1, const cv::Mat v2, const cv::Mat icovar).
-
.mat_mul_deriv(a, b, d_a_bd_a, d_a_bd_b) ⇒ Object
wrapper for void cv::matMulDeriv(const cv::Mat A, const cv::Mat B, cv::Mat dABdA, cv::Mat dABdB).
-
.match_shapes(_contour1, _contour2, method, parameter) ⇒ Object
wrapper for double cv::matchShapes(const cv::Mat contour1, const cv::Mat contour2, int method, double parameter).
-
.match_template(image, templ, result, method) ⇒ Object
wrapper for void cv::matchTemplate(const cv::Mat image, const cv::Mat templ, cv::Mat result, int method).
-
.max(_src1, _src2, dst) ⇒ Object
wrapper for void cv::max(const cv::Mat src1, const cv::Mat src2, cv::Mat dst).
-
.mean(src, mask = Cv::Mat.new()) ⇒ Object
wrapper for cv::Scalar cv::mean(const cv::Mat src, const cv::Mat mask=Mat()).
-
.mean_std_dev(src, mean, stddev, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::meanStdDev(const cv::Mat src, cv::Mat mean, cv::Mat stddev, const cv::Mat mask=Mat()).
-
.median_blur(src, dst, ksize) ⇒ Object
wrapper for void cv::medianBlur(const cv::Mat src, cv::Mat dst, int ksize).
-
.merge(mv, dst) ⇒ Object
wrapper for void cv::merge(const vector_Mat mv, cv::Mat dst).
-
.min(_src1, _src2, dst) ⇒ Object
wrapper for void cv::min(const cv::Mat src1, const cv::Mat src2, cv::Mat dst).
-
.min_area_rect(points) ⇒ Object
wrapper for cv::RotatedRect cv::minAreaRect(const cv::Mat points).
-
.min_enclosing_circle(points, center, radius) ⇒ Object
wrapper for void cv::minEnclosingCircle(const cv::Mat points, cv::Point2f center, float radius).
-
.min_max_loc(src, min_val, max_val = 0, min_loc = 0, max_loc = 0, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::minMaxLoc(const cv::Mat src, double *minVal, double *maxVal=0, cv::Point *minLoc=0, cv::Point *maxLoc=0, const cv::Mat mask=Mat()).
-
.mix_channels(src, dst, from_to) ⇒ Object
wrapper for void cv::mixChannels(const vector_Mat src, const vector_Mat dst, const vector_int fromTo).
-
.moments(array, binary_image = false) ⇒ Object
wrapper for cv::Moments cv::moments(const cv::Mat array, bool binaryImage=false).
-
.morphology_default_border_value ⇒ Object
wrapper for cv::Scalar cv::morphologyDefaultBorderValue().
-
.morphology_ex(src, dst, op, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) ⇒ Object
wrapper for void cv::morphologyEx(const cv::Mat src, cv::Mat dst, int op, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const cv::Scalar borderValue=morphologyDefaultBorderValue()).
-
.move_window(winname, x, y) ⇒ Object
wrapper for void cv::moveWindow(const cv::String winname, int x, int y).
-
.mul_spectrums(a, b, c, flags, conj_b = false) ⇒ Object
wrapper for void cv::mulSpectrums(const cv::Mat a, const cv::Mat b, cv::Mat c, int flags, bool conjB=false).
-
.mul_transposed(src, dst, a_ta, delta = Cv::Mat.new(), scale = 1, dtype = -1)) ⇒ Object
wrapper for void cv::mulTransposed(const cv::Mat src, cv::Mat dst, bool aTa, const cv::Mat delta=Mat(), double scale=1, int dtype=-1).
-
.multiply(_src1, _src2, dst, scale = 1, dtype = -1)) ⇒ Object
wrapper for void cv::multiply(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, double scale=1, int dtype=-1).
-
.named_window(winname, flags = WINDOW_AUTOSIZE) ⇒ Object
wrapper for void cv::namedWindow(const cv::String winname, int flags=WINDOW_AUTOSIZE).
-
.norm(*args) ⇒ Object
wrapper for overloaded method norm.
-
.normalize(src, dst, alpha = 1, beta = 0, norm_type = NORM_L2, dtype = -1,, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::normalize(const cv::Mat src, cv::Mat dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, const cv::Mat mask=Mat()).
-
.patch_na_ns(a, val = 0) ⇒ Object
wrapper for void cv::patchNaNs(cv::Mat a, double val=0).
-
.pca_back_project(data, mean, eigenvectors, result) ⇒ Object
wrapper for void cv::PCABackProject(const cv::Mat data, const cv::Mat mean, const cv::Mat eigenvectors, cv::Mat result).
-
.pca_compute(data, mean, eigenvectors, max_components = 0) ⇒ Object
wrapper for void cv::PCACompute(const cv::Mat data, cv::Mat mean, cv::Mat eigenvectors, int maxComponents=0).
-
.pca_compute_var(data, mean, eigenvectors, retained_variance) ⇒ Object
wrapper for void cv::PCAComputeVar(const cv::Mat data, cv::Mat mean, cv::Mat eigenvectors, double retainedVariance).
-
.pca_project(data, mean, eigenvectors, result) ⇒ Object
wrapper for void cv::PCAProject(const cv::Mat data, const cv::Mat mean, const cv::Mat eigenvectors, cv::Mat result).
-
.perspective_transform(src, dst, m) ⇒ Object
wrapper for void cv::perspectiveTransform(const cv::Mat src, cv::Mat dst, const cv::Mat m).
-
.phase(x, y, angle, angle_in_degrees = false) ⇒ Object
wrapper for void cv::phase(const cv::Mat x, const cv::Mat y, cv::Mat angle, bool angleInDegrees=false).
-
.phase_correlate(_src1, _src2, window = Cv::Mat.new()) ⇒ Object
wrapper for cv::Point2d cv::phaseCorrelate(const cv::Mat src1, const cv::Mat src2, const cv::Mat window=Mat()).
-
.phase_correlate_res(_src1, _src2, window, response = 0) ⇒ Object
wrapper for cv::Point2d cv::phaseCorrelateRes(const cv::Mat src1, const cv::Mat src2, const cv::Mat window, double *response=0).
-
.point_polygon_test(contour, pt, measure_dist) ⇒ Object
wrapper for double cv::pointPolygonTest(const cv::Mat contour, const cv::Point2f pt, bool measureDist).
-
.polar_to_cart(magnitude, angle, x, y, angle_in_degrees = false) ⇒ Object
wrapper for void cv::polarToCart(const cv::Mat magnitude, const cv::Mat angle, cv::Mat x, cv::Mat y, bool angleInDegrees=false).
-
.polylines(img, pts, is_closed, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::polylines(cv::Mat img, const vector_Mat pts, bool isClosed, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0).
-
.pow(src, power, dst) ⇒ Object
wrapper for void cv::pow(const cv::Mat src, double power, cv::Mat dst).
-
.pre_corner_detect(src, dst, ksize, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::preCornerDetect(const cv::Mat src, cv::Mat dst, int ksize, int borderType=BORDER_DEFAULT).
-
.project_points(object_points, rvec, tvec, camera_matrix, dist_coeffs, image_points, jacobian = Cv::Mat.new(), aspect_ratio = 0) ⇒ Object
wrapper for void cv::projectPoints(const cv::Mat objectPoints, const cv::Mat rvec, const cv::Mat tvec, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, cv::Mat imagePoints, cv::Mat jacobian=Mat(), double aspectRatio=0).
-
.psnr(_src1, _src2) ⇒ Object
wrapper for double cv::PSNR(const cv::Mat src1, const cv::Mat src2).
-
.put_text(img, text, org, font_face, font_scale, color, thickness = 1, line_type = 8, bottom_left_origin = false) ⇒ Object
wrapper for void cv::putText(cv::Mat img, const cv::String text, const cv::Point org, int fontFace, double fontScale, const cv::Scalar color, int thickness=1, int lineType=8, bool bottomLeftOrigin=false).
-
.pyr_down(src, dst, dstsize = Cv::Size.new(), border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::pyrDown(const cv::Mat src, cv::Mat dst, const cv::Size dstsize=Size(), int borderType=BORDER_DEFAULT).
-
.pyr_mean_shift_filtering(src, dst, sp, sr, max_level = 1, termcrit = Cv::TermCriteria.new( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) ⇒ Object
wrapper for void cv::pyrMeanShiftFiltering(const cv::Mat src, cv::Mat dst, double sp, double sr, int maxLevel=1, const cv::TermCriteria termcrit=TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)).
-
.pyr_up(src, dst, dstsize = Cv::Size.new(), border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::pyrUp(const cv::Mat src, cv::Mat dst, const cv::Size dstsize=Size(), int borderType=BORDER_DEFAULT).
-
.rand_shuffle(dst, iter_factor = 1.0) ⇒ Object
wrapper for void cv::randShuffle_(cv::Mat dst, double iterFactor=1.).
-
.randn(dst, mean, stddev) ⇒ Object
wrapper for void cv::randn(cv::Mat dst, const cv::Mat mean, const cv::Mat stddev).
-
.randu(dst, low, high) ⇒ Object
wrapper for void cv::randu(cv::Mat dst, const cv::Mat low, const cv::Mat high).
-
.rectangle(img, _pt1, _pt2, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::rectangle(cv::Mat img, const cv::Point pt1, const cv::Point pt2, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0).
-
.rectify3_collinear(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, _camera_matrix3, _dist_coeffs3, _imgpt1, _imgpt3, image_size, _r12, _t12, _r13, _t13, _r1, _r2, _r3, _p1, _p2, _p3, q, alpha, new_img_size, _roi1, _roi2, flags) ⇒ Object
wrapper for float cv::rectify3Collinear(const cv::Mat cameraMatrix1, const cv::Mat distCoeffs1, const cv::Mat cameraMatrix2, const cv::Mat distCoeffs2, const cv::Mat cameraMatrix3, const cv::Mat distCoeffs3, const vector_Mat imgpt1, const vector_Mat imgpt3, const cv::Size imageSize, const cv::Mat R12, const cv::Mat T12, const cv::Mat R13, const cv::Mat T13, cv::Mat R1, cv::Mat R2, cv::Mat R3, cv::Mat P1, cv::Mat P2, cv::Mat P3, cv::Mat Q, double alpha, const cv::Size newImgSize, cv::Rect *roi1, cv::Rect *roi2, int flags).
-
.reduce(src, dst, dim, rtype, dtype = -1)) ⇒ Object
wrapper for void cv::reduce(const cv::Mat src, cv::Mat dst, int dim, int rtype, int dtype=-1).
-
.remap(src, dst, _map1, _map2, interpolation, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::remap(const cv::Mat src, cv::Mat dst, const cv::Mat map1, const cv::Mat map2, int interpolation, int borderMode=BORDER_CONSTANT, const cv::Scalar borderValue=Scalar()).
-
.repeat(src, ny, nx, dst) ⇒ Object
wrapper for void cv::repeat(const cv::Mat src, int ny, int nx, cv::Mat dst).
-
.reproject_image_to3d(disparity, __3d_image, q, handle_missing_values = false, ddepth = -1)) ⇒ Object
wrapper for void cv::reprojectImageTo3D(const cv::Mat disparity, cv::Mat _3dImage, const cv::Mat Q, bool handleMissingValues=false, int ddepth=-1).
-
.resize(src, dst, dsize, fx = 0, fy = 0, interpolation = INTER_LINEAR) ⇒ Object
wrapper for void cv::resize(const cv::Mat src, cv::Mat dst, const cv::Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR).
-
.resize_window(winname, width, height) ⇒ Object
wrapper for void cv::resizeWindow(const cv::String winname, int width, int height).
-
.rodrigues(src, dst, jacobian = Cv::Mat.new()) ⇒ Object
wrapper for void cv::Rodrigues(const cv::Mat src, cv::Mat dst, cv::Mat jacobian=Mat()).
-
.rq_decomp_3x3(src, mtx_r, mtx_q, qx = Cv::Mat.new(), qy = Cv::Mat.new(), qz = Cv::Mat.new()) ⇒ Object
wrapper for cv::Vec3d cv::RQDecomp3x3(const cv::Mat src, cv::Mat mtxR, cv::Mat mtxQ, cv::Mat Qx=Mat(), cv::Mat Qy=Mat(), cv::Mat Qz=Mat()).
-
.scale_add(_src1, alpha, _src2, dst) ⇒ Object
wrapper for void cv::scaleAdd(const cv::Mat src1, double alpha, const cv::Mat src2, cv::Mat dst).
-
.scharr(src, dst, ddepth, dx, dy, scale = 1, delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::Scharr(const cv::Mat src, cv::Mat dst, int ddepth, int dx, int dy, double scale=1, double delta=0, int borderType=BORDER_DEFAULT).
-
.sep_filter2d(src, dst, ddepth, kernel_x, kernel_y, anchor = Cv::Point.new(-1,-1), delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::sepFilter2D(const cv::Mat src, cv::Mat dst, int ddepth, const cv::Mat kernelX, const cv::Mat kernelY, const cv::Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT).
-
.set_identity(mtx, s = Cv::Scalar.new(1)) ⇒ Object
wrapper for void cv::setIdentity(cv::Mat mtx, const cv::Scalar s=Scalar(1)).
-
.set_trackbar_pos(trackbarname, winname, pos) ⇒ Object
wrapper for void cv::setTrackbarPos(const cv::String trackbarname, const cv::String winname, int pos).
-
.set_use_optimized(onoff) ⇒ Object
wrapper for void cv::setUseOptimized(bool onoff).
-
.set_window_property(winname, prop_id, prop_value) ⇒ Object
wrapper for void cv::setWindowProperty(const cv::String winname, int prop_id, double prop_value).
-
.sobel(src, dst, ddepth, dx, dy, ksize = 3, scale = 1, delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::Sobel(const cv::Mat src, cv::Mat dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT).
-
.solve(_src1, _src2, dst, flags = DECOMP_LU) ⇒ Object
wrapper for bool cv::solve(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, int flags=DECOMP_LU).
-
.solve_cubic(coeffs, roots) ⇒ Object
wrapper for int cv::solveCubic(const cv::Mat coeffs, cv::Mat roots).
-
.solve_pnp(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess = false, flags = ITERATIVE) ⇒ Object
wrapper for bool cv::solvePnP(const cv::Mat objectPoints, const cv::Mat imagePoints, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, cv::Mat rvec, cv::Mat tvec, bool useExtrinsicGuess=false, int flags=ITERATIVE).
-
.solve_pnp_ransac(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess = false, iterations_count = 100, reprojection_error = 8.0, min_inliers_count = 100, inliers = Cv::Mat.new(), flags = ITERATIVE) ⇒ Object
wrapper for void cv::solvePnPRansac(const cv::Mat objectPoints, const cv::Mat imagePoints, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, cv::Mat rvec, cv::Mat tvec, bool useExtrinsicGuess=false, int iterationsCount=100, float reprojectionError=8.0, int minInliersCount=100, cv::Mat inliers=Mat(), int flags=ITERATIVE).
-
.solve_poly(coeffs, roots, max_iters = 300) ⇒ Object
wrapper for double cv::solvePoly(const cv::Mat coeffs, cv::Mat roots, int maxIters=300).
-
.sort(src, dst, flags) ⇒ Object
wrapper for void cv::sort(const cv::Mat src, cv::Mat dst, int flags).
-
.sort_idx(src, dst, flags) ⇒ Object
wrapper for void cv::sortIdx(const cv::Mat src, cv::Mat dst, int flags).
-
.split(m, mv) ⇒ Object
wrapper for void cv::split(const cv::Mat m, vector_Mat mv).
-
.sqrt(src, dst) ⇒ Object
wrapper for void cv::sqrt(const cv::Mat src, cv::Mat dst).
-
.start_window_thread ⇒ Object
wrapper for int cv::startWindowThread().
-
.stereo_calibrate(object_points, _image_points1, _image_points2, _camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, e, f, criteria = Cv::TermCriteria.new(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6), flags = CALIB_FIX_INTRINSIC) ⇒ Object
wrapper for double cv::stereoCalibrate(const vector_Mat objectPoints, const vector_Mat imagePoints1, const vector_Mat imagePoints2, cv::Mat cameraMatrix1, cv::Mat distCoeffs1, cv::Mat cameraMatrix2, cv::Mat distCoeffs2, const cv::Size imageSize, cv::Mat R, cv::Mat T, cv::Mat E, cv::Mat F, const cv::TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6), int flags=CALIB_FIX_INTRINSIC).
