Class: Decimal
- Inherits:
-
Object
- Object
- Decimal
- Extended by:
- DecimalSupport
- Includes:
- Comparable, AuxiliarFunctions
- Defined in:
- lib/decimal/decimal.rb
Overview
Decimal arbitrary precision floating point number. This implementation of Decimal is based on the Decimal module of Python, written by Eric Price, Facundo Batista, Raymond Hettinger, Aahz and Tim Peters.
Defined Under Namespace
Modules: AuxiliarFunctions Classes: Clamped, Context, ConversionSyntax, DivisionByZero, DivisionImpossible, DivisionUndefined, Error, Exception, Inexact, InvalidContext, InvalidOperation, Overflow, Rounded, Subnormal, Underflow
Constant Summary collapse
- ROUND_HALF_EVEN =
:half_even- ROUND_HALF_DOWN =
:half_down- ROUND_HALF_UP =
:half_up- ROUND_FLOOR =
:floor- ROUND_CEILING =
:ceiling- ROUND_DOWN =
:down- ROUND_UP =
:up- ROUND_05UP =
:up05- EXCEPTIONS =
FlagValues(Clamped, InvalidOperation, DivisionByZero, Inexact, Overflow, Underflow, Rounded, Subnormal, DivisionImpossible, ConversionSyntax)
- DefaultContext =
the DefaultContext is the base for new contexts; it can be changed.
Decimal::Context.new( :exact=>false, :precision=>28, :rounding=>:half_even, :emin=> -999999999, :emax=>+999999999, :flags=>[], :traps=>[DivisionByZero, Overflow, InvalidOperation], :ignored_flags=>[], :capitals=>true, :clamp=>true)
- BasicContext =
Decimal::Context.new(DefaultContext, :precision=>9, :rounding=>:half_up, :traps=>[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], :flags=>[])
- ExtendedContext =
Decimal::Context.new(DefaultContext, :precision=>9, :rounding=>:half_even, :traps=>[], :flags=>[], :clamp=>false)
Class Attribute Summary collapse
-
.base_coercible_types ⇒ Object
readonly
Returns the value of attribute base_coercible_types.
-
.base_conversions ⇒ Object
readonly
Returns the value of attribute base_conversions.
Class Method Summary collapse
-
.context(*args, &blk) ⇒ Object
The current context (thread-local).
-
.Context(*args) ⇒ Object
Context constructor; if an options hash is passed, the options are applied to the default context; if a Context is passed as the first argument, it is used as the base instead of the default context.
-
.context=(c) ⇒ Object
Change the current context (thread-local).
-
.define_context(*options) ⇒ Object
Define a context by passing either of: * A Context object * A hash of options (or nothing) to alter a copy of the current context.
- .Flags(*values) ⇒ Object
-
.infinity(sign = +1) ⇒ Object
A decimal infinite number with the specified sign.
-
.int_div_radix_power(x, n) ⇒ Object
Divide by an integral power of the base: x/(radix**n) for x,n integer; returns an integer.
-
.int_mult_radix_power(x, n) ⇒ Object
Multiply by an integral power of the base: x*(radix**n) for x,n integer; returns an integer.
-
.int_radix_power(n) ⇒ Object
Integral power of the base: radix**n for integer n; returns an integer.
-
.local_context(*args) ⇒ Object
Defines a scope with a local context.
-
.nan ⇒ Object
A decimal NaN (not a number).
-
.radix ⇒ Object
Numerical base of Decimal.
-
.zero(sign = +1) ⇒ Object
A decimal number with value zero and the specified sign.
Instance Method Summary collapse
-
#%(other, context = nil) ⇒ Object
Modulo of two decimal numbers.
-
#*(other, context = nil) ⇒ Object
Multiplication of two decimal numbers.
-
#**(other, context = nil) ⇒ Object
Power.
-
#+(other, context = nil) ⇒ Object
Addition of two decimal numbers.
-
#+@(context = nil) ⇒ Object
Unary plus operator.
-
#-(other, context = nil) ⇒ Object
Subtraction of two decimal numbers.
-
#-@(context = nil) ⇒ Object
Unary minus operator.
-
#/(other, context = nil) ⇒ Object
Division of two decimal numbers.
-
#<=>(other) ⇒ Object
Internal comparison operator: returns -1 if the first number is less than the second, 0 if both are equal or +1 if the first is greater than the secong.
- #==(other) ⇒ Object
-
#_abs(round = true, context = nil) ⇒ Object
Returns a copy with positive sign.
-
#_check_nans(context = nil, other = nil) ⇒ Object
Check if the number or other is NaN, signal if sNaN or return NaN; return nil if none is NaN.
-
#_fix(context) ⇒ Object
Round if it is necessary to keep within precision.
-
#_fix_nan(context) ⇒ Object
adjust payload of a NaN to the context.
-
#_neg(context = nil) ⇒ Object
Returns copy with sign inverted.
-
#_pos(context = nil) ⇒ Object
Returns a copy with precision adjusted.
-
#_rescale(exp, rounding) ⇒ Object
Rescale so that the exponent is exp, either by padding with zeros or by truncating digits, using the given rounding mode.
- #_watched_rescale(exp, context, watch_exp) ⇒ Object
-
#abs(context = nil) ⇒ Object
Absolute value.
-
#add(other, context = nil) ⇒ Object
Addition.
-
#adjusted_exponent ⇒ Object
Exponent of the magnitude of the most significant digit of the operand.
-
#ceil(opt = {}) ⇒ Object
General ceiling operation (as for Float) with same options for precision as Decimal#round().
-
#coerce(other) ⇒ Object
Used internally to convert numbers to be used in an operation to a suitable numeric type.
-
#compare(other, context = nil) ⇒ Object
Compares like <=> but returns a Decimal value.
-
#convert_to(type, context = nil) ⇒ Object
Convert to other numerical type.
-
#copy_abs ⇒ Object
Returns a copy of with the sign set to +.
-
#copy_negate ⇒ Object
Returns a copy of with the sign inverted.
-
#copy_sign(other) ⇒ Object
Returns a copy of with the sign of other.
-
#digits ⇒ Object
Digits of the significand as an array of integers.
-
#div(other, context = nil) ⇒ Object
Ruby-style integer division: (x/y).floor.
-
#divide(other, context = nil) ⇒ Object
Division.
-
#divide_int(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification integer division: (x/y).truncate.
-
#divmod(other, context = nil) ⇒ Object
Ruby-style integer division and modulo: (x/y).floor, x - y*(x/y).floor.
-
#divrem(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification integer division and remainder: (x/y).truncate, x - y*(x/y).truncate.
- #eql?(other) ⇒ Boolean
-
#even? ⇒ Boolean
returns true if is an even integer.
-
#exp(context = nil) ⇒ Object
Exponential function.
-
#finite? ⇒ Boolean
Returns whether the number is finite.
-
#floor(opt = {}) ⇒ Object
General floor operation (as for Float) with same options for precision as Decimal#round().
-
#fma(other, third, context = nil) ⇒ Object
Fused multiply-add.
-
#fractional_exponent ⇒ Object
Exponent as though the significand were a fraction (the decimal point before its first digit).
- #hash ⇒ Object
-
#infinite? ⇒ Boolean
Returns whether the number is infinite.
-
#initialize(*args) ⇒ Decimal
constructor
A decimal value can be defined by: * A String containing a text representation of the number * An Integer * A Rational * Another Decimal value.
- #inspect ⇒ Object
-
#integral? ⇒ Boolean
Returns true if the value is an integer.
-
#integral_exponent ⇒ Object
Exponent of the significand as an integer.
-
#integral_significand ⇒ Object
Significand as an integer, unsigned.
-
#ln(context = nil) ⇒ Object
Returns the natural (base e) logarithm.
-
#log10(context = nil) ⇒ Object
Returns the base 10 logarithm.
