Class: Sensor_msgs::SetCameraInfoRequest
- Inherits:
-
ROS::Message
- Object
- ROS::Message
- Sensor_msgs::SetCameraInfoRequest
- Defined in:
- lib/sensor_msgs/SetCameraInfo.rb
Constant Summary collapse
- @@struct_L6C =
::ROS::Struct.new("L6C")
- @@struct_L3 =
::ROS::Struct.new("L3")
- @@struct_d12 =
::ROS::Struct.new("d12")
- @@struct_L2 =
::ROS::Struct.new("L2")
- @@struct_d9 =
::ROS::Struct.new("d9")
- @@struct_L =
::ROS::Struct.new("L")
- @@slot_types =
['sensor_msgs/CameraInfo']
Instance Attribute Summary collapse
-
#camera_info ⇒ Object
Returns the value of attribute camera_info.
Class Method Summary collapse
Instance Method Summary collapse
-
#_get_types ⇒ String
internal API method.
-
#deserialize(str) ⇒ Object
unpack serialized message in str into this message instance @param [String] str: byte array of serialized message.
- #has_header? ⇒ Boolean
-
#initialize(args = {}) ⇒ SetCameraInfoRequest
constructor
Constructor.
- #message_definition ⇒ Object
-
#serialize(buff) ⇒ Object
serialize message into buffer.
Constructor Details
#initialize(args = {}) ⇒ SetCameraInfoRequest
Constructor. You can set the default values using keyword operators.
225 226 227 228 229 230 231 232 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 225 def initialize(args={}) # message fields cannot be None, assign default values for those that are if args[:camera_info] @camera_info = args[:camera_info] else @camera_info = Sensor_msgs::CameraInfo.new end end |
Instance Attribute Details
#camera_info ⇒ Object
Returns the value of attribute camera_info.
210 211 212 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 210 def camera_info @camera_info end |
Class Method Details
.md5sum ⇒ Object
11 12 13 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 11 def self.md5sum "ee34be01fdeee563d0d99cd594d5581d" end |
.type ⇒ Object
15 16 17 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 15 def self.type "sensor_msgs/SetCameraInfoRequest" end |
Instance Method Details
#_get_types ⇒ String
internal API method
236 237 238 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 236 def _get_types @slot_types end |
#deserialize(str) ⇒ Object
unpack serialized message in str into this message instance
@param [String] str: byte array of serialized message
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 268 def deserialize(str) begin if @camera_info == nil @camera_info = Sensor_msgs::CameraInfo.new end end_point = 0 start = end_point end_point += ROS::Struct::calc_size('L3') (@camera_info.header.seq, @camera_info.header.stamp.secs, @camera_info.header.stamp.nsecs,) = @@struct_L3.unpack(str[start..(end_point-1)]) start = end_point end_point += 4 (length,) = @@struct_L.unpack(str[start..(end_point-1)]) start = end_point end_point += length @camera_info.header.frame_id = str[start..(end_point-1)] start = end_point end_point += ROS::Struct::calc_size('L2') (@camera_info.height, @camera_info.width,) = @@struct_L2.unpack(str[start..(end_point-1)]) start = end_point end_point += 4 (length,) = @@struct_L.unpack(str[start..(end_point-1)]) start = end_point end_point += length @camera_info.distortion_model = str[start..(end_point-1)] start = end_point end_point += 4 (length,) = @@struct_L.unpack(str[start..(end_point-1)]) pattern = "d#{length}" start = end_point end_point += ROS::Struct::calc_size("#{pattern}") @camera_info.D = str[start..(end_point-1)].unpack(pattern) start = end_point end_point += 8 @camera_info.K = @@struct_d9.unpack(str[start..(end_point-1)]) start = end_point end_point += 8 @camera_info.R = @@struct_d9.unpack(str[start..(end_point-1)]) start = end_point end_point += 8 @camera_info.P = @@struct_d12.unpack(str[start..(end_point-1)]) start = end_point end_point += ROS::Struct::calc_size('L6C') (@camera_info.binning_x, @camera_info.binning_y, @camera_info.roi.x_offset, @camera_info.roi.y_offset, @camera_info.roi.height, @camera_info.roi.width, @camera_info.roi.do_rectify,) = @@struct_L6C.unpack(str[start..(end_point-1)]) @camera_info.roi.do_rectify = bool(@camera_info.roi.do_rectify) return self rescue => exception raise "message DeserializationError: #{exception}" #most likely buffer underfill end end |
#has_header? ⇒ Boolean
19 20 21 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 19 def has_header? false end |
#message_definition ⇒ Object
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 23 def " sensor_msgs/CameraInfo camera_info ================================================================================ MSG: sensor_msgs/CameraInfo # This message defines meta information for a camera. It should be in a # camera namespace on topic \"camera_info\" and accompanied by up to five # image topics named: # # image_raw - raw data from the camera driver, possibly Bayer encoded # image - monochrome, distorted # image_color - color, distorted # image_rect - monochrome, rectified # image_rect_color - color, rectified # # The image_pipeline contains packages (image_proc, stereo_image_proc) # for producing the four processed image topics from image_raw and # camera_info. The meaning of the camera parameters are described in # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo. # # The image_geometry package provides a user-friendly interface to # common operations using this meta information. If you want to, e.g., # project a 3d point into image coordinates, we strongly recommend # using image_geometry. # # If the camera is uncalibrated, the matrices D, K, R, P should be left # zeroed out. In particular, clients may assume that K[0] == 0.0 # indicates an uncalibrated camera. ####################################################################### # Image acquisition info # ####################################################################### # Time of image acquisition, camera coordinate frame ID Header header # Header timestamp should be acquisition time of image # Header frame_id should be optical frame of camera # origin of frame should be optical center of camera # +x should point to the right in the image # +y should point down in the image # +z should point into the plane of the image ####################################################################### # Calibration Parameters # ####################################################################### # These are fixed during camera calibration. Their values will be the # # same in all messages until the camera is recalibrated. Note that # # self-calibrating systems may \"recalibrate\" frequently. # # # # The internal parameters can be used to warp a raw (distorted) image # # to: # # 1. An undistorted image (requires D and K) # # 2. A rectified image (requires D, K, R) # # The projection matrix P projects 3D points into the rectified image.