-
.stereo_rectify(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, _r1, _r2, _p1, _p2, q, flags = CALIB_ZERO_DISPARITY, alpha = -1,, new_image_size = Cv::Size.new(), _valid_pix_r_o_i1 = 0, _valid_pix_r_o_i2 = 0) ⇒ Object
wrapper for void cv::stereoRectify(const cv::Mat cameraMatrix1, const cv::Mat distCoeffs1, const cv::Mat cameraMatrix2, const cv::Mat distCoeffs2, const cv::Size imageSize, const cv::Mat R, const cv::Mat T, cv::Mat R1, cv::Mat R2, cv::Mat P1, cv::Mat P2, cv::Mat Q, int flags=CALIB_ZERO_DISPARITY, double alpha=-1, const cv::Size newImageSize=Size(), cv::Rect *validPixROI1=0, cv::Rect *validPixROI2=0).
-
.stereo_rectify_uncalibrated(_points1, _points2, f, img_size, _h1, _h2, threshold = 5) ⇒ Object
wrapper for bool cv::stereoRectifyUncalibrated(const cv::Mat points1, const cv::Mat points2, const cv::Mat F, const cv::Size imgSize, cv::Mat H1, cv::Mat H2, double threshold=5).
-
.subtract(_src1, _src2, dst, mask = Cv::Mat.new(), dtype = -1)) ⇒ Object
wrapper for void cv::subtract(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat(), int dtype=-1).
-
.sum_elems(src) ⇒ Object
wrapper for cv::Scalar cv::sum(const cv::Mat src).
-
.sv_back_subst(w, u, vt, rhs, dst) ⇒ Object
wrapper for void cv::SVBackSubst(const cv::Mat w, const cv::Mat u, const cv::Mat vt, const cv::Mat rhs, cv::Mat dst).
-
.sv_decomp(src, w, u, vt, flags = 0) ⇒ Object
wrapper for void cv::SVDecomp(const cv::Mat src, cv::Mat w, cv::Mat u, cv::Mat vt, int flags=0).
-
.threshold(src, dst, thresh, maxval, type) ⇒ Object
wrapper for double cv::threshold(const cv::Mat src, cv::Mat dst, double thresh, double maxval, int type).
-
.trace(mtx) ⇒ Object
wrapper for cv::Scalar cv::trace(const cv::Mat mtx).
-
.transform(src, dst, m) ⇒ Object
wrapper for void cv::transform(const cv::Mat src, cv::Mat dst, const cv::Mat m).
-
.transpose(src, dst) ⇒ Object
wrapper for void cv::transpose(const cv::Mat src, cv::Mat dst).
-
.triangulate_points(_proj_matr1, _proj_matr2, _proj_points1, _proj_points2, _points4_d) ⇒ Object
wrapper for void cv::triangulatePoints(const cv::Mat projMatr1, const cv::Mat projMatr2, const cv::Mat projPoints1, const cv::Mat projPoints2, cv::Mat points4D).
-
.undistort(src, dst, camera_matrix, dist_coeffs, new_camera_matrix = Cv::Mat.new()) ⇒ Object
wrapper for void cv::undistort(const cv::Mat src, cv::Mat dst, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Mat newCameraMatrix=Mat()).
-
.undistort_points(src, dst, camera_matrix, dist_coeffs, r = Cv::Mat.new(), p = Cv::Mat.new()) ⇒ Object
wrapper for void cv::undistortPoints(const cv::Mat src, cv::Mat dst, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Mat R=Mat(), const cv::Mat P=Mat()).
-
.use_optimized ⇒ Object
wrapper for bool cv::useOptimized().
-
.validate_disparity(disparity, cost, min_disparity, number_of_disparities, _disp12_max_disp = 1) ⇒ Object
wrapper for void cv::validateDisparity(cv::Mat disparity, const cv::Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp=1).
-
.vconcat(src, dst) ⇒ Object
wrapper for void cv::vconcat(const vector_Mat src, cv::Mat dst).
-
.wait_key(delay = 0) ⇒ Object
wrapper for int cv::waitKey(int delay=0).
-
.warp_affine(src, dst, m, dsize, flags = INTER_LINEAR, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::warpAffine(const cv::Mat src, cv::Mat dst, const cv::Mat M, const cv::Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const cv::Scalar borderValue=Scalar()).
-
.warp_perspective(src, dst, m, dsize, flags = INTER_LINEAR, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::warpPerspective(const cv::Mat src, cv::Mat dst, const cv::Mat M, const cv::Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const cv::Scalar borderValue=Scalar()).
-
.watershed(image, markers) ⇒ Object
wrapper for void cv::watershed(const cv::Mat image, cv::Mat markers).
Class Method Details
.absdiff(_src1, _src2, dst) ⇒ Object
wrapper for void cv::absdiff(const cv::Mat src1, const cv::Mat src2, cv::Mat dst)
1308 1309 1310 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1308 def self.absdiff(_src1, _src2, dst) Rbind::cv_absdiff(_src1, _src2, dst) end |
.accumulate(src, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulate(const cv::Mat src, cv::Mat dst, const cv::Mat mask=Mat())
1854 1855 1856 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1854 def self.accumulate(src, dst, mask = Cv::Mat.new()) Rbind::cv_accumulate(src, dst, mask) end |
.accumulate_product(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulateProduct(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat())
1864 1865 1866 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1864 def self.accumulate_product(_src1, _src2, dst, mask = Cv::Mat.new()) Rbind::cv_accumulate_product(_src1, _src2, dst, mask) end |
.accumulate_square(src, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulateSquare(const cv::Mat src, cv::Mat dst, const cv::Mat mask=Mat())
1859 1860 1861 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1859 def self.accumulate_square(src, dst, mask = Cv::Mat.new()) Rbind::cv_accumulate_square(src, dst, mask) end |
.accumulate_weighted(src, dst, alpha, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::accumulateWeighted(const cv::Mat src, cv::Mat dst, double alpha, const cv::Mat mask=Mat())
1869 1870 1871 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1869 def self.accumulate_weighted(src, dst, alpha, mask = Cv::Mat.new()) Rbind::cv_accumulate_weighted(src, dst, alpha, mask) end |
.adaptive_threshold(src, dst, max_value, adaptive_method, threshold_type, block_size, c) ⇒ Object
wrapper for void cv::adaptiveThreshold(const cv::Mat src, cv::Mat dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C)
1899 1900 1901 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1899 def self.adaptive_threshold(src, dst, max_value, adaptive_method, threshold_type, block_size, c) Rbind::cv_adaptive_threshold(src, dst, max_value, adaptive_method, threshold_type, block_size, c) end |
.add(_src1, _src2, dst, mask = Cv::Mat.new(), dtype = -1)) ⇒ Object
wrapper for void cv::add(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat(), int dtype=-1)
1101 1102 1103 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1101 def self.add(_src1, _src2, dst, mask = Cv::Mat.new(), dtype = -1) Rbind::cv_add(_src1, _src2, dst, mask, dtype) end |
.add_weighted(_src1, alpha, _src2, beta, gamma, dst, dtype = -1)) ⇒ Object
wrapper for void cv::addWeighted(const cv::Mat src1, double alpha, const cv::Mat src2, double beta, double gamma, cv::Mat dst, int dtype=-1)
1152 1153 1154 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1152 def self.add_weighted(_src1, alpha, _src2, beta, gamma, dst, dtype = -1) Rbind::cv_add_weighted(_src1, alpha, _src2, beta, gamma, dst, dtype) end |
.apply_color_map(src, dst, colormap) ⇒ Object
wrapper for void cv::applyColorMap(const cv::Mat src, cv::Mat dst, int colormap)
2389 2390 2391 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2389 def self.apply_color_map(src, dst, colormap) Rbind::cv_apply_color_map(src, dst, colormap) end |
.approx_polydp(curve, approx_curve, epsilon, closed) ⇒ Object
wrapper for void cv::approxPolyDP(const cv::Mat curve, cv::Mat approxCurve, double epsilon, bool closed)
2019 2020 2021 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2019 def self.approx_polydp(curve, approx_curve, epsilon, closed) Rbind::cv_approx_polydp(curve, approx_curve, epsilon, closed) end |
.arc_length(curve, closed) ⇒ Object
wrapper for double cv::arcLength(const cv::Mat curve, bool closed)
2024 2025 2026 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2024 def self.arc_length(curve, closed) Rbind::cv_arc_length(curve, closed) end |
.batch_distance(_src1, _src2, dist, dtype, nidx, norm_type = NORM_L2, k = 0, mask = Cv::Mat.new(), update = 0, crosscheck = false) ⇒ Object
wrapper for void cv::batchDistance(const cv::Mat src1, const cv::Mat src2, cv::Mat dist, int dtype, cv::Mat nidx, int normType=NORM_L2, int K=0, const cv::Mat mask=Mat(), int update=0, bool crosscheck=false)
1223 1224 1225 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1223 def self.batch_distance(_src1, _src2, dist, dtype, nidx, norm_type = NORM_L2, k = 0, mask = Cv::Mat.new(), update = 0, crosscheck = false) Rbind::cv_batch_distance(_src1, _src2, dist, dtype, nidx, norm_type, k, mask, update, crosscheck) end |
.bilateral_filter(src, dst, d, sigma_color, sigma_space, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::bilateralFilter(const cv::Mat src, cv::Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT)
1684 1685 1686 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1684 def self.bilateral_filter(src, dst, d, sigma_color, sigma_space, border_type = BORDER_DEFAULT) Rbind::cv_bilateral_filter(src, dst, d, sigma_color, sigma_space, border_type) end |
.bitwise_and(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_and(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat())
1288 1289 1290 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1288 def self.bitwise_and(_src1, _src2, dst, mask = Cv::Mat.new()) Rbind::cv_bitwise_and(_src1, _src2, dst, mask) end |
.bitwise_not(src, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_not(const cv::Mat src, cv::Mat dst, const cv::Mat mask=Mat())
1303 1304 1305 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1303 def self.bitwise_not(src, dst, mask = Cv::Mat.new()) Rbind::cv_bitwise_not(src, dst, mask) end |
.bitwise_or(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_or(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat())
1293 1294 1295 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1293 def self.bitwise_or(_src1, _src2, dst, mask = Cv::Mat.new()) Rbind::cv_bitwise_or(_src1, _src2, dst, mask) end |
.bitwise_xor(_src1, _src2, dst, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::bitwise_xor(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat())
1298 1299 1300 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1298 def self.bitwise_xor(_src1, _src2, dst, mask = Cv::Mat.new()) Rbind::cv_bitwise_xor(_src1, _src2, dst, mask) end |
.blur(src, dst, ksize, anchor = Cv::Point.new(-1,-1), border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::blur(const cv::Mat src, cv::Mat dst, const cv::Size ksize, const cv::Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT)
1694 1695 1696 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1694 def self.blur(src, dst, ksize, anchor = Cv::Point.new(-1,-1), border_type = BORDER_DEFAULT) Rbind::cv_blur(src, dst, ksize, anchor, border_type) end |
.border_interpolate(p, len, border_type) ⇒ Object
wrapper for int cv::borderInterpolate(int p, int len, int borderType)
1644 1645 1646 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1644 def self.border_interpolate(p, len, border_type) Rbind::cv_border_interpolate(p, len, border_type) end |
.bounding_rect(points) ⇒ Object
wrapper for cv::Rect cv::boundingRect(const cv::Mat points)
2029 2030 2031 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2029 def self.bounding_rect(points) Rbind::cv_bounding_rect(points) end |
.box_filter(src, dst, ddepth, ksize, anchor = Cv::Point.new(-1,-1), normalize = true, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::boxFilter(const cv::Mat src, cv::Mat dst, int ddepth, const cv::Size ksize, const cv::Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT)
1689 1690 1691 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1689 def self.box_filter(src, dst, ddepth, ksize, anchor = Cv::Point.new(-1,-1), normalize = true, border_type = BORDER_DEFAULT) Rbind::cv_box_filter(src, dst, ddepth, ksize, anchor, normalize, border_type) end |
.calc_back_project(images, channels, hist, dst, ranges, scale) ⇒ Object
wrapper for void cv::calcBackProject(const vector_Mat images, const vector_int channels, const cv::Mat hist, cv::Mat dst, const vector_float ranges, double scale)
1944 1945 1946 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1944 def self.calc_back_project(images, channels, hist, dst, ranges, scale) Rbind::cv_calc_back_project(images, channels, hist, dst, ranges, scale) end |
.calc_covar_matrix(samples, covar, mean, flags, ctype = CV_64F) ⇒ Object
wrapper for void cv::calcCovarMatrix(const cv::Mat samples, cv::Mat covar, cv::Mat mean, int flags, int ctype=CV_64F)
1473 1474 1475 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1473 def self.calc_covar_matrix(samples, covar, mean, flags, ctype = CV_64F) Rbind::cv_calc_covar_matrix(samples, covar, mean, flags, ctype) end |
.calc_hist(images, channels, mask, hist, hist_size, ranges, accumulate = false) ⇒ Object
wrapper for void cv::calcHist(const vector_Mat images, const vector_int channels, const cv::Mat mask, cv::Mat hist, const vector_int histSize, const vector_float ranges, bool accumulate=false)
1939 1940 1941 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1939 def self.calc_hist(images, channels, mask, hist, hist_size, ranges, accumulate = false) Rbind::cv_calc_hist(images, channels, mask, hist, hist_size, ranges, accumulate) end |
.calibrate_camera(object_points, image_points, image_size, camera_matrix, dist_coeffs, rvecs, tvecs, flags = 0, criteria = Cv::TermCriteria.new( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON)) ⇒ Object
wrapper for double cv::calibrateCamera(const vector_Mat objectPoints, const vector_Mat imagePoints, const cv::Size imageSize, cv::Mat cameraMatrix, cv::Mat distCoeffs, vector_Mat rvecs, vector_Mat tvecs, int flags=0, const cv::TermCriteria criteria=TermCriteria( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON))
2204 2205 2206 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2204 def self.calibrate_camera(object_points, image_points, image_size, camera_matrix, dist_coeffs, rvecs, tvecs, flags = 0, criteria = Cv::TermCriteria.new( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON)) Rbind::cv_calibrate_camera(object_points, image_points, image_size, camera_matrix, dist_coeffs, rvecs, tvecs, flags, criteria) end |
.calibration_matrix_values(camera_matrix, image_size, aperture_width, aperture_height, fovx, fovy, focal_length, principal_point, aspect_ratio) ⇒ Object
wrapper for void cv::calibrationMatrixValues(const cv::Mat cameraMatrix, const cv::Size imageSize, double apertureWidth, double apertureHeight, double fovx, double fovy, double focalLength, cv::Point2d principalPoint, double aspectRatio)
2209 2210 2211 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2209 def self.calibration_matrix_values(camera_matrix, image_size, aperture_width, aperture_height, fovx, fovy, focal_length, principal_point, aspect_ratio) Rbind::cv_calibration_matrix_values(camera_matrix, image_size, aperture_width, aperture_height, fovx, fovy, focal_length, principal_point, aspect_ratio) end |
.canny(image, edges, _threshold1, _threshold2, aperture_size = 3, _l2gradient = false) ⇒ Object
wrapper for void cv::Canny(const cv::Mat image, cv::Mat edges, double threshold1, double threshold2, int apertureSize=3, bool L2gradient=false)
1724 1725 1726 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1724 def self.canny(image, edges, _threshold1, _threshold2, aperture_size = 3, _l2gradient = false) Rbind::cv_canny(image, edges, _threshold1, _threshold2, aperture_size, _l2gradient) end |
.cart_to_polar(x, y, magnitude, angle, angle_in_degrees = false) ⇒ Object
wrapper for void cv::cartToPolar(const cv::Mat x, const cv::Mat y, cv::Mat magnitude, cv::Mat angle, bool angleInDegrees=false)
1368 1369 1370 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1368 def self.cart_to_polar(x, y, magnitude, angle, angle_in_degrees = false) Rbind::cv_cart_to_polar(x, y, magnitude, angle, angle_in_degrees) end |
.chamer_matching(img, templ, results, cost, templ_scale = 1, max_matches = 20, min_match_distance = 1.0, pad_x = 3, pad_y = 3, scales = 5, min_scale = 0.6, max_scale = 1.6, orientation_weight = 0.5, truncate = 20) ⇒ Object