-
#logb(context = nil) ⇒ Object
Returns the exponent of the magnitude of the most significant digit.
-
#minus(context = nil) ⇒ Object
Unary prefix minus operator.
-
#modulo(other, context = nil) ⇒ Object
Ruby-style modulo: x - y*div(x,y).
-
#multiply(other, context = nil) ⇒ Object
Multiplication.
-
#nan? ⇒ Boolean
Returns whether the number is not actualy one (NaN, not a number).
-
#next_minus(context = nil) ⇒ Object
Largest representable number smaller than itself.
-
#next_plus(context = nil) ⇒ Object
Smallest representable number larger than itself.
-
#next_toward(other, context = nil) ⇒ Object
Returns the number closest to self, in the direction towards other.
-
#nonzero? ⇒ Boolean
Returns whether the number not zero.
-
#normal?(context = nil) ⇒ Boolean
Returns whether the number is normal.
-
#number_class(context = nil) ⇒ Object
Classifies a number as one of ‘sNaN’, ‘NaN’, ‘-Infinity’, ‘-Normal’, ‘-Subnormal’, ‘-Zero’, ‘+Zero’, ‘+Subnormal’, ‘+Normal’, ‘+Infinity’.
-
#number_of_digits ⇒ Object
Number of digits in the significand.
-
#odd? ⇒ Boolean
returns true if is an odd integer.
-
#plus(context = nil) ⇒ Object
Unary prefix plus operator.
-
#power(other, modulo = nil, context = nil) ⇒ Object
Raises to the power of x, to modulo if given.
-
#qnan? ⇒ Boolean
Returns whether the number is a quite NaN (non-signaling).
-
#quantize(exp, context = nil, watch_exp = true) ⇒ Object
Quantize so its exponent is the same as that of y.
-
#reduce(context = nil) ⇒ Object
Reduces an operand to its simplest form by removing trailing 0s and incrementing the exponent.
-
#remainder(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification remainder: x - y*divide_int(x,y).
-
#remainder_near(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification remainder-near: x - y*round_half_even(x/y).
-
#rescale(exp, context = nil, watch_exp = true) ⇒ Object
Rescale so that the exponent is exp, either by padding with zeros or by truncating digits.
-
#round(opt = {}) ⇒ Object
General rounding.
-
#same_quantum?(other) ⇒ Boolean
Return true if has the same exponent as other.
-
#scaleb(other, context = nil) ⇒ Object
Adds a value to the exponent.
-
#scientific_exponent ⇒ Object
Synonym for Decimal#adjusted_exponent().
-
#sign ⇒ Object
Sign of the number: +1 for plus / -1 for minus.
-
#snan? ⇒ Boolean
Returns whether the number is a signaling NaN.
-
#special? ⇒ Boolean
Returns whether the number is a special value (NaN or Infinity).
-
#split ⇒ Object
Returns the internal representation of the number, composed of: * a sign which is +1 for plus and -1 for minus * a coefficient (significand) which is an integer * an exponent (an integer) or :inf, :nan or :snan for special values The value of non-special numbers is sign*coefficient*10^exponent.
-
#sqrt(context = nil) ⇒ Object
Square root.
-
#subnormal?(context = nil) ⇒ Boolean
Returns whether the number is subnormal.
-
#subtract(other, context = nil) ⇒ Object
Subtraction.
-
#to_f ⇒ Object
Conversion to Float.
-
#to_i ⇒ Object
Ruby-style to integer conversion.
-
#to_int_scale ⇒ Object
Return the value of the number as an integer and a scale.
-
#to_integral_exact(context = nil) ⇒ Object
Rounds to a nearby integer.
-
#to_integral_value(context = nil) ⇒ Object
Rounds to a nearby integer.
-
#to_r ⇒ Object
Conversion to Rational.
-
#to_s(eng = false, context = nil) ⇒ Object
Ruby-style to string conversion.
-
#truncate(opt = {}) ⇒ Object
General truncate operation (as for Float) with same options for precision as Decimal#round().
-
#zero? ⇒ Boolean
Returns whether the number is zero.
Methods included from DecimalSupport
Methods included from AuxiliarFunctions
_convert, _dexp, _div_nearest, _dlog, _dlog10, _dpower, _iexp, _ilog, _log10_digits, _log10_lb, _nbits, _normalize, _parser, _rshift_nearest, _sqrt_nearest, dexp
Constructor Details
#initialize(*args) ⇒ Decimal
A decimal value can be defined by:
-
A String containing a text representation of the number
-
An Integer
-
A Rational
-
Another Decimal value.
-
A sign, coefficient and exponent (either as separate arguments, as an array or as a Hash with symbolic keys). This is the internal representation of Decimal, as returned by Decimal#split. The sign is +1 for plus and -1 for minus; the coefficient and exponent are integers, except for special values which are defined by :inf, :nan or :snan for the exponent.
An optional Context can be passed as the last argument to override the current context; also a hash can be passed to override specific context parameters. The Decimal() admits the same parameters and can be used as a shortcut for Decimal creation.
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 |
# File 'lib/decimal/decimal.rb', line 1033 def initialize(*args) context = nil if args.size>0 && args.last.instance_of?(Context) context ||= args.pop elsif args.size>1 && args.last.instance_of?(Hash) context ||= args.pop elsif args.size==1 && args.last.instance_of?(Hash) arg = args.last args = [arg[:sign], args[:coefficient], args[:exponent]] arg.delete :sign arg.delete :coefficient arg.delete :exponent context ||= arg end context = Decimal.define_context(context) case args.size when 3 @sign, @coeff, @exp = args # TO DO: validate when 1 arg = args.first case arg when Decimal @sign, @coeff, @exp = arg.split when *context.coercible_types v = context._coerce(arg) @sign, @coeff, @exp = v.is_a?(Decimal) ? v.split : v when String if arg.strip != arg @sign,@coeff,@exp = context.exception(ConversionSyntax, "no trailing or leading whitespace is permitted").split return end m = _parser(arg) if m.nil? @sign,@coeff,@exp = context.exception(ConversionSyntax, "Invalid literal for Decimal: #{arg.inspect}").split return end @sign = (m.sign == '-') ? -1 : +1 if m.int || m.onlyfrac if m.int intpart = m.int fracpart = m.frac else intpart = '' fracpart = m.onlyfrac end @exp = m.exp.to_i if fracpart @coeff = (intpart+fracpart).to_i @exp -= fracpart.size else @coeff = intpart.to_i end else if m.diag # NaN @coeff = (m.diag.nil? || m.diag.empty?) ? nil : m.diag.to_i @coeff = nil if @coeff==0 if @coeff max_diag_len = context.maximum_nan_diagnostic_digits if max_diag_len && @coeff >= Decimal.int_radix_power(max_diag_len) @sign,@coeff,@exp = context.exception(ConversionSyntax, "diagnostic info too long in NaN").split return end end @exp = m.signal ? :snan : :nan else # Infinity @coeff = 0 @exp = :inf end end when Array @sign, @coeff, @exp = arg else raise TypeError, "invalid argument #{arg.inspect}" end else raise ArgumentError, "wrong number of arguments (#{args.size} for 1 or 3)" end end |
Class Attribute Details
.base_coercible_types ⇒ Object (readonly)
Returns the value of attribute base_coercible_types.
36 37 38 |
# File 'lib/decimal/decimal.rb', line 36 def base_coercible_types @base_coercible_types end |
.base_conversions ⇒ Object (readonly)
Returns the value of attribute base_conversions.
37 38 39 |
# File 'lib/decimal/decimal.rb', line 37 def base_conversions @base_conversions end |
Class Method Details
.context(*args, &blk) ⇒ Object
The current context (thread-local). If arguments are passed they are interpreted as in Decimal.define_context() to change the current context. If a block is given, this method is a synonym for Decimal.local_context().
