Class: CNTK::AdditionalLearningOptions
- Inherits:
-
Object
- Object
- CNTK::AdditionalLearningOptions
- Defined in:
- ext/cntk/cntk_wrap.cxx
Instance Method Summary collapse
- #gaussian_noise_injection_std_dev(*args) ⇒ Object
- #gaussian_noise_injection_std_dev=(*args) ⇒ Object
- #gradient_clipping_threshold_per_sample(*args) ⇒ Object
- #gradient_clipping_threshold_per_sample=(*args) ⇒ Object
- #gradient_clipping_with_truncation(*args) ⇒ Object
- #gradient_clipping_with_truncation=(*args) ⇒ Object
- #initialize(*args) ⇒ Object constructor
- #l1_regularization_weight(*args) ⇒ Object
- #l1_regularization_weight=(*args) ⇒ Object
- #l2_regularization_weight(*args) ⇒ Object
- #l2_regularization_weight=(*args) ⇒ Object
Constructor Details
#initialize(*args) ⇒ Object
55389 55390 55391 55392 55393 55394 55395 55396 55397 55398 55399 55400 55401 55402 55403 55404 55405 55406 55407 55408 55409 55410 55411 55412 55413 55414 55415 55416 55417 |
# File 'ext/cntk/cntk_wrap.cxx', line 55389
SWIGINTERN VALUE
_wrap_new_AdditionalLearningOptions(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *result = 0 ;
if ((argc < 0) || (argc > 0)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail;
}
{
try {
result = (CNTK::AdditionalLearningOptions *)new CNTK::AdditionalLearningOptions();
DATA_PTR(self) = result;
}
catch (const std::runtime_error &e) {
SWIG_exception(SWIG_RuntimeError,e.what());
}
catch (const std::invalid_argument &e) {
SWIG_exception(SWIG_ValueError,e.what());
}
catch (const std::logic_error &e) {
SWIG_exception(SWIG_RuntimeError,e.what());
}
catch (...) {
SWIG_exception(SWIG_UnknownError,"Runtime exception");
}
}
return self;
fail:
return Qnil;
}
|
Instance Method Details
#gaussian_noise_injection_std_dev(*args) ⇒ Object
55244 55245 55246 55247 55248 55249 55250 55251 55252 55253 55254 55255 55256 55257 55258 55259 55260 55261 55262 55263 55264 55265 |
# File 'ext/cntk/cntk_wrap.cxx', line 55244
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_gaussian_noise_injection_std_dev_get(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
CNTK::TrainingParameterPerUnitSchedule< double,CNTK::TrainingParameterSchedule< double >::UnitType::Minibatch > *result = 0 ;
VALUE vresult = Qnil;
if ((argc < 0) || (argc > 0)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","gaussianNoiseInjectionStdDev", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
result = (CNTK::TrainingParameterPerUnitSchedule< double,CNTK::TrainingParameterSchedule< double >::UnitType::Minibatch > *)& ((arg1)->gaussianNoiseInjectionStdDev);
vresult = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_CNTK__TrainingParameterPerUnitScheduleT_double_CNTK__TrainingParameterScheduleT_double_t__UnitType__Minibatch_t, 0 | 0 );
return vresult;
fail:
return Qnil;
}
|
#gaussian_noise_injection_std_dev=(*args) ⇒ Object
55215 55216 55217 55218 55219 55220 55221 55222 55223 55224 55225 55226 55227 55228 55229 55230 55231 55232 55233 55234 55235 55236 55237 55238 55239 55240 55241 |
# File 'ext/cntk/cntk_wrap.cxx', line 55215
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_gaussian_noise_injection_std_dev_set(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
CNTK::TrainingParameterPerUnitSchedule< double,CNTK::TrainingParameterSchedule< double >::UnitType::Minibatch > *arg2 = (CNTK::TrainingParameterPerUnitSchedule< double,CNTK::TrainingParameterSchedule< double >::UnitType::Minibatch > *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
void *argp2 = 0 ;
int res2 = 0 ;
if ((argc < 1) || (argc > 1)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","gaussianNoiseInjectionStdDev", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
res2 = SWIG_ConvertPtr(argv[0], &argp2,SWIGTYPE_p_CNTK__TrainingParameterPerUnitScheduleT_double_CNTK__TrainingParameterScheduleT_double_t__UnitType__Minibatch_t, 0 | 0 );