wrapper for int cv::chamerMatching(cv::Mat img, cv::Mat templ, vector_vector_Point results, vector_float cost, double templScale=1, int maxMatches=20, double minMatchDistance=1.0, int padX=3, int padY=3, int scales=5, double minScale=0.6, double maxScale=1.6, double orientationWeight=0.5, double truncate=20)
2369 2370 2371 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2369 def self.chamer_matching(img, templ, results, cost, templ_scale = 1, max_matches = 20, min_match_distance = 1.0, pad_x = 3, pad_y = 3, scales = 5, min_scale = 0.6, max_scale = 1.6, orientation_weight = 0.5, truncate = 20) Rbind::cv_chamer_matching(img, templ, results, cost, templ_scale, max_matches, min_match_distance, pad_x, pad_y, scales, min_scale, max_scale, orientation_weight, truncate) end |
.check_hardware_support(feature) ⇒ Object
wrapper for bool cv::checkHardwareSupport(int feature)
1081 1082 1083 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1081 def self.check_hardware_support(feature) Rbind::cv_check_hardware_support(feature) end |
.check_range(a, quiet = true, pos = 0, min_val = -DBL_MAX,, max_val = DBL_MAX) ⇒ Object
wrapper for bool cv::checkRange(const cv::Mat a, bool quiet=true, cv::Point *pos=0, double minVal=-DBL_MAX, double maxVal=DBL_MAX)
1383 1384 1385 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1383 def self.check_range(a, quiet = true, pos = 0, min_val = -DBL_MAX, max_val = DBL_MAX) Rbind::cv_check_range(a, quiet, pos, min_val, max_val) end |
.circle(img, center, radius, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::circle(cv::Mat img, const cv::Point center, int radius, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0)
1573 1574 1575 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1573 def self.circle(img, center, radius, color, thickness = 1, line_type = 8, shift = 0) Rbind::cv_circle(img, center, radius, color, thickness, line_type, shift) end |
.clip_line(img_rect, _pt1, _pt2) ⇒ Object
wrapper for bool cv::clipLine(const cv::Rect imgRect, cv::Point pt1, cv::Point pt2)
1624 1625 1626 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1624 def self.clip_line(img_rect, _pt1, _pt2) Rbind::cv_clip_line(img_rect, _pt1, _pt2) end |
.compare(_src1, _src2, dst, cmpop) ⇒ Object
wrapper for void cv::compare(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, int cmpop)
1318 1319 1320 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1318 def self.compare(_src1, _src2, dst, cmpop) Rbind::cv_compare(_src1, _src2, dst, cmpop) end |
.compare_hist(_h1, _h2, method) ⇒ Object
wrapper for double cv::compareHist(const cv::Mat H1, const cv::Mat H2, int method)
1949 1950 1951 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1949 def self.compare_hist(_h1, _h2, method) Rbind::cv_compare_hist(_h1, _h2, method) end |
.complete_symm(mtx, lower_to_upper = false) ⇒ Object
wrapper for void cv::completeSymm(cv::Mat mtx, bool lowerToUpper=false)
1418 1419 1420 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1418 def self.complete_symm(mtx, lower_to_upper = false) Rbind::cv_complete_symm(mtx, lower_to_upper) end |
.composert(_rvec1, _tvec1, _rvec2, _tvec2, _rvec3, _tvec3, _dr3dr1 = Cv::Mat.new(), _dr3dt1 = Cv::Mat.new(), _dr3dr2 = Cv::Mat.new(), _dr3dt2 = Cv::Mat.new(), _dt3dr1 = Cv::Mat.new(), _dt3dt1 = Cv::Mat.new(), _dt3dr2 = Cv::Mat.new(), _dt3dt2 = Cv::Mat.new()) ⇒ Object
wrapper for void cv::composeRT(const cv::Mat rvec1, const cv::Mat tvec1, const cv::Mat rvec2, const cv::Mat tvec2, cv::Mat rvec3, cv::Mat tvec3, cv::Mat dr3dr1=Mat(), cv::Mat dr3dt1=Mat(), cv::Mat dr3dr2=Mat(), cv::Mat dr3dt2=Mat(), cv::Mat dt3dr1=Mat(), cv::Mat dt3dt1=Mat(), cv::Mat dt3dr2=Mat(), cv::Mat dt3dt2=Mat())
2159 2160 2161 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2159 def self.composert(_rvec1, _tvec1, _rvec2, _tvec2, _rvec3, _tvec3, _dr3dr1 = Cv::Mat.new(), _dr3dt1 = Cv::Mat.new(), _dr3dr2 = Cv::Mat.new(), _dr3dt2 = Cv::Mat.new(), _dt3dr1 = Cv::Mat.new(), _dt3dt1 = Cv::Mat.new(), _dt3dr2 = Cv::Mat.new(), _dt3dt2 = Cv::Mat.new()) Rbind::cv_composert(_rvec1, _tvec1, _rvec2, _tvec2, _rvec3, _tvec3, _dr3dr1, _dr3dt1, _dr3dr2, _dr3dt2, _dt3dr1, _dt3dt1, _dt3dr2, _dt3dt2) end |
.contour_area(contour, oriented = false) ⇒ Object
wrapper for double cv::contourArea(const cv::Mat contour, bool oriented=false)
2034 2035 2036 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2034 def self.contour_area(contour, oriented = false) Rbind::cv_contour_area(contour, oriented) end |
.convert_maps(_map1, _map2, _dstmap1, _dstmap2, _dstmap1type, nninterpolation = false) ⇒ Object
wrapper for void cv::convertMaps(const cv::Mat map1, const cv::Mat map2, cv::Mat dstmap1, cv::Mat dstmap2, int dstmap1type, bool nninterpolation=false)
1809 1810 1811 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1809 def self.convert_maps(_map1, _map2, _dstmap1, _dstmap2, _dstmap1type, nninterpolation = false) Rbind::cv_convert_maps(_map1, _map2, _dstmap1, _dstmap2, _dstmap1type, nninterpolation) end |
.convert_points_from_homogeneous(src, dst) ⇒ Object
wrapper for void cv::convertPointsFromHomogeneous(const cv::Mat src, cv::Mat dst)
2244 2245 2246 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2244 def self.convert_points_from_homogeneous(src, dst) Rbind::cv_convert_points_from_homogeneous(src, dst) end |
.convert_points_to_homogeneous(src, dst) ⇒ Object
wrapper for void cv::convertPointsToHomogeneous(const cv::Mat src, cv::Mat dst)
2239 2240 2241 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2239 def self.convert_points_to_homogeneous(src, dst) Rbind::cv_convert_points_to_homogeneous(src, dst) end |
.convert_scale_abs(src, dst, alpha = 1, beta = 0) ⇒ Object
wrapper for void cv::convertScaleAbs(const cv::Mat src, cv::Mat dst, double alpha=1, double beta=0)
1157 1158 1159 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1157 def self.convert_scale_abs(src, dst, alpha = 1, beta = 0) Rbind::cv_convert_scale_abs(src, dst, alpha, beta) end |
.convex_hull(points, hull, clockwise = false, return_points = true) ⇒ Object
wrapper for void cv::convexHull(const cv::Mat points, cv::Mat hull, bool clockwise=false, bool returnPoints=true)
2054 2055 2056 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2054 def self.convex_hull(points, hull, clockwise = false, return_points = true) Rbind::cv_convex_hull(points, hull, clockwise, return_points) end |
.convexity_defects(contour, convexhull, convexity_defects) ⇒ Object
wrapper for void cv::convexityDefects(const cv::Mat contour, const cv::Mat convexhull, cv::Mat convexityDefects)
2059 2060 2061 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2059 def self.convexity_defects(contour, convexhull, convexity_defects) Rbind::cv_convexity_defects(contour, convexhull, convexity_defects) end |
.copy_make_border(src, dst, top, bottom, left, right, border_type, value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::copyMakeBorder(const cv::Mat src, cv::Mat dst, int top, int bottom, int left, int right, int borderType, const cv::Scalar value=Scalar())
1669 1670 1671 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1669 def self.copy_make_border(src, dst, top, bottom, left, right, border_type, value = Cv::Scalar.new()) Rbind::cv_copy_make_border(src, dst, top, bottom, left, right, border_type, value) end |
.corner_eigen_vals_and_vecs(src, dst, block_size, ksize, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::cornerEigenValsAndVecs(const cv::Mat src, cv::Mat dst, int blockSize, int ksize, int borderType=BORDER_DEFAULT)
1739 1740 1741 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1739 def self.corner_eigen_vals_and_vecs(src, dst, block_size, ksize, border_type = BORDER_DEFAULT) Rbind::cv_corner_eigen_vals_and_vecs(src, dst, block_size, ksize, border_type) end |
.corner_harris(src, dst, block_size, ksize, k, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::cornerHarris(const cv::Mat src, cv::Mat dst, int blockSize, int ksize, double k, int borderType=BORDER_DEFAULT)
1734 1735 1736 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1734 def self.corner_harris(src, dst, block_size, ksize, k, border_type = BORDER_DEFAULT) Rbind::cv_corner_harris(src, dst, block_size, ksize, k, border_type) end |
.corner_min_eigen_val(src, dst, block_size, ksize = 3, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::cornerMinEigenVal(const cv::Mat src, cv::Mat dst, int blockSize, int ksize=3, int borderType=BORDER_DEFAULT)
1729 1730 1731 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1729 def self.corner_min_eigen_val(src, dst, block_size, ksize = 3, border_type = BORDER_DEFAULT) Rbind::cv_corner_min_eigen_val(src, dst, block_size, ksize, border_type) end |
.corner_sub_pix(image, corners, win_size, zero_zone, criteria) ⇒ Object
wrapper for void cv::cornerSubPix(const cv::Mat image, cv::Mat corners, const cv::Size winSize, const cv::Size zeroZone, const cv::TermCriteria criteria)
1749 1750 1751 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1749 def self.corner_sub_pix(image, corners, win_size, zero_zone, criteria) Rbind::cv_corner_sub_pix(image, corners, win_size, zero_zone, criteria) end |
.correct_matches(f, _points1, _points2, _new_points1, _new_points2) ⇒ Object
wrapper for void cv::correctMatches(const cv::Mat F, const cv::Mat points1, const cv::Mat points2, cv::Mat newPoints1, cv::Mat newPoints2)
2259 2260 2261 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2259 def self.correct_matches(f, _points1, _points2, _new_points1, _new_points2) Rbind::cv_correct_matches(f, _points1, _points2, _new_points1, _new_points2) end |
.count_non_zero(src) ⇒ Object
wrapper for int cv::countNonZero(const cv::Mat src)
1172 1173 1174 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1172 def self.count_non_zero(src) Rbind::cv_count_non_zero(src) end |
.create_eigen_face_recognizer(num_components = 0, threshold = DBL_MAX) ⇒ Object
wrapper for Ptr_FaceRecognizer cv::createEigenFaceRecognizer(int num_components=0, double threshold=DBL_MAX)
2374 2375 2376 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2374 def self.create_eigen_face_recognizer(num_components = 0, threshold = DBL_MAX) Rbind::cv_create_eigen_face_recognizer(num_components, threshold) end |
.create_fisher_face_recognizer(num_components = 0, threshold = DBL_MAX) ⇒ Object
wrapper for Ptr_FaceRecognizer cv::createFisherFaceRecognizer(int num_components=0, double threshold=DBL_MAX)
2379 2380 2381 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2379 def self.create_fisher_face_recognizer(num_components = 0, threshold = DBL_MAX) Rbind::cv_create_fisher_face_recognizer(num_components, threshold) end |
.create_hanning_window(dst, win_size, type) ⇒ Object
wrapper for void cv::createHanningWindow(cv::Mat dst, const cv::Size winSize, int type)
1889 1890 1891 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1889 def self.create_hanning_window(dst, win_size, type) Rbind::cv_create_hanning_window(dst, win_size, type) end |
.createlbph_face_recognizer(radius = 1, neighbors = 8, grid_x = 8, grid_y = 8, threshold = DBL_MAX) ⇒ Object
wrapper for Ptr_FaceRecognizer cv::createLBPHFaceRecognizer(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold=DBL_MAX)
2384 2385 2386 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2384 def self.createlbph_face_recognizer(radius = 1, neighbors = 8, grid_x = 8, grid_y = 8, threshold = DBL_MAX) Rbind::cv_createlbph_face_recognizer(radius, neighbors, grid_x, grid_y, threshold) end |
.cube_root(val) ⇒ Object
wrapper for float cv::cubeRoot(float val)
1353 1354 1355 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1353 def self.cube_root(val) Rbind::cv_cube_root(val) end |
.cvt_color(src, dst, code, dst_cn = 0) ⇒ Object
wrapper for void cv::cvtColor(const cv::Mat src, cv::Mat dst, int code, int dstCn=0)
1989 1990 1991 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1989 def self.cvt_color(src, dst, code, dst_cn = 0) Rbind::cv_cvt_color(src, dst, code, dst_cn) end |
.dct(src, dst, flags = 0) ⇒ Object
wrapper for void cv::dct(const cv::Mat src, cv::Mat dst, int flags=0)
1523 1524 1525 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1523 def self.dct(src, dst, flags = 0) Rbind::cv_dct(src, dst, flags) end |
.decompose_projection_matrix(proj_matrix, camera_matrix, rot_matrix, trans_vect, rot_matrix_x = Cv::Mat.new(), rot_matrix_y = Cv::Mat.new(), rot_matrix_z = Cv::Mat.new(), euler_angles = Cv::Mat.new()) ⇒ Object
wrapper for void cv::decomposeProjectionMatrix(const cv::Mat projMatrix, cv::Mat cameraMatrix, cv::Mat rotMatrix, cv::Mat transVect, cv::Mat rotMatrixX=Mat(), cv::Mat rotMatrixY=Mat(), cv::Mat rotMatrixZ=Mat(), cv::Mat eulerAngles=Mat())
2149 2150 2151 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2149 def self.decompose_projection_matrix(proj_matrix, camera_matrix, rot_matrix, trans_vect, rot_matrix_x = Cv::Mat.new(), rot_matrix_y = Cv::Mat.new(), rot_matrix_z = Cv::Mat.new(), euler_angles = Cv::Mat.new()) Rbind::cv_decompose_projection_matrix(proj_matrix, camera_matrix, rot_matrix, trans_vect, rot_matrix_x, rot_matrix_y, rot_matrix_z, euler_angles) end |
.destroy_all_windows ⇒ Object
wrapper for void cv::destroyAllWindows()
2299 2300 2301 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2299 def self.destroy_all_windows() Rbind::cv_destroy_all_windows() end |
.destroy_window(winname) ⇒ Object
wrapper for void cv::destroyWindow(const cv::String winname)
2294 2295 2296 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2294 def self.destroy_window(winname) Rbind::cv_destroy_window(winname) end |
.determinant(mtx) ⇒ Object
wrapper for double cv::determinant(const cv::Mat mtx)
1428 1429 1430 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1428 def self.determinant(mtx) Rbind::cv_determinant(mtx) end |
.dft(src, dst, flags = 0, nonzero_rows = 0) ⇒ Object
wrapper for void cv::dft(const cv::Mat src, cv::Mat dst, int flags=0, int nonzeroRows=0)
1513 1514 1515 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1513 def self.dft(src, dst, flags = 0, nonzero_rows = 0) Rbind::cv_dft(src, dst, flags, nonzero_rows) end |
.dilate(src, dst, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) ⇒ Object
wrapper for void cv::dilate(const cv::Mat src, cv::Mat dst, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const cv::Scalar borderValue=morphologyDefaultBorderValue())
1779 1780 1781 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1779 def self.dilate(src, dst, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) Rbind::cv_dilate(src, dst, kernel, anchor, iterations, border_type, border_value) end |
.distance_transform(src, dst, distance_type, mask_size) ⇒ Object
wrapper for void cv::distanceTransform(const cv::Mat src, cv::Mat dst, int distanceType, int maskSize)
1979 1980 1981 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1979 def self.distance_transform(src, dst, distance_type, mask_size) Rbind::cv_distance_transform(src, dst, distance_type, mask_size) end |
.distance_transform_with_labels(src, dst, labels, distance_type, mask_size, label_type = DIST_LABEL_CCOMP) ⇒ Object
wrapper for void cv::distanceTransform(const cv::Mat src, cv::Mat dst, cv::Mat labels, int distanceType, int maskSize, int labelType=DIST_LABEL_CCOMP)
1974 1975 1976 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1974 def self.distance_transform_with_labels(src, dst, labels, distance_type, mask_size, label_type = DIST_LABEL_CCOMP) Rbind::cv_distance_transform_with_labels(src, dst, labels, distance_type, mask_size, label_type) end |
.divide(*args) ⇒ Object
wrapper for overloaded method divide