896 897 898 899 900 901 902 903 904 905 906 907 |
# File 'lib/decimal/decimal.rb', line 896 def Decimal.context(*args, &blk) if blk # setup a local context local_context(*args, &blk) elsif args.empty? # return the current context Thread.current['Decimal.context'] ||= DefaultContext.dup else # change the current context Decimal.context = define_context(*args) end end |
.Context(*args) ⇒ Object
Context constructor; if an options hash is passed, the options are applied to the default context; if a Context is passed as the first argument, it is used as the base instead of the default context.
See Context#new() for the valid options
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
# File 'lib/decimal/decimal.rb', line 848 def Decimal.Context(*args) case args.size when 0 base = DefaultContext when 1 arg = args.first if arg.instance_of?(Context) base = arg = nil elsif arg.instance_of?(Hash) base = DefaultContext = arg else raise TypeError,"invalid argument for Decimal.Context" end when 2 base = args.first = args.last else raise ArgumentError,"wrong number of arguments (#{args.size} for 0, 1 or 2)" end if .nil? || .empty? base else Context.new(base, ) end end |
.context=(c) ⇒ Object
Change the current context (thread-local).
910 911 912 |
# File 'lib/decimal/decimal.rb', line 910 def Decimal.context=(c) Thread.current['Decimal.context'] = c.dup end |
.define_context(*options) ⇒ Object
Define a context by passing either of:
-
A Context object
-
A hash of options (or nothing) to alter a copy of the current context.
-
A Context object and a hash of options to alter a copy of it
882 883 884 885 886 887 888 889 890 |
# File 'lib/decimal/decimal.rb', line 882 def Decimal.define_context(*) context = .shift if .first.instance_of?(Context) if context && .empty? context else context ||= Decimal.context Context(context, *) end end |
.Flags(*values) ⇒ Object
282 283 284 |
# File 'lib/decimal/decimal.rb', line 282 def self.Flags(*values) DecimalSupport::Flags(EXCEPTIONS,*values) end |
.infinity(sign = +1) ⇒ Object
A decimal infinite number with the specified sign
939 940 941 |
# File 'lib/decimal/decimal.rb', line 939 def Decimal.infinity(sign=+1) Decimal.new([sign, 0, :inf]) end |
.int_div_radix_power(x, n) ⇒ Object
Divide by an integral power of the base: x/(radix**n) for x,n integer; returns an integer.
68 69 70 |
# File 'lib/decimal/decimal.rb', line 68 def self.int_div_radix_power(x,n) x / (10**n) end |
.int_mult_radix_power(x, n) ⇒ Object
Multiply by an integral power of the base: x*(radix**n) for x,n integer; returns an integer.
62 63 64 |
# File 'lib/decimal/decimal.rb', line 62 def self.int_mult_radix_power(x,n) x * (10**n) end |
.int_radix_power(n) ⇒ Object
Integral power of the base: radix**n for integer n; returns an integer.
56 57 58 |
# File 'lib/decimal/decimal.rb', line 56 def self.int_radix_power(n) 10**n end |
.local_context(*args) ⇒ Object
Defines a scope with a local context. A context can be passed which will be set a the current context for the scope; also a hash can be passed with options to apply to the local scope. Changes done to the current context are reversed when the scope is exited.
918 919 920 921 922 923 924 925 926 927 928 929 930 931 |
# File 'lib/decimal/decimal.rb', line 918 def Decimal.local_context(*args) keep = context.dup Decimal.context = define_context(*args) result = yield Decimal.context # TODO: consider the convenience of copying the flags from Decimal.context to keep # This way a local context does not affect the settings of the previous context, # but flags are transferred. # (this could be done always or be controlled by some option) # keep.flags = Decimal.context.flags # Another alternative to consider: logically or the flags: # keep.flags ||= Decimal.context.flags # (this requires implementing || in Flags) Decimal.context = keep result end |
.nan ⇒ Object
A decimal NaN (not a number)
944 945 946 |
# File 'lib/decimal/decimal.rb', line 944 def Decimal.nan() Decimal.new([+1, nil, :nan]) end |
.radix ⇒ Object
Numerical base of Decimal.
51 52 53 |
# File 'lib/decimal/decimal.rb', line 51 def self.radix 10 end |
.zero(sign = +1) ⇒ Object
A decimal number with value zero and the specified sign
934 935 936 |
# File 'lib/decimal/decimal.rb', line 934 def Decimal.zero(sign=+1) Decimal.new([sign, 0, 0]) end |
Instance Method Details
#%(other, context = nil) ⇒ Object
Modulo of two decimal numbers
1263 1264 1265 |
# File 'lib/decimal/decimal.rb', line 1263 def %(other, context=nil) _bin_op :%, :modulo, other, context end |
#*(other, context = nil) ⇒ Object
Multiplication of two decimal numbers
1253 1254 1255 |
# File 'lib/decimal/decimal.rb', line 1253 def *(other, context=nil) _bin_op :*, :multiply, other, context end |
#**(other, context = nil) ⇒ Object
Power
1268 1269 1270 |
# File 'lib/decimal/decimal.rb', line 1268 def **(other, context=nil) _bin_op :**, :power, other, context end |
#+(other, context = nil) ⇒ Object
Addition of two decimal numbers
1243 1244 1245 |
# File 'lib/decimal/decimal.rb', line 1243 def +(other, context=nil) _bin_op :+, :add, other, context end |
#+@(context = nil) ⇒ Object
Unary plus operator
1237 1238 1239 1240 |
# File 'lib/decimal/decimal.rb', line 1237 def +@(context=nil) #(context || Decimal.context).plus(self) _pos(context) end |
#-(other, context = nil) ⇒ Object
Subtraction of two decimal numbers
1248 1249 1250 |
# File 'lib/decimal/decimal.rb', line 1248 def -(other, context=nil) _bin_op :-, :subtract, other, context end |
#-@(context = nil) ⇒ Object
Unary minus operator
1231 1232 1233 1234 |
# File 'lib/decimal/decimal.rb', line 1231 def -@(context=nil) #(context || Decimal.context).minus(self) _neg(context) end |
#/(other, context = nil) ⇒ Object
Division of two decimal numbers
1258 1259 1260 |
# File 'lib/decimal/decimal.rb', line 1258 def /(other, context=nil) _bin_op :/, :divide, other, context end |
#<=>(other) ⇒ Object
Internal comparison operator: returns -1 if the first number is less than the second, 0 if both are equal or +1 if the first is greater than the secong.
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 |
# File 'lib/decimal/decimal.rb', line 2007 def <=>(other) case other when *Decimal.context.coercible_types_or_decimal other = Decimal(other) if self.special? || other.special? if self.nan? || other.nan? 1 else self_v = self.finite? ? 0 : self.sign other_v = other.finite? ? 0 : other.sign self_v <=> other_v end else if self.zero? if other.zero? 0 else -other.sign end elsif other.zero? self.sign elsif other.sign < self.sign +1 elsif self.sign < other.sign -1 else self_adjusted = self.adjusted_exponent other_adjusted = other.adjusted_exponent if self_adjusted == other_adjusted self_padded,other_padded = self.integral_significand,other.integral_significand d = self.integral_exponent - other.integral_exponent if d>0 self_padded *= Decimal.int_radix_power(d) else other_padded *= Decimal.int_radix_power(-d) end (self_padded <=> other_padded)*self.sign elsif self_adjusted > other_adjusted self.sign else -self.sign end end end else if defined? other.coerce x, y = other.coerce(self) x <=> y else nil end end end |
#==(other) ⇒ Object
2060 2061 2062 |
# File 'lib/decimal/decimal.rb', line 2060 def ==(other) (self<=>other) == 0 end |
#_abs(round = true, context = nil) ⇒ Object
Returns a copy with positive sign
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 |
# File 'lib/decimal/decimal.rb', line 2877 def _abs(round=true, context=nil) return copy_abs if not round if special? ans = _check_nans(context) return ans if ans end if sign>0 ans = _neg(context) else ans = _pos(context) end ans end |
#_check_nans(context = nil, other = nil) ⇒ Object
Check if the number or other is NaN, signal if sNaN or return NaN; return nil if none is NaN.