if (!SWIG_IsOK(res2)) {
SWIG_exception_fail(SWIG_ArgError(res2), Ruby_Format_TypeError( "", "CNTK::TrainingParameterPerUnitSchedule< double,CNTK::TrainingParameterSchedule< double >::UnitType::Minibatch > *","gaussianNoiseInjectionStdDev", 2, argv[0] ));
}
arg2 = reinterpret_cast< CNTK::TrainingParameterPerUnitSchedule< double,CNTK::TrainingParameterSchedule< double >::UnitType::Minibatch > * >(argp2);
if (arg1) (arg1)->gaussianNoiseInjectionStdDev = *arg2;
return Qnil;
fail:
return Qnil;
}
|
#gradient_clipping_threshold_per_sample(*args) ⇒ Object
55297 55298 55299 55300 55301 55302 55303 55304 55305 55306 55307 55308 55309 55310 55311 55312 55313 55314 55315 55316 55317 55318 |
# File 'ext/cntk/cntk_wrap.cxx', line 55297
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_gradient_clipping_threshold_per_sample_get(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
double result;
VALUE vresult = Qnil;
if ((argc < 0) || (argc > 0)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","gradientClippingThresholdPerSample", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
result = (double) ((arg1)->gradientClippingThresholdPerSample);
vresult = SWIG_From_double(static_cast< double >(result));
return vresult;
fail:
return Qnil;
}
|
#gradient_clipping_threshold_per_sample=(*args) ⇒ Object
55268 55269 55270 55271 55272 55273 55274 55275 55276 55277 55278 55279 55280 55281 55282 55283 55284 55285 55286 55287 55288 55289 55290 55291 55292 55293 55294 |
# File 'ext/cntk/cntk_wrap.cxx', line 55268
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_gradient_clipping_threshold_per_sample_set(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
double arg2 ;
void *argp1 = 0 ;
int res1 = 0 ;
double val2 ;
int ecode2 = 0 ;
if ((argc < 1) || (argc > 1)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","gradientClippingThresholdPerSample", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
ecode2 = SWIG_AsVal_double(argv[0], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), Ruby_Format_TypeError( "", "double","gradientClippingThresholdPerSample", 2, argv[0] ));
}
arg2 = static_cast< double >(val2);
if (arg1) (arg1)->gradientClippingThresholdPerSample = arg2;
return Qnil;
fail:
return Qnil;
}
|
#gradient_clipping_with_truncation(*args) ⇒ Object
55350 55351 55352 55353 55354 55355 55356 55357 55358 55359 55360 55361 55362 55363 55364 55365 55366 55367 55368 55369 55370 55371 |
# File 'ext/cntk/cntk_wrap.cxx', line 55350
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_gradient_clipping_with_truncation_get(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
bool result;
VALUE vresult = Qnil;
if ((argc < 0) || (argc > 0)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","gradientClippingWithTruncation", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
result = (bool) ((arg1)->gradientClippingWithTruncation);
vresult = SWIG_From_bool(static_cast< bool >(result));
return vresult;
fail:
return Qnil;
}
|
#gradient_clipping_with_truncation=(*args) ⇒ Object
55321 55322 55323 55324 55325 55326 55327 55328 55329 55330 55331 55332 55333 55334 55335 55336 55337 55338 55339 55340 55341 55342 55343 55344 55345 55346 55347 |
# File 'ext/cntk/cntk_wrap.cxx', line 55321
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_gradient_clipping_with_truncation_set(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
bool arg2 ;
void *argp1 = 0 ;
int res1 = 0 ;
bool val2 ;
int ecode2 = 0 ;
if ((argc < 1) || (argc > 1)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","gradientClippingWithTruncation", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