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1116 def self.divide(*args) # wrapper for void cv::divide(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, double scale=1, int dtype=-1) @@cv_divide_defaults0 ||= [nil, nil, nil, 1, -1] if(args.size >= 3 && args.size <= 5) args.size.upto(4) do |i| args[i] = @@cv_divide_defaults0[i] end begin return Rbind::cv_divide(*args) rescue TypeError => e @error = e end end # wrapper for void cv::divide(double scale, const cv::Mat src2, cv::Mat dst, int dtype=-1) @@cv_divide2_defaults1 ||= [nil, nil, nil, -1] if(args.size >= 3 && args.size <= 4) args.size.upto(3) do |i| args[i] = @@cv_divide2_defaults1[i] end begin return Rbind::cv_divide2(*args) rescue TypeError => e @error = e end end raise ArgumentError, "No overloaded signature fits to: #{args.map(&:class)}" end |
.draw_chessboard_corners(image, pattern_size, corners, pattern_was_found) ⇒ Object
wrapper for void cv::drawChessboardCorners(cv::Mat image, const cv::Size patternSize, const cv::Mat corners, bool patternWasFound)
2189 2190 2191 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2189 def self.draw_chessboard_corners(image, pattern_size, corners, pattern_was_found) Rbind::cv_draw_chessboard_corners(image, pattern_size, corners, pattern_was_found) end |
.draw_contours(image, contours, contour_idx, color, thickness = 1, line_type = 8, hierarchy = Cv::Mat.new(), max_level = INT_MAX, offset = Cv::Point.new()) ⇒ Object
wrapper for void cv::drawContours(cv::Mat image, const vector_Mat contours, int contourIdx, const cv::Scalar color, int thickness=1, int lineType=8, const cv::Mat hierarchy=Mat(), int maxLevel=INT_MAX, const cv::Point offset=Point())
2014 2015 2016 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2014 def self.draw_contours(image, contours, contour_idx, color, thickness = 1, line_type = 8, hierarchy = Cv::Mat.new(), max_level = INT_MAX, offset = Cv::Point.new()) Rbind::cv_draw_contours(image, contours, contour_idx, color, thickness, line_type, hierarchy, max_level, offset) end |
.draw_data_matrix_codes(image, codes, corners) ⇒ Object
wrapper for void cv::drawDataMatrixCodes(cv::Mat image, const vector_string codes, const cv::Mat corners)
2129 2130 2131 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2129 def self.draw_data_matrix_codes(image, codes, corners) Rbind::cv_draw_data_matrix_codes(image, codes, corners) end |
.draw_keypoints(image, keypoints, out_image, color = Cv::Scalar::all(-1), flags = DrawMatchesFlags::DEFAULT) ⇒ Object
wrapper for void cv::drawKeypoints(const cv::Mat image, const vector_KeyPoint keypoints, cv::Mat outImage, const cv::Scalar color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT)
2114 2115 2116 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2114 def self.draw_keypoints(image, keypoints, out_image, color = Cv::Scalar::all(-1), flags = DrawMatchesFlags::DEFAULT) Rbind::cv_draw_keypoints(image, keypoints, out_image, color, flags) end |
.draw_matches(_img1, _keypoints1, _img2, _keypoints2, _matches1to2, out_img, match_color = Cv::Scalar::all(-1), single_point_color = Cv::Scalar::all(-1), matches_mask = VectorChar.new(), flags = DrawMatchesFlags::DEFAULT) ⇒ Object
wrapper for void cv::drawMatches(const cv::Mat img1, const vector_KeyPoint keypoints1, const cv::Mat img2, const vector_KeyPoint keypoints2, const vector_DMatch matches1to2, cv::Mat outImg, const cv::Scalar matchColor=Scalar::all(-1), const cv::Scalar singlePointColor=Scalar::all(-1), const vector_char matchesMask=vector_char(), int flags=DrawMatchesFlags::DEFAULT)
2399 2400 2401 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2399 def self.draw_matches(_img1, _keypoints1, _img2, _keypoints2, _matches1to2, out_img, match_color = Cv::Scalar::all(-1), single_point_color = Cv::Scalar::all(-1), matches_mask = VectorChar.new(), flags = DrawMatchesFlags::DEFAULT) Rbind::cv_draw_matches(_img1, _keypoints1, _img2, _keypoints2, _matches1to2, out_img, match_color, single_point_color, matches_mask, flags) end |
.eigen(src, compute_eigenvectors, eigenvalues, eigenvectors) ⇒ Object
wrapper for bool cv::eigen(const cv::Mat src, bool computeEigenvectors, cv::Mat eigenvalues, cv::Mat eigenvectors)
1468 1469 1470 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1468 def self.eigen(src, compute_eigenvectors, eigenvalues, eigenvectors) Rbind::cv_eigen(src, compute_eigenvectors, eigenvalues, eigenvectors) end |
.ellipse(*args) ⇒ Object
wrapper for overloaded method ellipse
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1578 def self.ellipse(*args) # wrapper for void cv::ellipse(cv::Mat img, const cv::Point center, const cv::Size axes, double angle, double startAngle, double endAngle, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0) @@cv_ellipse_defaults0 ||= [nil, nil, nil, nil, nil, nil, nil, 1, 8, 0] if(args.size >= 7 && args.size <= 10) args.size.upto(9) do |i| args[i] = @@cv_ellipse_defaults0[i] end begin return Rbind::cv_ellipse(*args) rescue TypeError => e @error = e end end # wrapper for void cv::ellipse(cv::Mat img, const cv::RotatedRect box, const cv::Scalar color, int thickness=1, int lineType=8) @@cv_ellipse2_defaults1 ||= [nil, nil, nil, 1, 8] if(args.size >= 3 && args.size <= 5) args.size.upto(4) do |i| args[i] = @@cv_ellipse2_defaults1[i] end begin return Rbind::cv_ellipse2(*args) rescue TypeError => e @error = e end end raise ArgumentError, "No overloaded signature fits to: #{args.map(&:class)}" end |
.ellipse2_poly(center, axes, angle, arc_start, arc_end, delta, pts) ⇒ Object
wrapper for void cv::ellipse2Poly(const cv::Point center, const cv::Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point pts)
1629 1630 1631 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1629 def self.ellipse2_poly(center, axes, angle, arc_start, arc_end, delta, pts) Rbind::cv_ellipse2_poly(center, axes, angle, arc_start, arc_end, delta, pts) end |
.equalize_hist(src, dst) ⇒ Object
wrapper for void cv::equalizeHist(const cv::Mat src, cv::Mat dst)
1954 1955 1956 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1954 def self.equalize_hist(src, dst) Rbind::cv_equalize_hist(src, dst) end |
.erode(src, dst, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) ⇒ Object
wrapper for void cv::erode(const cv::Mat src, cv::Mat dst, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const cv::Scalar borderValue=morphologyDefaultBorderValue())
1774 1775 1776 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1774 def self.erode(src, dst, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) Rbind::cv_erode(src, dst, kernel, anchor, iterations, border_type, border_value) end |
.estimate_affine3d(src, dst, out, inliers, ransac_threshold = 3, confidence = 0.99) ⇒ Object
wrapper for int cv::estimateAffine3D(const cv::Mat src, const cv::Mat dst, cv::Mat out, cv::Mat inliers, double ransacThreshold=3, double confidence=0.99)
2284 2285 2286 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2284 def self.estimate_affine3d(src, dst, out, inliers, ransac_threshold = 3, confidence = 0.99) Rbind::cv_estimate_affine3d(src, dst, out, inliers, ransac_threshold, confidence) end |
.exp(src, dst) ⇒ Object
wrapper for void cv::exp(const cv::Mat src, cv::Mat dst)
1343 1344 1345 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1343 def self.exp(src, dst) Rbind::cv_exp(src, dst) end |
.extract_channel(src, dst, coi) ⇒ Object
wrapper for void cv::extractChannel(const cv::Mat src, cv::Mat dst, int coi)
1258 1259 1260 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1258 def self.extract_channel(src, dst, coi) Rbind::cv_extract_channel(src, dst, coi) end |
.fast_atan2(y, x) ⇒ Object
wrapper for float cv::fastAtan2(float y, float x)
1358 1359 1360 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1358 def self.fast_atan2(y, x) Rbind::cv_fast_atan2(y, x) end |
.fast_nl_means_denoising(src, dst, h = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoising(const cv::Mat src, cv::Mat dst, float h=3, int templateWindowSize=7, int searchWindowSize=21)
2094 2095 2096 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2094 def self.fast_nl_means_denoising(src, dst, h = 3, template_window_size = 7, search_window_size = 21) Rbind::cv_fast_nl_means_denoising(src, dst, h, template_window_size, search_window_size) end |
.fast_nl_means_denoising_colored(src, dst, h = 3, h_color = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoisingColored(const cv::Mat src, cv::Mat dst, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21)
2099 2100 2101 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2099 def self.fast_nl_means_denoising_colored(src, dst, h = 3, h_color = 3, template_window_size = 7, search_window_size = 21) Rbind::cv_fast_nl_means_denoising_colored(src, dst, h, h_color, template_window_size, search_window_size) end |
.fast_nl_means_denoising_colored_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h = 3, h_color = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoisingColoredMulti(const vector_Mat srcImgs, cv::Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21)
2109 2110 2111 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2109 def self.fast_nl_means_denoising_colored_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h = 3, h_color = 3, template_window_size = 7, search_window_size = 21) Rbind::cv_fast_nl_means_denoising_colored_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h, h_color, template_window_size, search_window_size) end |
.fast_nl_means_denoising_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h = 3, template_window_size = 7, search_window_size = 21) ⇒ Object
wrapper for void cv::fastNlMeansDenoisingMulti(const vector_Mat srcImgs, cv::Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, int templateWindowSize=7, int searchWindowSize=21)
2104 2105 2106 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2104 def self.fast_nl_means_denoising_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h = 3, template_window_size = 7, search_window_size = 21) Rbind::cv_fast_nl_means_denoising_multi(src_imgs, dst, img_to_denoise_index, temporal_window_size, h, template_window_size, search_window_size) end |
.fill_convex_poly(img, points, color, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::fillConvexPoly(cv::Mat img, const cv::Mat points, const cv::Scalar color, int lineType=8, int shift=0)
1609 1610 1611 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1609 def self.fill_convex_poly(img, points, color, line_type = 8, shift = 0) Rbind::cv_fill_convex_poly(img, points, color, line_type, shift) end |
.fill_poly(img, pts, color, line_type = 8, shift = 0, offset = Cv::Point.new()) ⇒ Object
wrapper for void cv::fillPoly(cv::Mat img, const vector_Mat pts, const cv::Scalar color, int lineType=8, int shift=0, const cv::Point offset=Point())
1614 1615 1616 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1614 def self.fill_poly(img, pts, color, line_type = 8, shift = 0, offset = Cv::Point.new()) Rbind::cv_fill_poly(img, pts, color, line_type, shift, offset) end |
.filter2d(src, dst, ddepth, kernel, anchor = Cv::Point.new(-1,-1), delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::filter2D(const cv::Mat src, cv::Mat dst, int ddepth, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT)
1699 1700 1701 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1699 def self.filter2d(src, dst, ddepth, kernel, anchor = Cv::Point.new(-1,-1), delta = 0, border_type = BORDER_DEFAULT) Rbind::cv_filter2d(src, dst, ddepth, kernel, anchor, delta, border_type) end |
.filter_speckles(img, new_val, max_speckle_size, max_diff, buf = Cv::Mat.new()) ⇒ Object
wrapper for void cv::filterSpeckles(cv::Mat img, double newVal, int maxSpeckleSize, double maxDiff, cv::Mat buf=Mat())
2264 2265 2266 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2264 def self.filter_speckles(img, new_val, max_speckle_size, max_diff, buf = Cv::Mat.new()) Rbind::cv_filter_speckles(img, new_val, max_speckle_size, max_diff, buf) end |
.find_chessboard_corners(image, pattern_size, corners, flags = CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE) ⇒ Object
wrapper for bool cv::findChessboardCorners(const cv::Mat image, const cv::Size patternSize, cv::Mat corners, int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE)
2184 2185 2186 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2184 def self.find_chessboard_corners(image, pattern_size, corners, flags = CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE) Rbind::cv_find_chessboard_corners(image, pattern_size, corners, flags) end |
.find_circles_grid(image, pattern_size, centers, flags = CALIB_CB_SYMMETRIC_GRID, blob_detector = Cv::SimpleBlobDetector.new()) ⇒ Object
wrapper for bool cv::findCirclesGrid(const cv::Mat image, const cv::Size patternSize, cv::Mat centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr_FeatureDetector blobDetector=new SimpleBlobDetector())
2194 2195 2196 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2194 def self.find_circles_grid(image, pattern_size, centers, flags = CALIB_CB_SYMMETRIC_GRID, blob_detector = Cv::SimpleBlobDetector.new()) Rbind::cv_find_circles_grid(image, pattern_size, centers, flags, blob_detector) end |
.find_circles_grid_default(image, pattern_size, centers, flags = CALIB_CB_SYMMETRIC_GRID) ⇒ Object
wrapper for bool cv::findCirclesGridDefault(const cv::Mat image, const cv::Size patternSize, cv::Mat centers, int flags=CALIB_CB_SYMMETRIC_GRID)
2199 2200 2201 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2199 def self.find_circles_grid_default(image, pattern_size, centers, flags = CALIB_CB_SYMMETRIC_GRID) Rbind::cv_find_circles_grid_default(image, pattern_size, centers, flags) end |
.find_contours(image, contours, hierarchy, mode, method, offset = Cv::Point.new()) ⇒ Object
wrapper for void cv::findContours(cv::Mat image, vector_Mat contours, cv::Mat hierarchy, int mode, int method, const cv::Point offset=Point())
2009 2010 2011 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2009 def self.find_contours(image, contours, hierarchy, mode, method, offset = Cv::Point.new()) Rbind::cv_find_contours(image, contours, hierarchy, mode, method, offset) end |
.find_data_matrix(image, codes, corners = Cv::Mat.new(), dmtx = VectorMat.new()) ⇒ Object
wrapper for void cv::findDataMatrix(const cv::Mat image, vector_string codes, cv::Mat corners=Mat(), vector_Mat dmtx=vector_Mat())
2124 2125 2126 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2124 def self.find_data_matrix(image, codes, corners = Cv::Mat.new(), dmtx = VectorMat.new()) Rbind::cv_find_data_matrix(image, codes, corners, dmtx) end |
.find_fundamental_mat(_points1, _points2, method = FM_RANSAC, _param1 = 3.0, _param2 = 0.99, mask = Cv::Mat.new()) ⇒ Object
wrapper for cv::Mat cv::findFundamentalMat(const cv::Mat points1, const cv::Mat points2, int method=FM_RANSAC, double param1=3., double param2=0.99, cv::Mat mask=Mat())
2249 2250 2251 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2249 def self.find_fundamental_mat(_points1, _points2, method = FM_RANSAC, _param1 = 3.0, _param2 = 0.99, mask = Cv::Mat.new()) Rbind::cv_find_fundamental_mat(_points1, _points2, method, _param1, _param2, mask) end |
.find_homography(src_points, dst_points, method = 0, ransac_reproj_threshold = 3, mask = Cv::Mat.new()) ⇒ Object
wrapper for cv::Mat cv::findHomography(const cv::Mat srcPoints, const cv::Mat dstPoints, int method=0, double ransacReprojThreshold=3, cv::Mat mask=Mat())
2139 2140 2141 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2139 def self.find_homography(src_points, dst_points, method = 0, ransac_reproj_threshold = 3, mask = Cv::Mat.new()) Rbind::cv_find_homography(src_points, dst_points, method, ransac_reproj_threshold, mask) end |
.find_non_zero(src, idx) ⇒ Object
wrapper for void cv::findNonZero(const cv::Mat src, cv::Mat idx)
1177 1178 1179 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1177 def self.find_non_zero(src, idx) Rbind::cv_find_non_zero(src, idx) end |
.fit_ellipse(points) ⇒ Object