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 |
# File 'lib/decimal/decimal.rb', line 2774 def _check_nans(context=nil, other=nil) #self_is_nan = self.nan? #other_is_nan = other.nil? ? false : other.nan? if self.nan? || (other && other.nan?) context = Decimal.define_context(context) return context.exception(InvalidOperation, 'sNaN', self) if self.snan? return context.exception(InvalidOperation, 'sNaN', other) if other && other.snan? return self._fix_nan(context) if self.nan? return other._fix_nan(context) else return nil end end |
#_fix(context) ⇒ Object
Round if it is necessary to keep within precision.
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 |
# File 'lib/decimal/decimal.rb', line 2893 def _fix(context) return self if context.exact? if special? if nan? return _fix_nan(context) else return Decimal.new(self) end end etiny = context.etiny etop = context.etop if zero? exp_max = context.clamp? ? etop : context.emax new_exp = [[@exp, etiny].max, exp_max].min if new_exp!=@exp context.exception Clamped return Decimal.new([sign,0,new_exp]) else return Decimal.new(self) end end nd = number_of_digits exp_min = nd + @exp - context.precision if exp_min > etop context.exception Inexact context.exception Rounded return context.exception(Overflow, 'above Emax', sign) end self_is_subnormal = exp_min < etiny if self_is_subnormal context.exception Subnormal exp_min = etiny end if @exp < exp_min context.exception Rounded # dig is the digits number from 0 (MS) to number_of_digits-1 (LS) # dg = numberof_digits-dig is from 1 (LS) to number_of_digits (MS) dg = exp_min - @exp # dig = number_of_digits + exp - exp_min if dg > number_of_digits # dig<0 d = Decimal.new([sign,1,exp_min-1]) dg = number_of_digits # dig = 0 else d = Decimal.new(self) end changed = d._round(context.rounding, dg) coeff = Decimal.int_div_radix_power(d.integral_significand, dg) coeff += 1 if changed==1 ans = Decimal.new([sign, coeff, exp_min]) if changed!=0 context.exception Inexact if self_is_subnormal context.exception Underflow if ans.zero? context.exception Clamped end elsif ans.number_of_digits == context.precision+1 if ans.integral_exponent< etop ans = Decimal.new([ans.sign, Decimal.int_div_radix_power(ans.integral_significand,1), ans.integral_exponent+1]) else ans = context.exception(Overflow, 'above Emax', d.sign) end end end return ans end if context.clamp? && @exp>etop context.exception Clamped self_padded = Decimal.int_mult_radix_power(@coeff, @exp-etop) return Decimal.new([sign,self_padded,etop]) end return Decimal.new(self) end |
#_fix_nan(context) ⇒ Object
adjust payload of a NaN to the context
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 |
# File 'lib/decimal/decimal.rb', line 2976 def _fix_nan(context) if !context.exact? payload = @coeff payload = nil if payload==0 max_payload_len = context.maximum_nan_diagnostic_digits if number_of_digits > max_payload_len payload = payload.to_s[-max_payload_len..-1].to_i return Decimal([@sign, payload, @exp]) end end Decimal(self) end |
#_neg(context = nil) ⇒ Object
Returns copy with sign inverted
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 |
# File 'lib/decimal/decimal.rb', line 2847 def _neg(context=nil) if special? ans = _check_nans(context) return ans if ans end if zero? ans = copy_abs else ans = copy_negate end context = Decimal.define_context(context) ans._fix(context) end |
#_pos(context = nil) ⇒ Object
Returns a copy with precision adjusted
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 |
# File 'lib/decimal/decimal.rb', line 2862 def _pos(context=nil) if special? ans = _check_nans(context) return ans if ans end if zero? ans = copy_abs else ans = Decimal.new(self) end context = Decimal.define_context(context) ans._fix(context) end |
#_rescale(exp, rounding) ⇒ Object
Rescale so that the exponent is exp, either by padding with zeros or by truncating digits, using the given rounding mode.
Specials are returned without change. This operation is quiet: it raises no flags, and uses no information from the context.
exp = exp to scale to (an integer) rounding = rounding mode
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 |
# File 'lib/decimal/decimal.rb', line 2797 def _rescale(exp, rounding) return Decimal.new(self) if special? return Decimal.new([sign, 0, exp]) if zero? return Decimal.new([sign, @coeff*Decimal.int_radix_power(self.integral_exponent - exp), exp]) if self.integral_exponent > exp #nd = number_of_digits + self.integral_exponent - exp nd = exp - self.integral_exponent if number_of_digits < nd slf = Decimal.new([sign, 1, exp-1]) nd = number_of_digits else slf = Decimal.new(self) end changed = slf._round(rounding, nd) coeff = Decimal.int_div_radix_power(@coeff, nd) coeff += 1 if changed==1 Decimal.new([slf.sign, coeff, exp]) end |
#_watched_rescale(exp, context, watch_exp) ⇒ Object
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 |
# File 'lib/decimal/decimal.rb', line 2817 def _watched_rescale(exp, context, watch_exp) if !watch_exp ans = _rescale(exp, context.rounding) context.exception(Rounded) if ans.integral_exponent > self.integral_exponent context.exception(Inexact) if ans != self return ans end if exp < context.etiny || exp > context.emax return context.exception(InvalidOperation, "target operation out of bounds in quantize/rescale") end return Decimal.new([@sign, 0, exp])._fix(context) if zero? self_adjusted = adjusted_exponent return context.exception(InvalidOperation,"exponent of quantize/rescale result too large for current context") if self_adjusted > context.emax return context.exception(InvalidOperation,"quantize/rescale has too many digits for current context") if (self_adjusted - exp + 1 > context.precision) && !context.exact? ans = _rescale(exp, context.rounding) return context.exception(InvalidOperation,"exponent of rescale result too large for current context") if ans.adjusted_exponent > context.emax return context.exception(InvalidOperation,"rescale result has too many digits for current context") if (ans.number_of_digits > context.precision) && !context.exact? if ans.integral_exponent > self.integral_exponent context.exception(Rounded) context.exception(Inexact) if ans!=self end context.exception(Subnormal) if !ans.zero? && (ans.adjusted_exponent < context.emin) return ans._fix(context) end |
#abs(context = nil) ⇒ Object
Absolute value
1434 1435 1436 1437 1438 1439 1440 |
# File 'lib/decimal/decimal.rb', line 1434 def abs(context=nil) if special? ans = _check_nans(context) return ans if ans end sign<0 ? _neg(context) : _pos(context) end |
#add(other, context = nil) ⇒ Object
Addition
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
# File 'lib/decimal/decimal.rb', line 1273 def add(other, context=nil) context = Decimal.define_context(context) other = _convert(other) if self.special? || other.special? ans = _check_nans(context,other) return ans if ans if self.infinite? if self.sign != other.sign && other.infinite? return context.exception(InvalidOperation, '-INF + INF') end return Decimal(self) end return Decimal(other) if other.infinite? end exp = [self.integral_exponent, other.integral_exponent].min negativezero = (context.rounding == ROUND_FLOOR && self.sign != other.sign) if self.zero? && other.zero? sign = [self.sign, other.sign].max sign = -1 if negativezero ans = Decimal.new([sign, 0, exp])._fix(context) return ans end if self.zero? exp = [exp, other.integral_exponent - context.precision - 1].max unless context.exact? return other._rescale(exp, context.rounding)._fix(context) end if other.zero? exp = [exp, self.integral_exponent - context.precision - 1].max unless context.exact? return self._rescale(exp, context.rounding)._fix(context) end op1, op2 = _normalize(self, other, context.precision) result_sign = result_coeff = result_exp = nil if op1.sign != op2.sign return ans = Decimal.new([negativezero ? -1 : +1, 0, exp])._fix(context) if op1.integral_significand == op2.integral_significand op1,op2 = op2,op1 if op1.integral_significand < op2.integral_significand result_sign = op1.sign op1,op2 = op1.copy_negate, op2.copy_negate if result_sign < 0 elsif op1.sign < 0 result_sign = -1 op1,op2 = op1.copy_negate, op2.copy_negate else result_sign = +1 end if op2.sign == +1 result_coeff = op1.integral_significand + op2.integral_significand else result_coeff = op1.integral_significand - op2.integral_significand end result_exp = op1.integral_exponent return Decimal([result_sign, result_coeff, result_exp])._fix(context) end |
#adjusted_exponent ⇒ Object
Exponent of the magnitude of the most significant digit of the operand
2094 2095 2096 2097 2098 2099 2100 |
# File 'lib/decimal/decimal.rb', line 2094 def adjusted_exponent if special? 0 else @exp + number_of_digits - 1 end end |
#ceil(opt = {}) ⇒ Object
General ceiling operation (as for Float) with same options for precision as Decimal#round()
2354 2355 2356 2357 |
# File 'lib/decimal/decimal.rb', line 2354 def ceil(opt={}) opt[:rounding] = :ceiling round opt end |
#coerce(other) ⇒ Object
Used internally to convert numbers to be used in an operation to a suitable numeric type
1208 1209 1210 1211 1212 1213 1214 1215 |
# File 'lib/decimal/decimal.rb', line 1208 def coerce(other) case other when *Decimal.context.coercible_types_or_decimal [Decimal(other),self] else super end end |
#compare(other, context = nil) ⇒ Object
Compares like <=> but returns a Decimal value.