# ####################################################################### # The image dimensions with which the camera was calibrated. Normally # this will be the full camera resolution in pixels. uint32 height uint32 width # The distortion model used. Supported models are listed in # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a # simple model of radial and tangential distortion - is sufficent. string distortion_model # The distortion parameters, size depending on the distortion model. # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3). float64[] D # Intrinsic camera matrix for the raw (distorted) images. # [fx 0 cx] # K = [ 0 fy cy] # [ 0 0 1] # Projects 3D points in the camera coordinate frame to 2D pixel # coordinates using the focal lengths (fx, fy) and principal point # (cx, cy). float64[9] K # 3x3 row-major matrix # Rectification matrix (stereo cameras only) # A rotation matrix aligning the camera coordinate system to the ideal # stereo image plane so that epipolar lines in both stereo images are # parallel. float64[9] R # 3x3 row-major matrix # Projection/camera matrix # [fx' 0 cx' Tx] # P = [ 0 fy' cy' Ty] # [ 0 0 1 0] # By convention, this matrix specifies the intrinsic (camera) matrix # of the processed (rectified) image. That is, the left 3x3 portion # is the normal camera intrinsic matrix for the rectified image. # It projects 3D points in the camera coordinate frame to 2D pixel # coordinates using the focal lengths (fx', fy') and principal point # (cx', cy') - these may differ from the values in K. # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will # also have R = the identity and P[1:3,1:3] = K. # For a stereo pair, the fourth column [Tx Ty 0]' is related to the # position of the optical center of the second camera in the first # camera's frame. We assume Tz = 0 so both cameras are in the same # stereo image plane. The first camera always has Tx = Ty = 0. For # the right (second) camera of a horizontal stereo pair, Ty = 0 and # Tx = -fx' * B, where B is the baseline between the cameras. # Given a 3D point [X Y Z]', the projection (x, y) of the point onto # the rectified image is given by: # [u v w]' = P * [X Y Z 1]' # x = u / w # y = v / w # This holds for both images of a stereo pair. float64[12] P # 3x4 row-major matrix ####################################################################### # Operational Parameters # ####################################################################### # These define the image region actually captured by the camera # # driver. Although they affect the geometry of the output image, they # # may be changed freely without recalibrating the camera. # ####################################################################### # Binning refers here to any camera setting which combines rectangular # neighborhoods of pixels into larger \"super-pixels.\" It reduces the # resolution of the output image to # (width / binning_x) x (height / binning_y). # The default values binning_x = binning_y = 0 is considered the same # as binning_x = binning_y = 1 (no subsampling). uint32 binning_x uint32 binning_y # Region of interest (subwindow of full camera resolution), given in # full resolution (unbinned) image coordinates. A particular ROI # always denotes the same window of pixels on the camera sensor, # regardless of binning settings. # The default setting of roi (all values 0) is considered the same as # full resolution (roi.width = width, roi.height = height). RegionOfInterest roi ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.secs: seconds (stamp_secs) since epoch # * stamp.nsecs: nanoseconds since stamp_secs # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: sensor_msgs/RegionOfInterest # This message is used to specify a region of interest within an image. # # When used to specify the ROI setting of the camera when the image was # taken, the height and width fields should either match the height and # width fields for the associated image; or height = width = 0 # indicates that the full resolution image was captured. uint32 x_offset # Leftmost pixel of the ROI # (0 if the ROI includes the left edge of the image) uint32 y_offset # Topmost pixel of the ROI # (0 if the ROI includes the top edge of the image) uint32 height # Height of ROI uint32 width # Width of ROI # True if a distinct rectified ROI should be calculated from the \"raw\" # ROI in this message. Typically this should be False if the full image # is captured (ROI not used), and True if a subwindow is captured (ROI # used). bool do_rectify " end |
#serialize(buff) ⇒ Object
serialize message into buffer
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# File 'lib/sensor_msgs/SetCameraInfo.rb', line 242 def serialize(buff) begin buff.write(@@struct_L3.pack(@camera_info.header.seq, @camera_info.header.stamp.secs, @camera_info.header.stamp.nsecs)) _x = @camera_info.header.frame_id length = _x.length buff.write([length, _x].pack("La#{length}")) buff.write(@@struct_L2.pack(@camera_info.height, @camera_info.width)) _x = @camera_info.distortion_model length = _x.length buff.write([length, _x].pack("La#{length}")) length = @camera_info.D.length buff.write(@@struct_L.pack(length)) pattern = "d#{length}" buff.write(*@camera_info.D.pack(pattern)) buff.write(@@struct_d9.pack(*@camera_info.K)) buff.write(@@struct_d9.pack(*@camera_info.R)) buff.write(@@struct_d12.pack(*@camera_info.P)) buff.write(@@struct_L6C.pack(@camera_info.binning_x, @camera_info.binning_y, @camera_info.roi.x_offset, @camera_info.roi.y_offset, @camera_info.roi.height, @camera_info.roi.width, @camera_info.roi.do_rectify)) rescue => exception raise "some erro in serialize: #{exception}" end end |