wrapper for cv::RotatedRect cv::fitEllipse(const cv::Mat points)
2074 2075 2076 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2074 def self.fit_ellipse(points) Rbind::cv_fit_ellipse(points) end |
.fit_line(points, line, dist_type, param, reps, aeps) ⇒ Object
wrapper for void cv::fitLine(const cv::Mat points, cv::Mat line, int distType, double param, double reps, double aeps)
2079 2080 2081 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2079 def self.fit_line(points, line, dist_type, param, reps, aeps) Rbind::cv_fit_line(points, line, dist_type, param, reps, aeps) end |
.flip(src, dst, flip_code) ⇒ Object
wrapper for void cv::flip(const cv::Mat src, cv::Mat dst, int flipCode)
1268 1269 1270 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1268 def self.flip(src, dst, flip_code) Rbind::cv_flip(src, dst, flip_code) end |
.flood_fill(image, mask, seed_point, new_val, rect = 0, lo_diff = Cv::Scalar.new(), up_diff = Cv::Scalar.new(), flags = 4) ⇒ Object
wrapper for int cv::floodFill(cv::Mat image, cv::Mat mask, const cv::Point seedPoint, const cv::Scalar newVal, cv::Rect *rect=0, const cv::Scalar loDiff=Scalar(), const cv::Scalar upDiff=Scalar(), int flags=4)
1984 1985 1986 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1984 def self.flood_fill(image, mask, seed_point, new_val, rect = 0, lo_diff = Cv::Scalar.new(), up_diff = Cv::Scalar.new(), flags = 4) Rbind::cv_flood_fill(image, mask, seed_point, new_val, rect, lo_diff, up_diff, flags) end |
.gaussian_blur(src, dst, ksize, sigma_x, sigma_y = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::GaussianBlur(const cv::Mat src, cv::Mat dst, const cv::Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT)
1679 1680 1681 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1679 def self.gaussian_blur(src, dst, ksize, sigma_x, sigma_y = 0, border_type = BORDER_DEFAULT) Rbind::cv_gaussian_blur(src, dst, ksize, sigma_x, sigma_y, border_type) end |
.gemm(_src1, _src2, alpha, _src3, gamma, dst, flags = 0) ⇒ Object
wrapper for void cv::gemm(const cv::Mat src1, const cv::Mat src2, double alpha, const cv::Mat src3, double gamma, cv::Mat dst, int flags=0)
1393 1394 1395 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1393 def self.gemm(_src1, _src2, alpha, _src3, gamma, dst, flags = 0) Rbind::cv_gemm(_src1, _src2, alpha, _src3, gamma, dst, flags) end |
.get_affine_transform(src, dst) ⇒ Object
wrapper for cv::Mat cv::getAffineTransform(const cv::Mat src, const cv::Mat dst)
1829 1830 1831 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1829 def self.get_affine_transform(src, dst) Rbind::cv_get_affine_transform(src, dst) end |
.get_build_information ⇒ Object
wrapper for cv::String cv::getBuildInformation()
1061 1062 1063 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1061 def self.get_build_information() Rbind::cv_get_build_information() end |
.get_default_new_camera_matrix(camera_matrix, imgsize = Cv::Size.new(), center_principal_point = false) ⇒ Object
wrapper for cv::Mat cv::getDefaultNewCameraMatrix(const cv::Mat cameraMatrix, const cv::Size imgsize=Size(), bool centerPrincipalPoint=false)
1929 1930 1931 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1929 def self.get_default_new_camera_matrix(camera_matrix, imgsize = Cv::Size.new(), center_principal_point = false) Rbind::cv_get_default_new_camera_matrix(camera_matrix, imgsize, center_principal_point) end |
.get_deriv_kernels(kx, ky, dx, dy, ksize, normalize = false, ktype = CV_32F) ⇒ Object
wrapper for void cv::getDerivKernels(cv::Mat kx, cv::Mat ky, int dx, int dy, int ksize, bool normalize=false, int ktype=CV_32F)
1654 1655 1656 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1654 def self.get_deriv_kernels(kx, ky, dx, dy, ksize, normalize = false, ktype = CV_32F) Rbind::cv_get_deriv_kernels(kx, ky, dx, dy, ksize, normalize, ktype) end |
.get_gabor_kernel(ksize, sigma, theta, lambd, gamma, psi = CV_PI*0.5, ktype = CV_64F) ⇒ Object
wrapper for cv::Mat cv::getGaborKernel(const cv::Size ksize, double sigma, double theta, double lambd, double gamma, double psi=CV_PI*0.5, int ktype=CV_64F)
1659 1660 1661 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1659 def self.get_gabor_kernel(ksize, sigma, theta, lambd, gamma, psi = CV_PI*0.5, ktype = CV_64F) Rbind::cv_get_gabor_kernel(ksize, sigma, theta, lambd, gamma, psi, ktype) end |
.get_gaussian_kernel(ksize, sigma, ktype = CV_64F) ⇒ Object
wrapper for cv::Mat cv::getGaussianKernel(int ksize, double sigma, int ktype=CV_64F)
1649 1650 1651 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1649 def self.get_gaussian_kernel(ksize, sigma, ktype = CV_64F) Rbind::cv_get_gaussian_kernel(ksize, sigma, ktype) end |
.get_number_ofcp_us ⇒ Object
wrapper for int cv::getNumberOfCPUs()
1086 1087 1088 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1086 def self.get_number_ofcp_us() Rbind::cv_get_number_ofcp_us() end |
.get_optimal_new_camera_matrix(camera_matrix, dist_coeffs, image_size, alpha, new_img_size = Cv::Size.new(), valid_pix_r_o_i = 0, center_principal_point = false) ⇒ Object
wrapper for cv::Mat cv::getOptimalNewCameraMatrix(const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Size imageSize, double alpha, const cv::Size newImgSize=Size(), cv::Rect *validPixROI=0, bool centerPrincipalPoint=false)
2234 2235 2236 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2234 def self.get_optimal_new_camera_matrix(camera_matrix, dist_coeffs, image_size, alpha, new_img_size = Cv::Size.new(), valid_pix_r_o_i = 0, center_principal_point = false) Rbind::cv_get_optimal_new_camera_matrix(camera_matrix, dist_coeffs, image_size, alpha, new_img_size, valid_pix_r_o_i, center_principal_point) end |
.get_optimaldft_size(vecsize) ⇒ Object
wrapper for int cv::getOptimalDFTSize(int vecsize)
1538 1539 1540 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1538 def self.get_optimaldft_size(vecsize) Rbind::cv_get_optimaldft_size(vecsize) end |
.get_perspective_transform(src, dst) ⇒ Object
wrapper for cv::Mat cv::getPerspectiveTransform(const cv::Mat src, const cv::Mat dst)
1824 1825 1826 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1824 def self.get_perspective_transform(src, dst) Rbind::cv_get_perspective_transform(src, dst) end |
.get_rect_sub_pix(image, patch_size, center, patch, patch_type = -1)) ⇒ Object
wrapper for void cv::getRectSubPix(const cv::Mat image, const cv::Size patchSize, const cv::Point2f center, cv::Mat patch, int patchType=-1)
1834 1835 1836 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1834 def self.get_rect_sub_pix(image, patch_size, center, patch, patch_type = -1) Rbind::cv_get_rect_sub_pix(image, patch_size, center, patch, patch_type) end |
.get_rotation_matrix2d(center, angle, scale) ⇒ Object
wrapper for cv::Mat cv::getRotationMatrix2D(const cv::Point2f center, double angle, double scale)
1814 1815 1816 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1814 def self.get_rotation_matrix2d(center, angle, scale) Rbind::cv_get_rotation_matrix2d(center, angle, scale) end |
.get_structuring_element(shape, ksize, anchor = Cv::Point.new(-1,-1)) ⇒ Object
wrapper for cv::Mat cv::getStructuringElement(int shape, const cv::Size ksize, const cv::Point anchor=Point(-1,-1))
1664 1665 1666 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1664 def self.get_structuring_element(shape, ksize, anchor = Cv::Point.new(-1,-1)) Rbind::cv_get_structuring_element(shape, ksize, anchor) end |
.get_text_size(text, font_face, font_scale, thickness, base_line) ⇒ Object
wrapper for cv::Size cv::getTextSize(const cv::String text, int fontFace, double fontScale, int thickness, int *baseLine)
1639 1640 1641 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1639 def self.get_text_size(text, font_face, font_scale, thickness, base_line) Rbind::cv_get_text_size(text, font_face, font_scale, thickness, base_line) end |
.get_tick_count ⇒ Object
wrapper for int64 cv::getTickCount()
1066 1067 1068 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1066 def self.get_tick_count() Rbind::cv_get_tick_count() end |
.get_tick_frequency ⇒ Object
wrapper for double cv::getTickFrequency()
1071 1072 1073 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1071 def self.get_tick_frequency() Rbind::cv_get_tick_frequency() end |
.get_trackbar_pos(trackbarname, winname) ⇒ Object
wrapper for int cv::getTrackbarPos(const cv::String trackbarname, const cv::String winname)
2339 2340 2341 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2339 def self.(, winname) Rbind::(, winname) end |
.get_valid_disparityroi(_roi1, _roi2, min_disparity, number_of_disparities, s_a_d_window_size) ⇒ Object
wrapper for cv::Rect cv::getValidDisparityROI(const cv::Rect roi1, const cv::Rect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize)
2269 2270 2271 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2269 def self.get_valid_disparityroi(_roi1, _roi2, min_disparity, number_of_disparities, s_a_d_window_size) Rbind::cv_get_valid_disparityroi(_roi1, _roi2, min_disparity, number_of_disparities, s_a_d_window_size) end |
.get_window_property(winname, prop_id) ⇒ Object
wrapper for double cv::getWindowProperty(const cv::String winname, int prop_id)
2334 2335 2336 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2334 def self.get_window_property(winname, prop_id) Rbind::cv_get_window_property(winname, prop_id) end |
.getcpu_tick_count ⇒ Object
wrapper for int64 cv::getCPUTickCount()
1076 1077 1078 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1076 def self.getcpu_tick_count() Rbind::cv_getcpu_tick_count() end |
.good_features_to_track(image, corners, max_corners, quality_level, min_distance, mask = Cv::Mat.new(), block_size = 3, use_harris_detector = false, k = 0.04) ⇒ Object
wrapper for void cv::goodFeaturesToTrack(const cv::Mat image, cv::Mat corners, int maxCorners, double qualityLevel, double minDistance, const cv::Mat mask=Mat(), int blockSize=3, bool useHarrisDetector=false, double k=0.04)
1754 1755 1756 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1754 def self.good_features_to_track(image, corners, max_corners, quality_level, min_distance, mask = Cv::Mat.new(), block_size = 3, use_harris_detector = false, k = 0.04) Rbind::cv_good_features_to_track(image, corners, max_corners, quality_level, min_distance, mask, block_size, use_harris_detector, k) end |
.grab_cut(img, mask, rect, bgd_model, fgd_model, iter_count, mode = GC_EVAL) ⇒ Object
wrapper for void cv::grabCut(const cv::Mat img, cv::Mat mask, const cv::Rect rect, cv::Mat bgdModel, cv::Mat fgdModel, int iterCount, int mode=GC_EVAL)
1969 1970 1971 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1969 def self.grab_cut(img, mask, rect, bgd_model, fgd_model, iter_count, mode = GC_EVAL) Rbind::cv_grab_cut(img, mask, rect, bgd_model, fgd_model, iter_count, mode) end |
.group_rectangles(rect_list, weights, group_threshold, eps = 0.2) ⇒ Object
wrapper for void cv::groupRectangles(vector_Rect rectList, vector_int weights, int groupThreshold, double eps=0.2)
2119 2120 2121 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2119 def self.group_rectangles(rect_list, weights, group_threshold, eps = 0.2) Rbind::cv_group_rectangles(rect_list, weights, group_threshold, eps) end |
.hconcat(src, dst) ⇒ Object
wrapper for void cv::hconcat(const vector_Mat src, cv::Mat dst)
1278 1279 1280 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1278 def self.hconcat(src, dst) Rbind::cv_hconcat(src, dst) end |
.hough_circles(image, circles, method, dp, min_dist, _param1 = 100, _param2 = 100, min_radius = 0, max_radius = 0) ⇒ Object
wrapper for void cv::HoughCircles(const cv::Mat image, cv::Mat circles, int method, double dp, double minDist, double param1=100, double param2=100, int minRadius=0, int maxRadius=0)
1769 1770 1771 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1769 def self.hough_circles(image, circles, method, dp, min_dist, _param1 = 100, _param2 = 100, min_radius = 0, max_radius = 0) Rbind::cv_hough_circles(image, circles, method, dp, min_dist, _param1, _param2, min_radius, max_radius) end |
.hough_lines(image, lines, rho, theta, threshold, srn = 0, stn = 0) ⇒ Object
wrapper for void cv::HoughLines(const cv::Mat image, cv::Mat lines, double rho, double theta, int threshold, double srn=0, double stn=0)
1759 1760 1761 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1759 def self.hough_lines(image, lines, rho, theta, threshold, srn = 0, stn = 0) Rbind::cv_hough_lines(image, lines, rho, theta, threshold, srn, stn) end |
.hough_linesp(image, lines, rho, theta, threshold, min_line_length = 0, max_line_gap = 0) ⇒ Object
wrapper for void cv::HoughLinesP(const cv::Mat image, cv::Mat lines, double rho, double theta, int threshold, double minLineLength=0, double maxLineGap=0)
1764 1765 1766 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1764 def self.hough_linesp(image, lines, rho, theta, threshold, min_line_length = 0, max_line_gap = 0) Rbind::cv_hough_linesp(image, lines, rho, theta, threshold, min_line_length, max_line_gap) end |
.hu_moments(m, hu) ⇒ Object
wrapper for void cv::HuMoments(const cv::Moments m, cv::Mat hu)
1999 2000 2001 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1999 def self.hu_moments(m, hu) Rbind::cv_hu_moments(m, hu) end |
.idct(src, dst, flags = 0) ⇒ Object
wrapper for void cv::idct(const cv::Mat src, cv::Mat dst, int flags=0)
1528 1529 1530 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1528 def self.idct(src, dst, flags = 0) Rbind::cv_idct(src, dst, flags) end |
.idft(src, dst, flags = 0, nonzero_rows = 0) ⇒ Object
wrapper for void cv::idft(const cv::Mat src, cv::Mat dst, int flags=0, int nonzeroRows=0)
1518 1519 1520 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1518 def self.idft(src, dst, flags = 0, nonzero_rows = 0) Rbind::cv_idft(src, dst, flags, nonzero_rows) end |
.imdecode(buf, flags) ⇒ Object
wrapper for cv::Mat cv::imdecode(const cv::Mat buf, int flags)
2359 2360 2361 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2359 def self.imdecode(buf, flags) Rbind::cv_imdecode(buf, flags) end |
.imencode(ext, img, buf, params = VectorInt.new()) ⇒ Object
wrapper for bool cv::imencode(const cv::String ext, const cv::Mat img, vector_uchar buf, const vector_int params=vector_int())
2364 2365 2366 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2364 def self.imencode(ext, img, buf, params = VectorInt.new()) Rbind::cv_imencode(ext, img, buf, params) end |
.imread(filename, flags = 1) ⇒ Object
wrapper for cv::Mat cv::imread(const cv::String filename, int flags=1)
2349 2350 2351 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2349 def self.imread(filename, flags = 1) Rbind::cv_imread(filename, flags) end |
.imshow(winname, mat) ⇒ Object
wrapper for void cv::imshow(const cv::String winname, const cv::Mat mat)
2314 2315 2316 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2314 def self.imshow(winname, mat) Rbind::cv_imshow(winname, mat) end |
.imwrite(filename, img, params = VectorInt.new()) ⇒ Object
wrapper for bool cv::imwrite(const cv::String filename, const cv::Mat img, const vector_int params=vector_int())
2354 2355 2356 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2354 def self.imwrite(filename, img, params = VectorInt.new()) Rbind::cv_imwrite(filename, img, params) end |
.in_range(src, lowerb, upperb, dst) ⇒ Object
wrapper for void cv::inRange(const cv::Mat src, const cv::Mat lowerb, const cv::Mat upperb, cv::Mat dst)
1313 1314 1315 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1313 def self.in_range(src, lowerb, upperb, dst) Rbind::cv_in_range(src, lowerb, upperb, dst) end |
.init_camera_matrix2d(object_points, image_points, image_size, aspect_ratio = 1.0) ⇒ Object
wrapper for cv::Mat cv::initCameraMatrix2D(const vector_Mat objectPoints, const vector_Mat imagePoints, const cv::Size imageSize, double aspectRatio=1.)