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 |
# File 'lib/decimal/decimal.rb', line 2075 def compare(other, context=nil) other = _convert(other) if self.special? || other.special? ans = _check_nans(context, other) return ans if ans end return Decimal(self <=> other) end |
#convert_to(type, context = nil) ⇒ Object
Convert to other numerical type.
1897 1898 1899 1900 |
# File 'lib/decimal/decimal.rb', line 1897 def convert_to(type, context=nil) context = Decimal.define_context(context) context.convert_to(type, self) end |
#copy_abs ⇒ Object
Returns a copy of with the sign set to +
2144 2145 2146 |
# File 'lib/decimal/decimal.rb', line 2144 def copy_abs Decimal.new([+1,@coeff,@exp]) end |
#copy_negate ⇒ Object
Returns a copy of with the sign inverted
2149 2150 2151 |
# File 'lib/decimal/decimal.rb', line 2149 def copy_negate Decimal.new([-@sign,@coeff,@exp]) end |
#copy_sign(other) ⇒ Object
Returns a copy of with the sign of other
2154 2155 2156 |
# File 'lib/decimal/decimal.rb', line 2154 def copy_sign(other) Decimal.new([other.sign, @coeff, @exp]) end |
#digits ⇒ Object
Digits of the significand as an array of integers
2089 2090 2091 |
# File 'lib/decimal/decimal.rb', line 2089 def digits @coeff.to_s.split('').map{|d| d.to_i} end |
#div(other, context = nil) ⇒ Object
Ruby-style integer division: (x/y).floor
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 |
# File 'lib/decimal/decimal.rb', line 1701 def div(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return [ans,ans] if ans sign = self.sign * other.sign if self.infinite? return context.exception(InvalidOperation, 'INF // INF') if other.infinite? return Decimal.infinity(sign) end if other.zero? if self.zero? return context.exception(DivisionUndefined, '0 // 0') else return context.exception(DivisionByZero, 'x // 0', sign) end end return self._divide_floor(other, context).first end |
#divide(other, context = nil) ⇒ Object
Division
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 |
# File 'lib/decimal/decimal.rb', line 1383 def divide(other, context=nil) context = Decimal.define_context(context) other = _convert(other) resultsign = self.sign * other.sign if self.special? || other.special? ans = _check_nans(context,other) return ans if ans if self.infinite? return context.exception(InvalidOperation,"(+-)INF/(+-)INF") if other.infinite? return Decimal.infinity(resultsign) end if other.infinite? context.exception(Clamped,"Division by infinity") return Decimal.new([resultsign, 0, context.etiny]) end end if other.zero? return context.exception(DivisionUndefined, '0 / 0') if self.zero? return context.exception(DivisionByZero, 'x / 0', resultsign) end if self.zero? exp = self.integral_exponent - other.integral_exponent coeff = 0 else prec = context.exact? ? self.number_of_digits + 4*other.number_of_digits : context.precision # this assumes radix==10 shift = other.number_of_digits - self.number_of_digits + prec + 1 exp = self.integral_exponent - other.integral_exponent - shift if shift >= 0 coeff, remainder = (self.integral_significand*Decimal.int_radix_power(shift)).divmod(other.integral_significand) else coeff, remainder = self.integral_significand.divmod(other.integral_significand*Decimal.int_radix_power(-shift)) end if remainder != 0 return context.exception(Inexact) if context.exact? coeff += 1 if (coeff%(Decimal.radix/2)) == 0 else ideal_exp = self.integral_exponent - other.integral_exponent while (exp < ideal_exp) && ((coeff % Decimal.radix)==0) coeff /= Decimal.radix exp += 1 end end end return Decimal([resultsign, coeff, exp])._fix(context) end |
#divide_int(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification integer division: (x/y).truncate
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 |
# File 'lib/decimal/decimal.rb', line 1676 def divide_int(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return ans if ans sign = self.sign * other.sign if self.infinite? return context.exception(InvalidOperation, 'INF // INF') if other.infinite? return Decimal.infinity(sign) end if other.zero? if self.zero? return context.exception(DivisionUndefined, '0 // 0') else return context.exception(DivisionByZero, 'x // 0', sign) end end return self._divide_truncate(other, context).first end |
#divmod(other, context = nil) ⇒ Object
Ruby-style integer division and modulo: (x/y).floor, x - y*(x/y).floor
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 |
# File 'lib/decimal/decimal.rb', line 1642 def divmod(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return [ans,ans] if ans sign = self.sign * other.sign if self.infinite? if other.infinite? ans = context.exception(InvalidOperation, 'divmod(INF,INF)') return [ans,ans] else return [Decimal.infinity(sign), context.exception(InvalidOperation, 'INF % x')] end end if other.zero? if self.zero? ans = context.exception(DivisionUndefined, 'divmod(0,0)') return [ans,ans] else return [context.exception(DivisionByZero, 'x // 0', sign), context.exception(InvalidOperation, 'x % 0')] end end quotient, remainder = self._divide_floor(other, context) return [quotient, remainder._fix(context)] end |
#divrem(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification integer division and remainder:
(x/y).truncate, x - y*(x/y).truncate
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 |
# File 'lib/decimal/decimal.rb', line 1609 def divrem(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return [ans,ans] if ans sign = self.sign * other.sign if self.infinite? if other.infinite? ans = context.exception(InvalidOperation, 'divmod(INF,INF)') return [ans,ans] else return [Decimal.infinity(sign), context.exception(InvalidOperation, 'INF % x')] end end if other.zero? if self.zero? ans = context.exception(DivisionUndefined, 'divmod(0,0)') return [ans,ans] else return [context.exception(DivisionByZero, 'x // 0', sign), context.exception(InvalidOperation, 'x % 0')] end end quotient, remainder = self._divide_truncate(other, context) return [quotient, remainder._fix(context)] end |
#eql?(other) ⇒ Boolean
2069 2070 2071 2072 |
# File 'lib/decimal/decimal.rb', line 2069 def eql?(other) return false unless other.is_a?(Decimal) reduce.split == other.reduce.split end |
#even? ⇒ Boolean
returns true if is an even integer
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 |
# File 'lib/decimal/decimal.rb', line 2177 def even? # integral? && ((to_i%2)==0) if finite? if @exp>0 || @coeff==0 true else if @exp <= -number_of_digits false else m = Decimal.int_radix_power(-@exp) if (@coeff % m) == 0 # ((@coeff / m) % 2) == 0 ((@coeff / m) & 1) == 0 else false end end end else false end end |
#exp(context = nil) ⇒ Object
Exponential function
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 |