ecode2 = SWIG_AsVal_bool(argv[0], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), Ruby_Format_TypeError( "", "bool","gradientClippingWithTruncation", 2, argv[0] ));
}
arg2 = static_cast< bool >(val2);
if (arg1) (arg1)->gradientClippingWithTruncation = arg2;
return Qnil;
fail:
return Qnil;
}
|
#l1_regularization_weight(*args) ⇒ Object
55138 55139 55140 55141 55142 55143 55144 55145 55146 55147 55148 55149 55150 55151 55152 55153 55154 55155 55156 55157 55158 55159 |
# File 'ext/cntk/cntk_wrap.cxx', line 55138
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_l1_regularization_weight_get(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
double result;
VALUE vresult = Qnil;
if ((argc < 0) || (argc > 0)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","l1RegularizationWeight", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
result = (double) ((arg1)->l1RegularizationWeight);
vresult = SWIG_From_double(static_cast< double >(result));
return vresult;
fail:
return Qnil;
}
|
#l1_regularization_weight=(*args) ⇒ Object
55109 55110 55111 55112 55113 55114 55115 55116 55117 55118 55119 55120 55121 55122 55123 55124 55125 55126 55127 55128 55129 55130 55131 55132 55133 55134 55135 |
# File 'ext/cntk/cntk_wrap.cxx', line 55109
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_l1_regularization_weight_set(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
double arg2 ;
void *argp1 = 0 ;
int res1 = 0 ;
double val2 ;
int ecode2 = 0 ;
if ((argc < 1) || (argc > 1)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","l1RegularizationWeight", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
ecode2 = SWIG_AsVal_double(argv[0], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), Ruby_Format_TypeError( "", "double","l1RegularizationWeight", 2, argv[0] ));
}
arg2 = static_cast< double >(val2);
if (arg1) (arg1)->l1RegularizationWeight = arg2;
return Qnil;
fail:
return Qnil;
}
|
#l2_regularization_weight(*args) ⇒ Object
55191 55192 55193 55194 55195 55196 55197 55198 55199 55200 55201 55202 55203 55204 55205 55206 55207 55208 55209 55210 55211 55212 |
# File 'ext/cntk/cntk_wrap.cxx', line 55191
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_l2_regularization_weight_get(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
double result;
VALUE vresult = Qnil;
if ((argc < 0) || (argc > 0)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","l2RegularizationWeight", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
result = (double) ((arg1)->l2RegularizationWeight);
vresult = SWIG_From_double(static_cast< double >(result));
return vresult;
fail:
return Qnil;
}
|
#l2_regularization_weight=(*args) ⇒ Object
55162 55163 55164 55165 55166 55167 55168 55169 55170 55171 55172 55173 55174 55175 55176 55177 55178 55179 55180 55181 55182 55183 55184 55185 55186 55187 55188 |
# File 'ext/cntk/cntk_wrap.cxx', line 55162
SWIGINTERN VALUE
_wrap_AdditionalLearningOptions_l2_regularization_weight_set(int argc, VALUE *argv, VALUE self) {
CNTK::AdditionalLearningOptions *arg1 = (CNTK::AdditionalLearningOptions *) 0 ;
double arg2 ;
void *argp1 = 0 ;
int res1 = 0 ;
double val2 ;
int ecode2 = 0 ;
if ((argc < 1) || (argc > 1)) {
rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail;
}
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_CNTK__AdditionalLearningOptions, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "CNTK::AdditionalLearningOptions *","l2RegularizationWeight", 1, self ));
}
arg1 = reinterpret_cast< CNTK::AdditionalLearningOptions * >(argp1);
ecode2 = SWIG_AsVal_double(argv[0], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), Ruby_Format_TypeError( "", "double","l2RegularizationWeight", 2, argv[0] ));
}
arg2 = static_cast< double >(val2);
if (arg1) (arg1)->l2RegularizationWeight = arg2;
return Qnil;
fail:
return Qnil;
}
|