2179 2180 2181 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2179 def self.init_camera_matrix2d(object_points, image_points, image_size, aspect_ratio = 1.0) Rbind::cv_init_camera_matrix2d(object_points, image_points, image_size, aspect_ratio) end |
.init_module_nonfree ⇒ Object
wrapper for bool cv::initModule_nonfree()
2394 2395 2396 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2394 def self.init_module_nonfree() Rbind::cv_init_module_nonfree() end |
.init_undistort_rectify_map(camera_matrix, dist_coeffs, r, new_camera_matrix, size, _m1type, _map1, _map2) ⇒ Object
wrapper for void cv::initUndistortRectifyMap(const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Mat R, const cv::Mat newCameraMatrix, const cv::Size size, int m1type, cv::Mat map1, cv::Mat map2)
1919 1920 1921 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1919 def self.init_undistort_rectify_map(camera_matrix, dist_coeffs, r, new_camera_matrix, size, _m1type, _map1, _map2) Rbind::cv_init_undistort_rectify_map(camera_matrix, dist_coeffs, r, new_camera_matrix, size, _m1type, _map1, _map2) end |
.init_wide_angle_proj_map(camera_matrix, dist_coeffs, image_size, dest_image_width, _m1type, _map1, _map2, proj_type = PROJ_SPHERICAL_EQRECT, alpha = 0) ⇒ Object
wrapper for float cv::initWideAngleProjMap(const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Size imageSize, int destImageWidth, int m1type, cv::Mat map1, cv::Mat map2, int projType=PROJ_SPHERICAL_EQRECT, double alpha=0)
1924 1925 1926 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1924 def self.init_wide_angle_proj_map(camera_matrix, dist_coeffs, image_size, dest_image_width, _m1type, _map1, _map2, proj_type = PROJ_SPHERICAL_EQRECT, alpha = 0) Rbind::cv_init_wide_angle_proj_map(camera_matrix, dist_coeffs, image_size, dest_image_width, _m1type, _map1, _map2, proj_type, alpha) end |
.inpaint(src, inpaint_mask, dst, inpaint_radius, flags) ⇒ Object
wrapper for void cv::inpaint(const cv::Mat src, const cv::Mat inpaintMask, cv::Mat dst, double inpaintRadius, int flags)
2089 2090 2091 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2089 def self.inpaint(src, inpaint_mask, dst, inpaint_radius, flags) Rbind::cv_inpaint(src, inpaint_mask, dst, inpaint_radius, flags) end |
.insert_channel(src, dst, coi) ⇒ Object
wrapper for void cv::insertChannel(const cv::Mat src, cv::Mat dst, int coi)
1263 1264 1265 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1263 def self.insert_channel(src, dst, coi) Rbind::cv_insert_channel(src, dst, coi) end |
.integral(src, sum, sdepth = -1)) ⇒ Object
wrapper for void cv::integral(const cv::Mat src, cv::Mat sum, int sdepth=-1)
1839 1840 1841 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1839 def self.integral(src, sum, sdepth = -1) Rbind::cv_integral(src, sum, sdepth) end |
.integral2(src, sum, sqsum, sdepth = -1)) ⇒ Object
wrapper for void cv::integral(const cv::Mat src, cv::Mat sum, cv::Mat sqsum, int sdepth=-1)
1844 1845 1846 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1844 def self.integral2(src, sum, sqsum, sdepth = -1) Rbind::cv_integral2(src, sum, sqsum, sdepth) end |
.integral3(src, sum, sqsum, tilted, sdepth = -1)) ⇒ Object
wrapper for void cv::integral(const cv::Mat src, cv::Mat sum, cv::Mat sqsum, cv::Mat tilted, int sdepth=-1)
1849 1850 1851 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1849 def self.integral3(src, sum, sqsum, tilted, sdepth = -1) Rbind::cv_integral3(src, sum, sqsum, tilted, sdepth) end |
.intersect_convex_convex(__p1, __p2, __p12, handle_nested = true) ⇒ Object
wrapper for float cv::intersectConvexConvex(const cv::Mat _p1, const cv::Mat _p2, cv::Mat _p12, bool handleNested=true)
2069 2070 2071 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2069 def self.intersect_convex_convex(__p1, __p2, __p12, handle_nested = true) Rbind::cv_intersect_convex_convex(__p1, __p2, __p12, handle_nested) end |
.invert(src, dst, flags = DECOMP_LU) ⇒ Object
wrapper for double cv::invert(const cv::Mat src, cv::Mat dst, int flags=DECOMP_LU)
1438 1439 1440 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1438 def self.invert(src, dst, flags = DECOMP_LU) Rbind::cv_invert(src, dst, flags) end |
.invert_affine_transform(m, i_m) ⇒ Object
wrapper for void cv::invertAffineTransform(const cv::Mat M, cv::Mat iM)
1819 1820 1821 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1819 def self.invert_affine_transform(m, i_m) Rbind::cv_invert_affine_transform(m, i_m) end |
.is_contour_convex(contour) ⇒ Object
wrapper for bool cv::isContourConvex(const cv::Mat contour)
2064 2065 2066 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2064 def self.is_contour_convex(contour) Rbind::cv_is_contour_convex(contour) end |
.kmeans(data, k, best_labels, criteria, attempts, flags, centers = Cv::Mat.new()) ⇒ Object
wrapper for double cv::kmeans(const cv::Mat data, int K, cv::Mat bestLabels, const cv::TermCriteria criteria, int attempts, int flags, cv::Mat centers=Mat())
1543 1544 1545 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1543 def self.kmeans(data, k, best_labels, criteria, attempts, flags, centers = Cv::Mat.new()) Rbind::cv_kmeans(data, k, best_labels, criteria, attempts, flags, centers) end |
.laplacian(src, dst, ddepth, ksize = 1, scale = 1, delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::Laplacian(const cv::Mat src, cv::Mat dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
1719 1720 1721 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1719 def self.laplacian(src, dst, ddepth, ksize = 1, scale = 1, delta = 0, border_type = BORDER_DEFAULT) Rbind::cv_laplacian(src, dst, ddepth, ksize, scale, delta, border_type) end |
.line(img, _pt1, _pt2, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::line(cv::Mat img, const cv::Point pt1, const cv::Point pt2, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0)
1563 1564 1565 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1563 def self.line(img, _pt1, _pt2, color, thickness = 1, line_type = 8, shift = 0) Rbind::cv_line(img, _pt1, _pt2, color, thickness, line_type, shift) end |
.log(src, dst) ⇒ Object
wrapper for void cv::log(const cv::Mat src, cv::Mat dst)
1348 1349 1350 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1348 def self.log(src, dst) Rbind::cv_log(src, dst) end |
.lut(src, lut, dst, interpolation = 0) ⇒ Object
wrapper for void cv::LUT(const cv::Mat src, const cv::Mat lut, cv::Mat dst, int interpolation=0)
1162 1163 1164 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1162 def self.lut(src, lut, dst, interpolation = 0) Rbind::cv_lut(src, lut, dst, interpolation) end |
.magnitude(x, y, magnitude) ⇒ Object
wrapper for void cv::magnitude(const cv::Mat x, const cv::Mat y, cv::Mat magnitude)
1378 1379 1380 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1378 def self.magnitude(x, y, magnitude) Rbind::cv_magnitude(x, y, magnitude) end |
.mahalanobis(_v1, _v2, icovar) ⇒ Object
wrapper for double cv::Mahalanobis(const cv::Mat v1, const cv::Mat v2, const cv::Mat icovar)
1508 1509 1510 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1508 def self.mahalanobis(_v1, _v2, icovar) Rbind::cv_mahalanobis(_v1, _v2, icovar) end |
.mat_mul_deriv(a, b, d_a_bd_a, d_a_bd_b) ⇒ Object
wrapper for void cv::matMulDeriv(const cv::Mat A, const cv::Mat B, cv::Mat dABdA, cv::Mat dABdB)
2154 2155 2156 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2154 def self.mat_mul_deriv(a, b, d_a_bd_a, d_a_bd_b) Rbind::cv_mat_mul_deriv(a, b, d_a_bd_a, d_a_bd_b) end |
.match_shapes(_contour1, _contour2, method, parameter) ⇒ Object
wrapper for double cv::matchShapes(const cv::Mat contour1, const cv::Mat contour2, int method, double parameter)
2049 2050 2051 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2049 def self.match_shapes(_contour1, _contour2, method, parameter) Rbind::cv_match_shapes(_contour1, _contour2, method, parameter) end |
.match_template(image, templ, result, method) ⇒ Object
wrapper for void cv::matchTemplate(const cv::Mat image, const cv::Mat templ, cv::Mat result, int method)
2004 2005 2006 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2004 def self.match_template(image, templ, result, method) Rbind::cv_match_template(image, templ, result, method) end |
.max(_src1, _src2, dst) ⇒ Object
wrapper for void cv::max(const cv::Mat src1, const cv::Mat src2, cv::Mat dst)
1328 1329 1330 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1328 def self.max(_src1, _src2, dst) Rbind::cv_max(_src1, _src2, dst) end |
.mean(src, mask = Cv::Mat.new()) ⇒ Object
wrapper for cv::Scalar cv::mean(const cv::Mat src, const cv::Mat mask=Mat())
1182 1183 1184 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1182 def self.mean(src, mask = Cv::Mat.new()) Rbind::cv_mean(src, mask) end |
.mean_std_dev(src, mean, stddev, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::meanStdDev(const cv::Mat src, cv::Mat mean, cv::Mat stddev, const cv::Mat mask=Mat())
1187 1188 1189 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1187 def self.mean_std_dev(src, mean, stddev, mask = Cv::Mat.new()) Rbind::cv_mean_std_dev(src, mean, stddev, mask) end |
.median_blur(src, dst, ksize) ⇒ Object
wrapper for void cv::medianBlur(const cv::Mat src, cv::Mat dst, int ksize)
1674 1675 1676 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1674 def self.median_blur(src, dst, ksize) Rbind::cv_median_blur(src, dst, ksize) end |
.merge(mv, dst) ⇒ Object
wrapper for void cv::merge(const vector_Mat mv, cv::Mat dst)
1243 1244 1245 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1243 def self.merge(mv, dst) Rbind::cv_merge(mv, dst) end |
.min(_src1, _src2, dst) ⇒ Object
wrapper for void cv::min(const cv::Mat src1, const cv::Mat src2, cv::Mat dst)
1323 1324 1325 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1323 def self.min(_src1, _src2, dst) Rbind::cv_min(_src1, _src2, dst) end |
.min_area_rect(points) ⇒ Object
wrapper for cv::RotatedRect cv::minAreaRect(const cv::Mat points)
2039 2040 2041 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2039 def self.min_area_rect(points) Rbind::cv_min_area_rect(points) end |
.min_enclosing_circle(points, center, radius) ⇒ Object
wrapper for void cv::minEnclosingCircle(const cv::Mat points, cv::Point2f center, float radius)
2044 2045 2046 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2044 def self.min_enclosing_circle(points, center, radius) Rbind::cv_min_enclosing_circle(points, center, radius) end |
.min_max_loc(src, min_val, max_val = 0, min_loc = 0, max_loc = 0, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::minMaxLoc(const cv::Mat src, double *minVal, double *maxVal=0, cv::Point *minLoc=0, cv::Point *maxLoc=0, const cv::Mat mask=Mat())
1233 1234 1235 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1233 def self.min_max_loc(src, min_val, max_val = 0, min_loc = 0, max_loc = 0, mask = Cv::Mat.new()) Rbind::cv_min_max_loc(src, min_val, max_val, min_loc, max_loc, mask) end |
.mix_channels(src, dst, from_to) ⇒ Object
wrapper for void cv::mixChannels(const vector_Mat src, const vector_Mat dst, const vector_int fromTo)
1253 1254 1255 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1253 def self.mix_channels(src, dst, from_to) Rbind::cv_mix_channels(src, dst, from_to) end |
.moments(array, binary_image = false) ⇒ Object
wrapper for cv::Moments cv::moments(const cv::Mat array, bool binaryImage=false)
1994 1995 1996 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1994 def self.moments(array, binary_image = false) Rbind::cv_moments(array, binary_image) end |
.morphology_default_border_value ⇒ Object
wrapper for cv::Scalar cv::morphologyDefaultBorderValue()
2404 2405 2406 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2404 def self.morphology_default_border_value() Rbind::cv_morphology_default_border_value() end |
.morphology_ex(src, dst, op, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) ⇒ Object
wrapper for void cv::morphologyEx(const cv::Mat src, cv::Mat dst, int op, const cv::Mat kernel, const cv::Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const cv::Scalar borderValue=morphologyDefaultBorderValue())
1784 1785 1786 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1784 def self.morphology_ex(src, dst, op, kernel, anchor = Cv::Point.new(-1,-1), iterations = 1, border_type = BORDER_CONSTANT, border_value = morphology_default_border_value()) Rbind::cv_morphology_ex(src, dst, op, kernel, anchor, iterations, border_type, border_value) end |
.move_window(winname, x, y) ⇒ Object
wrapper for void cv::moveWindow(const cv::String winname, int x, int y)
2324 2325 2326 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2324 def self.move_window(winname, x, y) Rbind::cv_move_window(winname, x, y) end |
.mul_spectrums(a, b, c, flags, conj_b = false) ⇒ Object
wrapper for void cv::mulSpectrums(const cv::Mat a, const cv::Mat b, cv::Mat c, int flags, bool conjB=false)
1533 1534 1535 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1533 def self.mul_spectrums(a, b, c, flags, conj_b = false) Rbind::cv_mul_spectrums(a, b, c, flags, conj_b) end |
.mul_transposed(src, dst, a_ta, delta = Cv::Mat.new(), scale = 1, dtype = -1)) ⇒ Object
wrapper for void cv::mulTransposed(const cv::Mat src, cv::Mat dst, bool aTa, const cv::Mat delta=Mat(), double scale=1, int dtype=-1)
1398 1399 1400 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1398 def self.mul_transposed(src, dst, a_ta, delta = Cv::Mat.new(), scale = 1, dtype = -1) Rbind::cv_mul_transposed(src, dst, a_ta, delta, scale, dtype) end |
.multiply(_src1, _src2, dst, scale = 1, dtype = -1)) ⇒ Object
wrapper for void cv::multiply(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, double scale=1, int dtype=-1)
1111 1112 1113 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1111 def self.multiply(_src1, _src2, dst, scale = 1, dtype = -1) Rbind::cv_multiply(_src1, _src2, dst, scale, dtype) end |
.named_window(winname, flags = WINDOW_AUTOSIZE) ⇒ Object
wrapper for void cv::namedWindow(const cv::String winname, int flags=WINDOW_AUTOSIZE)
2289 2290 2291 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2289 def self.named_window(winname, flags = WINDOW_AUTOSIZE) Rbind::cv_named_window(winname, flags) end |
.norm(*args) ⇒ Object
wrapper for overloaded method norm
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1192 def self.norm(*args) # wrapper for double cv::norm(const cv::Mat src1, int normType=NORM_L2, const cv::Mat mask=Mat()) @@cv_norm_defaults0 ||= [nil, NORM_L2, Cv::Mat.new()] if(args.size >= 1 && args.size <= 3) args.size.upto(2) do |i| args[i] = @@cv_norm_defaults0[i] end begin return Rbind::cv_norm(*args) rescue TypeError => e @error = e end end # wrapper for double cv::norm(const cv::Mat src1, const cv::Mat src2, int normType=NORM_L2, const cv::Mat mask=Mat()) @@cv_norm2_defaults1 ||= [nil, nil, NORM_L2, Cv::Mat.new()] if(args.size >= 2 && args.size <= 4) args.size.upto(3) do |i| args[i] = @@cv_norm2_defaults1[i] end begin return Rbind::cv_norm2(*args) rescue TypeError => e @error = e end end raise ArgumentError, "No overloaded signature fits to: #{args.map(&:class)}" end |