# File 'lib/decimal/decimal.rb', line 2654 def exp(context=nil) context = Decimal.define_context(context) # exp(NaN) = NaN ans = _check_nans(context) return ans if ans # exp(-Infinity) = 0 return Decimal.zero if self.infinite? && (self.sign == -1) # exp(0) = 1 return Decimal(1) if self.zero? # exp(Infinity) = Infinity return Decimal(self) if self.infinite? # the result is now guaranteed to be inexact (the true # mathematical result is transcendental). There's no need to # raise Rounded and Inexact here---they'll always be raised as # a result of the call to _fix. return context.exception(Inexact, 'Inexact exp') if context.exact? p = context.precision adj = self.adjusted_exponent # we only need to do any computation for quite a small range # of adjusted exponents---for example, -29 <= adj <= 10 for # the default context. For smaller exponent the result is # indistinguishable from 1 at the given precision, while for # larger exponent the result either overflows or underflows. if self.sign == +1 and adj > ((context.emax+1)*3).to_s.length # overflow ans = Decimal(+1, 1, context.emax+1) elsif self.sign == -1 and adj > ((-context.etiny+1)*3).to_s.length # underflow to 0 ans = Decimal(+1, 1, context.etiny-1) elsif self.sign == +1 and adj < -p # p+1 digits; final round will raise correct flags ans = Decimal(+1, Decimal.int_radix_power(p)+1, -p) elsif self.sign == -1 and adj < -p-1 # p+1 digits; final round will raise correct flags ans = Decimal(+1, Decimal.int_radix_power(p+1)-1, -p-1) else # general case c = self.integral_significand e = self.integral_exponent c = -c if self.sign == -1 # compute correctly rounded result: increase precision by # 3 digits at a time until we get an unambiguously # roundable result extra = 3 coeff = exp = nil loop do coeff, exp = _dexp(c, e, p+extra) break if (coeff % (5*10**(coeff.to_s.length-p-1)))!=0 extra += 3 end ans = Decimal(+1, coeff, exp) end # at this stage, ans should round correctly with *any* # rounding mode, not just with ROUND_HALF_EVEN Decimal.context(context, :rounding=>:half_even) do |local_context| ans = ans._fix(local_context) context.flags = local_context.flags end return ans end |
#finite? ⇒ Boolean
Returns whether the number is finite
1156 1157 1158 |
# File 'lib/decimal/decimal.rb', line 1156 def finite? !special? end |
#floor(opt = {}) ⇒ Object
General floor operation (as for Float) with same options for precision as Decimal#round()
2361 2362 2363 2364 |
# File 'lib/decimal/decimal.rb', line 2361 def floor(opt={}) opt[:rounding] = :floor round opt end |
#fma(other, third, context = nil) ⇒ Object
Fused multiply-add.
Computes (self*other+third) with no rounding of the intermediate product self*other.
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 |
# File 'lib/decimal/decimal.rb', line 2376 def fma(other, third, context=nil) context = Decimal.define_context(context) other = _convert(other) third = _convert(third) if self.special? || other.special? return context.exception(InvalidOperation, 'sNaN', self) if self.snan? return context.exception(InvalidOperation, 'sNaN', other) if other.snan? if self.nan? product = self elsif other.nan? product = other elsif self.infinite? return context.exception(InvalidOperation, 'INF * 0 in fma') if other.zero? product = Decimal.infinity(self.sign*other.sign) elsif other.infinite? return context.exception(InvalidOperation, '0 * INF in fma') if self.zero? product = Decimal.infinity(self.sign*other.sign) end else product = Decimal.new([self.sign*other.sign,self.integral_significand*other.integral_significand, self.integral_exponent+other.integral_exponent]) end return product.add(third, context) end |
#fractional_exponent ⇒ Object
Exponent as though the significand were a fraction (the decimal point before its first digit)
2108 2109 2110 |
# File 'lib/decimal/decimal.rb', line 2108 def fractional_exponent scientific_exponent + 1 end |
#hash ⇒ Object
2065 2066 2067 |
# File 'lib/decimal/decimal.rb', line 2065 def hash ([Decimal]+reduce.split).hash # TODO: optimize end |
#infinite? ⇒ Boolean
Returns whether the number is infinite
1151 1152 1153 |
# File 'lib/decimal/decimal.rb', line 1151 def infinite? @exp == :inf end |
#inspect ⇒ Object
1999 2000 2001 2002 2003 |
# File 'lib/decimal/decimal.rb', line 1999 def inspect #"Decimal('#{self}')" #debug: "Decimal('#{self}') [coeff:#{@coeff.inspect} exp:#{@exp.inspect} s:#{@sign.inspect}]" end |
#integral? ⇒ Boolean
Returns true if the value is an integer
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 |
# File 'lib/decimal/decimal.rb', line 2159 def integral? if finite? if @exp>=0 || @coeff==0 true else if @exp <= -number_of_digits false else m = Decimal.int_radix_power(-@exp) (@coeff % m) == 0 end end else false end end |
#integral_exponent ⇒ Object
Exponent of the significand as an integer
2124 2125 2126 2127 |
# File 'lib/decimal/decimal.rb', line 2124 def integral_exponent # fractional_exponent - number_of_digits @exp end |
#integral_significand ⇒ Object
Significand as an integer, unsigned
2119 2120 2121 |
# File 'lib/decimal/decimal.rb', line 2119 def integral_significand @coeff end |
#ln(context = nil) ⇒ Object
Returns the natural (base e) logarithm
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 |
# File 'lib/decimal/decimal.rb', line 2725 def ln(context=nil) context = Decimal.define_context(context) # ln(NaN) = NaN ans = _check_nans(context) return ans if ans # ln(0.0) == -Infinity return Decimal.infinity(-1) if self.zero? # ln(Infinity) = Infinity return Decimal.infinity if self.infinite? && self.sign == +1 # ln(1.0) == 0.0 return Decimal.zero if self == Decimal(1) # ln(negative) raises InvalidOperation return context.exception(InvalidOperation, 'ln of a negative value') if self.sign==-1 # result is irrational, so necessarily inexact return context.exception(Inexact, 'Inexact exp') if context.exact? c = self.integral_significand e = self.integral_exponent p = context.precision # correctly rounded result: repeatedly increase precision by 3 # until we get an unambiguously roundable result places = p - self._ln_exp_bound + 2 # at least p+3 places coeff = nil loop do coeff = _dlog(c, e, places) # assert coeff.to_s.length-p >= 1 break if (coeff % (5*10**(coeff.abs.to_s.length-p-1))) != 0 places += 3 end ans = Decimal((coeff<0) ? -1 : +1, coeff.abs, -places) Decimal.context(context, :rounding=>:half_even) do |local_context| ans = ans._fix(local_context) context.flags = local_context.flags end return ans end |
#log10(context = nil) ⇒ Object
Returns the base 10 logarithm
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 |
# File 'lib/decimal/decimal.rb', line 2604 def log10(context=nil) context = Decimal.define_context(context) # log10(NaN) = NaN ans = _check_nans(context) return ans if ans # log10(0.0) == -Infinity return Decimal.infinity(-1) if self.zero? # log10(Infinity) = Infinity return Decimal.infinity if self.infinite? && self.sign == +1 # log10(negative or -Infinity) raises InvalidOperation return context.exception(InvalidOperation, 'log10 of a negative value') if self.sign == -1 digits = self.digits # log10(10**n) = n if digits.first == 1 && digits[1..-1].all?{|d| d==0} # answer may need rounding ans = Decimal(self.integral_exponent + digits.size - 1) return ans if context.exact? else # result is irrational, so necessarily inexact return context.exception(Inexact, "Inexact power") if context.exact? c = self.integral_significand e = self.integral_exponent p = context.precision # correctly rounded result: repeatedly increase precision # until result is unambiguously roundable places = p-self._log10_exp_bound+2 coeff = nil loop do coeff = _dlog10(c, e, places) # assert coeff.abs.to_s.length-p >= 1 break if (coeff % (5*10**(coeff.abs.to_s.length-p-1)))!=0 places += 3 end ans = Decimal(coeff<0 ? -1 : +1, coeff.abs, -places) end Decimal.context(context, :rounding=>:half_even) do |local_context| ans = ans._fix(local_context) context.flags = local_context.flags end return ans end |
#logb(context = nil) ⇒ Object
Returns the exponent of the magnitude of the most significant digit.