.normalize(src, dst, alpha = 1, beta = 0, norm_type = NORM_L2, dtype = -1,, mask = Cv::Mat.new()) ⇒ Object
wrapper for void cv::normalize(const cv::Mat src, cv::Mat dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, const cv::Mat mask=Mat())
1228 1229 1230 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1228 def self.normalize(src, dst, alpha = 1, beta = 0, norm_type = NORM_L2, dtype = -1, mask = Cv::Mat.new()) Rbind::cv_normalize(src, dst, alpha, beta, norm_type, dtype, mask) end |
.patch_na_ns(a, val = 0) ⇒ Object
wrapper for void cv::patchNaNs(cv::Mat a, double val=0)
1388 1389 1390 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1388 def self.patch_na_ns(a, val = 0) Rbind::cv_patch_na_ns(a, val) end |
.pca_back_project(data, mean, eigenvectors, result) ⇒ Object
wrapper for void cv::PCABackProject(const cv::Mat data, const cv::Mat mean, const cv::Mat eigenvectors, cv::Mat result)
1493 1494 1495 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1493 def self.pca_back_project(data, mean, eigenvectors, result) Rbind::cv_pca_back_project(data, mean, eigenvectors, result) end |
.pca_compute(data, mean, eigenvectors, max_components = 0) ⇒ Object
wrapper for void cv::PCACompute(const cv::Mat data, cv::Mat mean, cv::Mat eigenvectors, int maxComponents=0)
1478 1479 1480 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1478 def self.pca_compute(data, mean, eigenvectors, max_components = 0) Rbind::cv_pca_compute(data, mean, eigenvectors, max_components) end |
.pca_compute_var(data, mean, eigenvectors, retained_variance) ⇒ Object
wrapper for void cv::PCAComputeVar(const cv::Mat data, cv::Mat mean, cv::Mat eigenvectors, double retainedVariance)
1483 1484 1485 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1483 def self.pca_compute_var(data, mean, eigenvectors, retained_variance) Rbind::cv_pca_compute_var(data, mean, eigenvectors, retained_variance) end |
.pca_project(data, mean, eigenvectors, result) ⇒ Object
wrapper for void cv::PCAProject(const cv::Mat data, const cv::Mat mean, const cv::Mat eigenvectors, cv::Mat result)
1488 1489 1490 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1488 def self.pca_project(data, mean, eigenvectors, result) Rbind::cv_pca_project(data, mean, eigenvectors, result) end |
.perspective_transform(src, dst, m) ⇒ Object
wrapper for void cv::perspectiveTransform(const cv::Mat src, cv::Mat dst, const cv::Mat m)
1413 1414 1415 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1413 def self.perspective_transform(src, dst, m) Rbind::cv_perspective_transform(src, dst, m) end |
.phase(x, y, angle, angle_in_degrees = false) ⇒ Object
wrapper for void cv::phase(const cv::Mat x, const cv::Mat y, cv::Mat angle, bool angleInDegrees=false)
1373 1374 1375 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1373 def self.phase(x, y, angle, angle_in_degrees = false) Rbind::cv_phase(x, y, angle, angle_in_degrees) end |
.phase_correlate(_src1, _src2, window = Cv::Mat.new()) ⇒ Object
wrapper for cv::Point2d cv::phaseCorrelate(const cv::Mat src1, const cv::Mat src2, const cv::Mat window=Mat())
1879 1880 1881 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1879 def self.phase_correlate(_src1, _src2, window = Cv::Mat.new()) Rbind::cv_phase_correlate(_src1, _src2, window) end |
.phase_correlate_res(_src1, _src2, window, response = 0) ⇒ Object
wrapper for cv::Point2d cv::phaseCorrelateRes(const cv::Mat src1, const cv::Mat src2, const cv::Mat window, double *response=0)
1884 1885 1886 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1884 def self.phase_correlate_res(_src1, _src2, window, response = 0) Rbind::cv_phase_correlate_res(_src1, _src2, window, response) end |
.point_polygon_test(contour, pt, measure_dist) ⇒ Object
wrapper for double cv::pointPolygonTest(const cv::Mat contour, const cv::Point2f pt, bool measureDist)
2084 2085 2086 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2084 def self.point_polygon_test(contour, pt, measure_dist) Rbind::cv_point_polygon_test(contour, pt, measure_dist) end |
.polar_to_cart(magnitude, angle, x, y, angle_in_degrees = false) ⇒ Object
wrapper for void cv::polarToCart(const cv::Mat magnitude, const cv::Mat angle, cv::Mat x, cv::Mat y, bool angleInDegrees=false)
1363 1364 1365 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1363 def self.polar_to_cart(magnitude, angle, x, y, angle_in_degrees = false) Rbind::cv_polar_to_cart(magnitude, angle, x, y, angle_in_degrees) end |
.polylines(img, pts, is_closed, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::polylines(cv::Mat img, const vector_Mat pts, bool isClosed, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0)
1619 1620 1621 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1619 def self.polylines(img, pts, is_closed, color, thickness = 1, line_type = 8, shift = 0) Rbind::cv_polylines(img, pts, is_closed, color, thickness, line_type, shift) end |
.pow(src, power, dst) ⇒ Object
wrapper for void cv::pow(const cv::Mat src, double power, cv::Mat dst)
1338 1339 1340 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1338 def self.pow(src, power, dst) Rbind::cv_pow(src, power, dst) end |
.pre_corner_detect(src, dst, ksize, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::preCornerDetect(const cv::Mat src, cv::Mat dst, int ksize, int borderType=BORDER_DEFAULT)
1744 1745 1746 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1744 def self.pre_corner_detect(src, dst, ksize, border_type = BORDER_DEFAULT) Rbind::cv_pre_corner_detect(src, dst, ksize, border_type) end |
.project_points(object_points, rvec, tvec, camera_matrix, dist_coeffs, image_points, jacobian = Cv::Mat.new(), aspect_ratio = 0) ⇒ Object
wrapper for void cv::projectPoints(const cv::Mat objectPoints, const cv::Mat rvec, const cv::Mat tvec, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, cv::Mat imagePoints, cv::Mat jacobian=Mat(), double aspectRatio=0)
2164 2165 2166 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2164 def self.project_points(object_points, rvec, tvec, camera_matrix, dist_coeffs, image_points, jacobian = Cv::Mat.new(), aspect_ratio = 0) Rbind::cv_project_points(object_points, rvec, tvec, camera_matrix, dist_coeffs, image_points, jacobian, aspect_ratio) end |
.psnr(_src1, _src2) ⇒ Object
wrapper for double cv::PSNR(const cv::Mat src1, const cv::Mat src2)
1874 1875 1876 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1874 def self.psnr(_src1, _src2) Rbind::cv_psnr(_src1, _src2) end |
.put_text(img, text, org, font_face, font_scale, color, thickness = 1, line_type = 8, bottom_left_origin = false) ⇒ Object
wrapper for void cv::putText(cv::Mat img, const cv::String text, const cv::Point org, int fontFace, double fontScale, const cv::Scalar color, int thickness=1, int lineType=8, bool bottomLeftOrigin=false)
1634 1635 1636 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1634 def self.put_text(img, text, org, font_face, font_scale, color, thickness = 1, line_type = 8, bottom_left_origin = false) Rbind::cv_put_text(img, text, org, font_face, font_scale, color, thickness, line_type, bottom_left_origin) end |
.pyr_down(src, dst, dstsize = Cv::Size.new(), border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::pyrDown(const cv::Mat src, cv::Mat dst, const cv::Size dstsize=Size(), int borderType=BORDER_DEFAULT)
1904 1905 1906 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1904 def self.pyr_down(src, dst, dstsize = Cv::Size.new(), border_type = BORDER_DEFAULT) Rbind::cv_pyr_down(src, dst, dstsize, border_type) end |
.pyr_mean_shift_filtering(src, dst, sp, sr, max_level = 1, termcrit = Cv::TermCriteria.new( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) ⇒ Object
wrapper for void cv::pyrMeanShiftFiltering(const cv::Mat src, cv::Mat dst, double sp, double sr, int maxLevel=1, const cv::TermCriteria termcrit=TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1))
1964 1965 1966 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1964 def self.pyr_mean_shift_filtering(src, dst, sp, sr, max_level = 1, termcrit = Cv::TermCriteria.new( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) Rbind::cv_pyr_mean_shift_filtering(src, dst, sp, sr, max_level, termcrit) end |
.pyr_up(src, dst, dstsize = Cv::Size.new(), border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::pyrUp(const cv::Mat src, cv::Mat dst, const cv::Size dstsize=Size(), int borderType=BORDER_DEFAULT)
1909 1910 1911 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1909 def self.pyr_up(src, dst, dstsize = Cv::Size.new(), border_type = BORDER_DEFAULT) Rbind::cv_pyr_up(src, dst, dstsize, border_type) end |
.rand_shuffle(dst, iter_factor = 1.0) ⇒ Object
wrapper for void cv::randShuffle_(cv::Mat dst, double iterFactor=1.)
1558 1559 1560 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1558 def self.rand_shuffle(dst, iter_factor = 1.0) Rbind::cv_rand_shuffle(dst, iter_factor) end |
.randn(dst, mean, stddev) ⇒ Object
wrapper for void cv::randn(cv::Mat dst, const cv::Mat mean, const cv::Mat stddev)
1553 1554 1555 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1553 def self.randn(dst, mean, stddev) Rbind::cv_randn(dst, mean, stddev) end |
.randu(dst, low, high) ⇒ Object
wrapper for void cv::randu(cv::Mat dst, const cv::Mat low, const cv::Mat high)
1548 1549 1550 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1548 def self.randu(dst, low, high) Rbind::cv_randu(dst, low, high) end |
.rectangle(img, _pt1, _pt2, color, thickness = 1, line_type = 8, shift = 0) ⇒ Object
wrapper for void cv::rectangle(cv::Mat img, const cv::Point pt1, const cv::Point pt2, const cv::Scalar color, int thickness=1, int lineType=8, int shift=0)
1568 1569 1570 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1568 def self.rectangle(img, _pt1, _pt2, color, thickness = 1, line_type = 8, shift = 0) Rbind::cv_rectangle(img, _pt1, _pt2, color, thickness, line_type, shift) end |
.rectify3_collinear(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, _camera_matrix3, _dist_coeffs3, _imgpt1, _imgpt3, image_size, _r12, _t12, _r13, _t13, _r1, _r2, _r3, _p1, _p2, _p3, q, alpha, new_img_size, _roi1, _roi2, flags) ⇒ Object
wrapper for float cv::rectify3Collinear(const cv::Mat cameraMatrix1, const cv::Mat distCoeffs1, const cv::Mat cameraMatrix2, const cv::Mat distCoeffs2, const cv::Mat cameraMatrix3, const cv::Mat distCoeffs3, const vector_Mat imgpt1, const vector_Mat imgpt3, const cv::Size imageSize, const cv::Mat R12, const cv::Mat T12, const cv::Mat R13, const cv::Mat T13, cv::Mat R1, cv::Mat R2, cv::Mat R3, cv::Mat P1, cv::Mat P2, cv::Mat P3, cv::Mat Q, double alpha, const cv::Size newImgSize, cv::Rect *roi1, cv::Rect *roi2, int flags)
2229 2230 2231 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2229 def self.rectify3_collinear(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, _camera_matrix3, _dist_coeffs3, _imgpt1, _imgpt3, image_size, _r12, _t12, _r13, _t13, _r1, _r2, _r3, _p1, _p2, _p3, q, alpha, new_img_size, _roi1, _roi2, flags) Rbind::cv_rectify3_collinear(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, _camera_matrix3, _dist_coeffs3, _imgpt1, _imgpt3, image_size, _r12, _t12, _r13, _t13, _r1, _r2, _r3, _p1, _p2, _p3, q, alpha, new_img_size, _roi1, _roi2, flags) end |
.reduce(src, dst, dim, rtype, dtype = -1)) ⇒ Object
wrapper for void cv::reduce(const cv::Mat src, cv::Mat dst, int dim, int rtype, int dtype=-1)
1238 1239 1240 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1238 def self.reduce(src, dst, dim, rtype, dtype = -1) Rbind::cv_reduce(src, dst, dim, rtype, dtype) end |
.remap(src, dst, _map1, _map2, interpolation, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::remap(const cv::Mat src, cv::Mat dst, const cv::Mat map1, const cv::Mat map2, int interpolation, int borderMode=BORDER_CONSTANT, const cv::Scalar borderValue=Scalar())
1804 1805 1806 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1804 def self.remap(src, dst, _map1, _map2, interpolation, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) Rbind::cv_remap(src, dst, _map1, _map2, interpolation, border_mode, border_value) end |
.repeat(src, ny, nx, dst) ⇒ Object
wrapper for void cv::repeat(const cv::Mat src, int ny, int nx, cv::Mat dst)
1273 1274 1275 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1273 def self.repeat(src, ny, nx, dst) Rbind::cv_repeat(src, ny, nx, dst) end |
.reproject_image_to3d(disparity, __3d_image, q, handle_missing_values = false, ddepth = -1)) ⇒ Object
wrapper for void cv::reprojectImageTo3D(const cv::Mat disparity, cv::Mat _3dImage, const cv::Mat Q, bool handleMissingValues=false, int ddepth=-1)
2279 2280 2281 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2279 def self.reproject_image_to3d(disparity, __3d_image, q, handle_missing_values = false, ddepth = -1) Rbind::cv_reproject_image_to3d(disparity, __3d_image, q, handle_missing_values, ddepth) end |
.resize(src, dst, dsize, fx = 0, fy = 0, interpolation = INTER_LINEAR) ⇒ Object
wrapper for void cv::resize(const cv::Mat src, cv::Mat dst, const cv::Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR)
1789 1790 1791 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1789 def self.resize(src, dst, dsize, fx = 0, fy = 0, interpolation = INTER_LINEAR) Rbind::cv_resize(src, dst, dsize, fx, fy, interpolation) end |
.resize_window(winname, width, height) ⇒ Object
wrapper for void cv::resizeWindow(const cv::String winname, int width, int height)
2319 2320 2321 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2319 def self.resize_window(winname, width, height) Rbind::cv_resize_window(winname, width, height) end |
.rodrigues(src, dst, jacobian = Cv::Mat.new()) ⇒ Object
wrapper for void cv::Rodrigues(const cv::Mat src, cv::Mat dst, cv::Mat jacobian=Mat())
2134 2135 2136 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2134 def self.rodrigues(src, dst, jacobian = Cv::Mat.new()) Rbind::cv_rodrigues(src, dst, jacobian) end |
.rq_decomp_3x3(src, mtx_r, mtx_q, qx = Cv::Mat.new(), qy = Cv::Mat.new(), qz = Cv::Mat.new()) ⇒ Object
wrapper for cv::Vec3d cv::RQDecomp3x3(const cv::Mat src, cv::Mat mtxR, cv::Mat mtxQ, cv::Mat Qx=Mat(), cv::Mat Qy=Mat(), cv::Mat Qz=Mat())
2144 2145 2146 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2144 def self.rq_decomp_3x3(src, mtx_r, mtx_q, qx = Cv::Mat.new(), qy = Cv::Mat.new(), qz = Cv::Mat.new()) Rbind::cv_rq_decomp_3x3(src, mtx_r, mtx_q, qx, qy, qz) end |
.scale_add(_src1, alpha, _src2, dst) ⇒ Object
wrapper for void cv::scaleAdd(const cv::Mat src1, double alpha, const cv::Mat src2, cv::Mat dst)
1147 1148 1149 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1147 def self.scale_add(_src1, alpha, _src2, dst) Rbind::cv_scale_add(_src1, alpha, _src2, dst) end |
.scharr(src, dst, ddepth, dx, dy, scale = 1, delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::Scharr(const cv::Mat src, cv::Mat dst, int ddepth, int dx, int dy, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
1714 1715 1716 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1714 def self.scharr(src, dst, ddepth, dx, dy, scale = 1, delta = 0, border_type = BORDER_DEFAULT) Rbind::cv_scharr(src, dst, ddepth, dx, dy, scale, delta, border_type) end |