The result is the integer which is the exponent of the magnitude of the most significant digit of the number (as though it were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent).
1868 1869 1870 1871 1872 1873 1874 1875 |
# File 'lib/decimal/decimal.rb', line 1868 def logb(context=nil) context = Decimal.define_context(context) ans = _check_nans(context) return ans if ans return Decimal.infinity if infinite? return context.exception(DivisionByZero,'logb(0)',-1) if zero? Decimal.new(adjusted_exponent) end |
#minus(context = nil) ⇒ Object
Unary prefix minus operator
1448 1449 1450 |
# File 'lib/decimal/decimal.rb', line 1448 def minus(context=nil) _neg(context) end |
#modulo(other, context = nil) ⇒ Object
Ruby-style modulo: x - y*div(x,y)
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 |
# File 'lib/decimal/decimal.rb', line 1727 def modulo(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return ans if ans #sign = self.sign * other.sign if self.infinite? return context.exception(InvalidOperation, 'INF % x') elsif other.zero? if self.zero? return context.exception(DivisionUndefined, '0 % 0') else return context.exception(InvalidOperation, 'x % 0') end end return self._divide_floor(other, context).last._fix(context) end |
#multiply(other, context = nil) ⇒ Object
Multiplication
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
# File 'lib/decimal/decimal.rb', line 1354 def multiply(other, context=nil) context = Decimal.define_context(context) other = _convert(other) resultsign = self.sign * other.sign if self.special? || other.special? ans = _check_nans(context,other) return ans if ans if self.infinite? return context.exception(InvalidOperation,"(+-)INF * 0") if other.zero? return Decimal.infinity(resultsign) end if other.infinite? return context.exception(InvalidOperation,"0 * (+-)INF") if self.zero? return Decimal.infinity(resultsign) end end resultexp = self.integral_exponent + other.integral_exponent return Decimal([resultsign, 0, resultexp])._fix(context) if self.zero? || other.zero? #return Decimal([resultsign, other.integral_significand, resultexp])._fix(context) if self.integral_significand==1 #return Decimal([resultsign, self.integral_significand, resultexp])._fix(context) if other.integral_significand==1 return Decimal([resultsign, other.integral_significand*self.integral_significand, resultexp])._fix(context) end |
#nan? ⇒ Boolean
Returns whether the number is not actualy one (NaN, not a number).
1136 1137 1138 |
# File 'lib/decimal/decimal.rb', line 1136 def nan? @exp==:nan || @exp==:snan end |
#next_minus(context = nil) ⇒ Object
Largest representable number smaller than itself
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 |
# File 'lib/decimal/decimal.rb', line 1453 def next_minus(context=nil) context = Decimal.define_context(context) if special? ans = _check_nans(context) return ans if ans if infinite? return Decimal.new(self) if @sign == -1 # @sign == +1 if context.exact? return context.exception(InvalidOperation, 'Exact +INF next minus') else return Decimal.new(+1, context.maximum_significand, context.etop) end end end return context.exception(InvalidOperation, 'Exact next minus') if context.exact? result = nil Decimal.local_context(context) do |local| local.rounding = :floor local.ignore_all_flags result = self._fix(local) if result == self result = self - Decimal(+1, 1, local.etiny-1) end end result end |
#next_plus(context = nil) ⇒ Object
Smallest representable number larger than itself
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 |
# File 'lib/decimal/decimal.rb', line 1484 def next_plus(context=nil) context = Decimal.define_context(context) if special? ans = _check_nans(context) return ans if ans if infinite? return Decimal.new(self) if @sign == +1 # @sign == -1 if context.exact? return context.exception(InvalidOperation, 'Exact -INF next plus') else return Decimal.new(-1, context.maximum_significand, context.etop) end end end return context.exception(InvalidOperation, 'Exact next plus') if context.exact? result = nil Decimal.local_context(context) do |local| local.rounding = :ceiling local.ignore_all_flags result = self._fix(local) if result == self result = self + Decimal(+1, 1, local.etiny-1) end end result end |
#next_toward(other, context = nil) ⇒ Object
Returns the number closest to self, in the direction towards other.
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 |
# File 'lib/decimal/decimal.rb', line 1517 def next_toward(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return ans if ans return context.exception(InvalidOperation, 'Exact next_toward') if context.exact? comparison = self <=> other return self.copy_sign(other) if comparison == 0 if comparison == -1 result = self.next_plus(context) else # comparison == 1 result = self.next_minus(context) end # decide which flags to raise using value of ans if result.infinite? context.exception Overflow, 'Infinite result from next_toward', result.sign context.exception Rounded context.exception Inexact elsif result.adjusted_exponent < context.emin context.exception Underflow context.exception Subnormal context.exception Rounded context.exception Inexact # if precision == 1 then we don't raise Clamped for a # result 0E-etiny. context.exception Clamped if result.zero? end result end |
#nonzero? ⇒ Boolean
Returns whether the number not zero
1166 1167 1168 |
# File 'lib/decimal/decimal.rb', line 1166 def nonzero? special? || @coeff>0 end |
#normal?(context = nil) ⇒ Boolean
Returns whether the number is normal
1178 1179 1180 1181 1182 |
# File 'lib/decimal/decimal.rb', line 1178 def normal?(context=nil) return true if special? || zero? context = Decimal.define_context(context) (context.emin <= self.adjusted_exponent) && (self.adjusted_exponent <= context.emax) end |
#number_class(context = nil) ⇒ Object
Classifies a number as one of ‘sNaN’, ‘NaN’, ‘-Infinity’, ‘-Normal’, ‘-Subnormal’, ‘-Zero’,
'+Zero', '+Subnormal', '+Normal', '+Infinity'
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 |
# File 'lib/decimal/decimal.rb', line 1187 def number_class(context=nil) return "sNaN" if snan? return "NaN" if nan? if infinite? return '+Infinity' if @sign==+1 return '-Infinity' # if @sign==-1 end if zero? return '+Zero' if @sign==+1 return '-Zero' # if @sign==-1 end context = Decimal.define_context(context) if subnormal?(context) return '+Subnormal' if @sign==+1 return '-Subnormal' # if @sign==-1 end return '+Normal' if @sign==+1 return '-Normal' if @sign==-1 end |
#number_of_digits ⇒ Object
Number of digits in the significand
2113 2114 2115 2116 |
# File 'lib/decimal/decimal.rb', line 2113 def number_of_digits # digits.size @coeff.to_s.size end |
#odd? ⇒ Boolean
returns true if is an odd integer
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 |
# File 'lib/decimal/decimal.rb', line 2201 def odd? # integral? && ((to_i%2)==1) # integral? && !even? if finite? if @exp>0 || @coeff==0 false else if @exp <= -number_of_digits false else m = Decimal.int_radix_power(-@exp) if (@coeff % m) == 0 # ((@coeff / m) % 2) == 1 ((@coeff / m) & 1) == 1 else false end end end else false end end |
#plus(context = nil) ⇒ Object
Unary prefix plus operator
1443 1444 1445 |
# File 'lib/decimal/decimal.rb', line 1443 def plus(context=nil) _pos(context) end |
#power(other, modulo = nil, context = nil) ⇒ Object
Raises to the power of x, to modulo if given.