.sep_filter2d(src, dst, ddepth, kernel_x, kernel_y, anchor = Cv::Point.new(-1,-1), delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::sepFilter2D(const cv::Mat src, cv::Mat dst, int ddepth, const cv::Mat kernelX, const cv::Mat kernelY, const cv::Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT)
1704 1705 1706 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1704 def self.sep_filter2d(src, dst, ddepth, kernel_x, kernel_y, anchor = Cv::Point.new(-1,-1), delta = 0, border_type = BORDER_DEFAULT) Rbind::cv_sep_filter2d(src, dst, ddepth, kernel_x, kernel_y, anchor, delta, border_type) end |
.set_identity(mtx, s = Cv::Scalar.new(1)) ⇒ Object
wrapper for void cv::setIdentity(cv::Mat mtx, const cv::Scalar s=Scalar(1))
1423 1424 1425 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1423 def self.set_identity(mtx, s = Cv::Scalar.new(1)) Rbind::cv_set_identity(mtx, s) end |
.set_trackbar_pos(trackbarname, winname, pos) ⇒ Object
wrapper for void cv::setTrackbarPos(const cv::String trackbarname, const cv::String winname, int pos)
2344 2345 2346 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2344 def self.(, winname, pos) Rbind::(, winname, pos) end |
.set_use_optimized(onoff) ⇒ Object
wrapper for void cv::setUseOptimized(bool onoff)
1091 1092 1093 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1091 def self.set_use_optimized(onoff) Rbind::cv_set_use_optimized(onoff) end |
.set_window_property(winname, prop_id, prop_value) ⇒ Object
wrapper for void cv::setWindowProperty(const cv::String winname, int prop_id, double prop_value)
2329 2330 2331 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2329 def self.set_window_property(winname, prop_id, prop_value) Rbind::cv_set_window_property(winname, prop_id, prop_value) end |
.sobel(src, dst, ddepth, dx, dy, ksize = 3, scale = 1, delta = 0, border_type = BORDER_DEFAULT) ⇒ Object
wrapper for void cv::Sobel(const cv::Mat src, cv::Mat dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
1709 1710 1711 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1709 def self.sobel(src, dst, ddepth, dx, dy, ksize = 3, scale = 1, delta = 0, border_type = BORDER_DEFAULT) Rbind::cv_sobel(src, dst, ddepth, dx, dy, ksize, scale, delta, border_type) end |
.solve(_src1, _src2, dst, flags = DECOMP_LU) ⇒ Object
wrapper for bool cv::solve(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, int flags=DECOMP_LU)
1443 1444 1445 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1443 def self.solve(_src1, _src2, dst, flags = DECOMP_LU) Rbind::cv_solve(_src1, _src2, dst, flags) end |
.solve_cubic(coeffs, roots) ⇒ Object
wrapper for int cv::solveCubic(const cv::Mat coeffs, cv::Mat roots)
1458 1459 1460 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1458 def self.solve_cubic(coeffs, roots) Rbind::cv_solve_cubic(coeffs, roots) end |
.solve_pnp(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess = false, flags = ITERATIVE) ⇒ Object
wrapper for bool cv::solvePnP(const cv::Mat objectPoints, const cv::Mat imagePoints, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, cv::Mat rvec, cv::Mat tvec, bool useExtrinsicGuess=false, int flags=ITERATIVE)
2169 2170 2171 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2169 def self.solve_pnp(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess = false, flags = ITERATIVE) Rbind::cv_solve_pnp(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess, flags) end |
.solve_pnp_ransac(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess = false, iterations_count = 100, reprojection_error = 8.0, min_inliers_count = 100, inliers = Cv::Mat.new(), flags = ITERATIVE) ⇒ Object
wrapper for void cv::solvePnPRansac(const cv::Mat objectPoints, const cv::Mat imagePoints, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, cv::Mat rvec, cv::Mat tvec, bool useExtrinsicGuess=false, int iterationsCount=100, float reprojectionError=8.0, int minInliersCount=100, cv::Mat inliers=Mat(), int flags=ITERATIVE)
2174 2175 2176 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2174 def self.solve_pnp_ransac(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess = false, iterations_count = 100, reprojection_error = 8.0, min_inliers_count = 100, inliers = Cv::Mat.new(), flags = ITERATIVE) Rbind::cv_solve_pnp_ransac(object_points, image_points, camera_matrix, dist_coeffs, rvec, tvec, use_extrinsic_guess, iterations_count, reprojection_error, min_inliers_count, inliers, flags) end |
.solve_poly(coeffs, roots, max_iters = 300) ⇒ Object
wrapper for double cv::solvePoly(const cv::Mat coeffs, cv::Mat roots, int maxIters=300)
1463 1464 1465 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1463 def self.solve_poly(coeffs, roots, max_iters = 300) Rbind::cv_solve_poly(coeffs, roots, max_iters) end |
.sort(src, dst, flags) ⇒ Object
wrapper for void cv::sort(const cv::Mat src, cv::Mat dst, int flags)
1448 1449 1450 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1448 def self.sort(src, dst, flags) Rbind::cv_sort(src, dst, flags) end |
.sort_idx(src, dst, flags) ⇒ Object
wrapper for void cv::sortIdx(const cv::Mat src, cv::Mat dst, int flags)
1453 1454 1455 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1453 def self.sort_idx(src, dst, flags) Rbind::cv_sort_idx(src, dst, flags) end |
.split(m, mv) ⇒ Object
wrapper for void cv::split(const cv::Mat m, vector_Mat mv)
1248 1249 1250 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1248 def self.split(m, mv) Rbind::cv_split(m, mv) end |
.sqrt(src, dst) ⇒ Object
wrapper for void cv::sqrt(const cv::Mat src, cv::Mat dst)
1333 1334 1335 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1333 def self.sqrt(src, dst) Rbind::cv_sqrt(src, dst) end |
.start_window_thread ⇒ Object
wrapper for int cv::startWindowThread()
2304 2305 2306 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2304 def self.start_window_thread() Rbind::cv_start_window_thread() end |
.stereo_calibrate(object_points, _image_points1, _image_points2, _camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, e, f, criteria = Cv::TermCriteria.new(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6), flags = CALIB_FIX_INTRINSIC) ⇒ Object
wrapper for double cv::stereoCalibrate(const vector_Mat objectPoints, const vector_Mat imagePoints1, const vector_Mat imagePoints2, cv::Mat cameraMatrix1, cv::Mat distCoeffs1, cv::Mat cameraMatrix2, cv::Mat distCoeffs2, const cv::Size imageSize, cv::Mat R, cv::Mat T, cv::Mat E, cv::Mat F, const cv::TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6), int flags=CALIB_FIX_INTRINSIC)
2214 2215 2216 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2214 def self.stereo_calibrate(object_points, _image_points1, _image_points2, _camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, e, f, criteria = Cv::TermCriteria.new(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6), flags = CALIB_FIX_INTRINSIC) Rbind::cv_stereo_calibrate(object_points, _image_points1, _image_points2, _camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, e, f, criteria, flags) end |
.stereo_rectify(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, _r1, _r2, _p1, _p2, q, flags = CALIB_ZERO_DISPARITY, alpha = -1,, new_image_size = Cv::Size.new(), _valid_pix_r_o_i1 = 0, _valid_pix_r_o_i2 = 0) ⇒ Object
wrapper for void cv::stereoRectify(const cv::Mat cameraMatrix1, const cv::Mat distCoeffs1, const cv::Mat cameraMatrix2, const cv::Mat distCoeffs2, const cv::Size imageSize, const cv::Mat R, const cv::Mat T, cv::Mat R1, cv::Mat R2, cv::Mat P1, cv::Mat P2, cv::Mat Q, int flags=CALIB_ZERO_DISPARITY, double alpha=-1, const cv::Size newImageSize=Size(), cv::Rect *validPixROI1=0, cv::Rect *validPixROI2=0)
2219 2220 2221 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2219 def self.stereo_rectify(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, _r1, _r2, _p1, _p2, q, flags = CALIB_ZERO_DISPARITY, alpha = -1, new_image_size = Cv::Size.new(), _valid_pix_r_o_i1 = 0, _valid_pix_r_o_i2 = 0) Rbind::cv_stereo_rectify(_camera_matrix1, _dist_coeffs1, _camera_matrix2, _dist_coeffs2, image_size, r, t, _r1, _r2, _p1, _p2, q, flags, alpha, new_image_size, _valid_pix_r_o_i1, _valid_pix_r_o_i2) end |
.stereo_rectify_uncalibrated(_points1, _points2, f, img_size, _h1, _h2, threshold = 5) ⇒ Object
wrapper for bool cv::stereoRectifyUncalibrated(const cv::Mat points1, const cv::Mat points2, const cv::Mat F, const cv::Size imgSize, cv::Mat H1, cv::Mat H2, double threshold=5)
2224 2225 2226 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2224 def self.stereo_rectify_uncalibrated(_points1, _points2, f, img_size, _h1, _h2, threshold = 5) Rbind::cv_stereo_rectify_uncalibrated(_points1, _points2, f, img_size, _h1, _h2, threshold) end |
.subtract(_src1, _src2, dst, mask = Cv::Mat.new(), dtype = -1)) ⇒ Object
wrapper for void cv::subtract(const cv::Mat src1, const cv::Mat src2, cv::Mat dst, const cv::Mat mask=Mat(), int dtype=-1)
1106 1107 1108 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1106 def self.subtract(_src1, _src2, dst, mask = Cv::Mat.new(), dtype = -1) Rbind::cv_subtract(_src1, _src2, dst, mask, dtype) end |
.sum_elems(src) ⇒ Object
wrapper for cv::Scalar cv::sum(const cv::Mat src)
1167 1168 1169 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1167 def self.sum_elems(src) Rbind::cv_sum_elems(src) end |
.sv_back_subst(w, u, vt, rhs, dst) ⇒ Object
wrapper for void cv::SVBackSubst(const cv::Mat w, const cv::Mat u, const cv::Mat vt, const cv::Mat rhs, cv::Mat dst)
1503 1504 1505 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1503 def self.sv_back_subst(w, u, vt, rhs, dst) Rbind::cv_sv_back_subst(w, u, vt, rhs, dst) end |
.sv_decomp(src, w, u, vt, flags = 0) ⇒ Object
wrapper for void cv::SVDecomp(const cv::Mat src, cv::Mat w, cv::Mat u, cv::Mat vt, int flags=0)
1498 1499 1500 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1498 def self.sv_decomp(src, w, u, vt, flags = 0) Rbind::cv_sv_decomp(src, w, u, vt, flags) end |
.threshold(src, dst, thresh, maxval, type) ⇒ Object
wrapper for double cv::threshold(const cv::Mat src, cv::Mat dst, double thresh, double maxval, int type)
1894 1895 1896 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1894 def self.threshold(src, dst, thresh, maxval, type) Rbind::cv_threshold(src, dst, thresh, maxval, type) end |
.trace(mtx) ⇒ Object
wrapper for cv::Scalar cv::trace(const cv::Mat mtx)
1433 1434 1435 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1433 def self.trace(mtx) Rbind::cv_trace(mtx) end |
.transform(src, dst, m) ⇒ Object
wrapper for void cv::transform(const cv::Mat src, cv::Mat dst, const cv::Mat m)
1408 1409 1410 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1408 def self.transform(src, dst, m) Rbind::cv_transform(src, dst, m) end |
.transpose(src, dst) ⇒ Object
wrapper for void cv::transpose(const cv::Mat src, cv::Mat dst)
1403 1404 1405 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1403 def self.transpose(src, dst) Rbind::cv_transpose(src, dst) end |
.triangulate_points(_proj_matr1, _proj_matr2, _proj_points1, _proj_points2, _points4_d) ⇒ Object
wrapper for void cv::triangulatePoints(const cv::Mat projMatr1, const cv::Mat projMatr2, const cv::Mat projPoints1, const cv::Mat projPoints2, cv::Mat points4D)
2254 2255 2256 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2254 def self.triangulate_points(_proj_matr1, _proj_matr2, _proj_points1, _proj_points2, _points4_d) Rbind::cv_triangulate_points(_proj_matr1, _proj_matr2, _proj_points1, _proj_points2, _points4_d) end |
.undistort(src, dst, camera_matrix, dist_coeffs, new_camera_matrix = Cv::Mat.new()) ⇒ Object
wrapper for void cv::undistort(const cv::Mat src, cv::Mat dst, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Mat newCameraMatrix=Mat())
1914 1915 1916 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1914 def self.undistort(src, dst, camera_matrix, dist_coeffs, new_camera_matrix = Cv::Mat.new()) Rbind::cv_undistort(src, dst, camera_matrix, dist_coeffs, new_camera_matrix) end |
.undistort_points(src, dst, camera_matrix, dist_coeffs, r = Cv::Mat.new(), p = Cv::Mat.new()) ⇒ Object
wrapper for void cv::undistortPoints(const cv::Mat src, cv::Mat dst, const cv::Mat cameraMatrix, const cv::Mat distCoeffs, const cv::Mat R=Mat(), const cv::Mat P=Mat())
1934 1935 1936 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1934 def self.undistort_points(src, dst, camera_matrix, dist_coeffs, r = Cv::Mat.new(), p = Cv::Mat.new()) Rbind::cv_undistort_points(src, dst, camera_matrix, dist_coeffs, r, p) end |
.use_optimized ⇒ Object
wrapper for bool cv::useOptimized()
1096 1097 1098 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1096 def self.use_optimized() Rbind::cv_use_optimized() end |
.validate_disparity(disparity, cost, min_disparity, number_of_disparities, _disp12_max_disp = 1) ⇒ Object
wrapper for void cv::validateDisparity(cv::Mat disparity, const cv::Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp=1)
2274 2275 2276 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2274 def self.validate_disparity(disparity, cost, min_disparity, number_of_disparities, _disp12_max_disp = 1) Rbind::cv_validate_disparity(disparity, cost, min_disparity, number_of_disparities, _disp12_max_disp) end |
.vconcat(src, dst) ⇒ Object
wrapper for void cv::vconcat(const vector_Mat src, cv::Mat dst)
1283 1284 1285 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1283 def self.vconcat(src, dst) Rbind::cv_vconcat(src, dst) end |
.wait_key(delay = 0) ⇒ Object
wrapper for int cv::waitKey(int delay=0)
2309 2310 2311 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 2309 def self.wait_key(delay = 0) Rbind::cv_wait_key(delay) end |
.warp_affine(src, dst, m, dsize, flags = INTER_LINEAR, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::warpAffine(const cv::Mat src, cv::Mat dst, const cv::Mat M, const cv::Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const cv::Scalar borderValue=Scalar())
1794 1795 1796 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1794 def self.warp_affine(src, dst, m, dsize, flags = INTER_LINEAR, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) Rbind::cv_warp_affine(src, dst, m, dsize, flags, border_mode, border_value) end |
.warp_perspective(src, dst, m, dsize, flags = INTER_LINEAR, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) ⇒ Object
wrapper for void cv::warpPerspective(const cv::Mat src, cv::Mat dst, const cv::Mat M, const cv::Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const cv::Scalar borderValue=Scalar())
1799 1800 1801 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1799 def self.warp_perspective(src, dst, m, dsize, flags = INTER_LINEAR, border_mode = BORDER_CONSTANT, border_value = Cv::Scalar.new()) Rbind::cv_warp_perspective(src, dst, m, dsize, flags, border_mode, border_value) end |
.watershed(image, markers) ⇒ Object
wrapper for void cv::watershed(const cv::Mat image, cv::Mat markers)
1959 1960 1961 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 1959 def self.watershed(image, markers) Rbind::cv_watershed(image, markers) end |