With two arguments, compute self**other. If self is negative then other must be integral. The result will be inexact unless other is integral and the result is finite and can be expressed exactly in ‘precision’ digits.
With three arguments, compute (self**other) % modulo. For the three argument form, the following restrictions on the arguments hold:
- all three arguments must be integral
- other must be nonnegative
- at least one of self or other must be nonzero
- modulo must be nonzero and have at most 'precision' digits
The result of a.power(b, modulo) is identical to the result that would be obtained by computing (a**b) % modulo with unbounded precision, but is computed more efficiently. It is always exact.
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 |
# File 'lib/decimal/decimal.rb', line 2420 def power(other, modulo=nil, context=nil) if context.nil? && (modulo.is_a?(Context) || modulo.is_a?(Hash)) context = modulo modulo = nil end return self.power_modulo(other, modulo, context) if modulo context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context, other) return ans if ans # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity) if other.zero? if self.zero? return context.exception(InvalidOperation, '0 ** 0') else return Decimal(1) end end # result has sign -1 iff self.sign is -1 and other is an odd integer result_sign = +1 _self = self if _self.sign == -1 if other.integral? result_sign = -1 if !other.even? else # -ve**noninteger = NaN # (-0)**noninteger = 0**noninteger unless self.zero? return context.exception(InvalidOperation, 'x ** y with x negative and y not an integer') end end # negate self, without doing any unwanted rounding _self = self.copy_negate end # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity if _self.zero? return (other.sign == +1) ? Decimal(result_sign, 0, 0) : Decimal.infinity(result_sign) end # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0 if _self.infinite? return (other.sign == +1) ? Decimal.infinity(result_sign) : Decimal(result_sign, 0, 0) end # 1**other = 1, but the choice of exponent and the flags # depend on the exponent of self, and on whether other is a # positive integer, a negative integer, or neither if _self == Decimal(1) return _self if context.exact? if other.integral? # exp = max(self._exp*max(int(other), 0), # 1-context.prec) but evaluating int(other) directly # is dangerous until we know other is small (other # could be 1e999999999) if other.sign == -1 multiplier = 0 elsif other > context.precision multiplier = context.precision else multiplier = other.to_i end exp = _self.integral_exponent * multiplier if exp < 1-context.precision exp = 1-context.precision context.exception Rounded end else context.exception Rounded context.exception Inexact exp = 1-context.precision end return Decimal(result_sign, Decimal.int_radix_power(-exp), exp) end # compute adjusted exponent of self self_adj = _self.adjusted_exponent # self ** infinity is infinity if self > 1, 0 if self < 1 # self ** -infinity is infinity if self < 1, 0 if self > 1 if other.infinite? if (other.sign == +1) == (self_adj < 0) return Decimal(result_sign, 0, 0) else return Decimal.infinity(result_sign) end end # from here on, the result always goes through the call # to _fix at the end of this function. ans = nil # crude test to catch cases of extreme overflow/underflow. If # log10(self)*other >= 10**bound and bound >= len(str(Emax)) # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence # self**other >= 10**(Emax+1), so overflow occurs. The test # for underflow is similar. bound = _self._log10_exp_bound + other.adjusted_exponent if (self_adj >= 0) == (other.sign == +1) # self > 1 and other +ve, or self < 1 and other -ve # possibility of overflow if bound >= context.emax.to_s.length ans = Decimal(result_sign, 1, context.emax+1) end else # self > 1 and other -ve, or self < 1 and other +ve # possibility of underflow to 0 etiny = context.etiny if bound >= (-etiny).to_s.length ans = Decimal(result_sign, 1, etiny-1) end end # try for an exact result with precision +1 if ans.nil? if context.exact? if other.adjusted_exponent < 100 test_precision = _self.number_of_digits*other.to_i+1 else test_precision = _self.number_of_digits+1 end else test_precision = context.precision + 1 end ans = _self._power_exact(other, test_precision) if !ans.nil? && (result_sign == -1) ans = Decimal(-1, ans.integral_significand, ans.integral_exponent) end end # usual case: inexact result, x**y computed directly as exp(y*log(x)) if !ans.nil? return ans if context.exact? else return context.exception(Inexact, "Inexact power") if context.exact? p = context.precision xc = _self.integral_significand xe = _self.integral_exponent yc = other.integral_significand ye = other.integral_exponent yc = -yc if other.sign == -1 # compute correctly rounded result: start with precision +3, # then increase precision until result is unambiguously roundable extra = 3 coeff, exp = nil, nil loop do coeff, exp = _dpower(xc, xe, yc, ye, p+extra) #break if (coeff % Decimal.int_mult_radix_power(5,coeff.to_s.length-p-1)) != 0 break if (coeff % (5*10**(coeff.to_s.length-p-1))) != 0 extra += 3 end ans = Decimal(result_sign, coeff, exp) end # the specification says that for non-integer other we need to # raise Inexact, even when the result is actually exact. In # the same way, we need to raise Underflow here if the result # is subnormal. (The call to _fix will take care of raising # Rounded and Subnormal, as usual.) if !other.integral? context.exception Inexact # pad with zeros up to length context.precision+1 if necessary if ans.number_of_digits <= context.precision expdiff = context.precision+1 - ans.number_of_digits ans = Decimal(ans.sign, Decimal.int_mult_radix_power(ans.integral_significand, expdiff), ans.integral_exponent-expdiff) end context.exception Underflow if ans.adjusted_exponent < context.emin end # unlike exp, ln and log10, the power function respects the # rounding mode; no need to use ROUND_HALF_EVEN here ans._fix(context) end |
#qnan? ⇒ Boolean
Returns whether the number is a quite NaN (non-signaling)
1141 1142 1143 |
# File 'lib/decimal/decimal.rb', line 1141 def qnan? @exp == :nan end |
#quantize(exp, context = nil, watch_exp = true) ⇒ Object
Quantize so its exponent is the same as that of y.
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 |
# File 'lib/decimal/decimal.rb', line 2244 def quantize(exp, context=nil, watch_exp=true) exp = _convert(exp) context = Decimal.define_context(context) if self.special? || exp.special? ans = _check_nans(context, exp) return ans if ans if exp.infinite? || self.infinite? return Decimal.new(self) if exp.infinite? && self.infinite? return context.exception(InvalidOperation, 'quantize with one INF') end end exp = exp.integral_exponent _watched_rescale(exp, context, watch_exp) end |
#reduce(context = nil) ⇒ Object
Reduces an operand to its simplest form by removing trailing 0s and incrementing the exponent. (formerly called normalize in GDAS)
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 |
# File 'lib/decimal/decimal.rb', line 1838 def reduce(context=nil) context = Decimal.define_context(context) if special? ans = _check_nans(context) return ans if ans end dup = _fix(context) return dup if dup.infinite? return Decimal.new([dup.sign, 0, 0]) if dup.zero? exp_max = context.clamp? ? context.etop : context.emax end_d = nd = dup.number_of_digits exp = dup.integral_exponent coeff = dup.integral_significand dgs = dup.digits while (dgs[end_d-1]==0) && (exp < exp_max) exp += 1 end_d -= 1 end return Decimal.new([dup.sign, coeff/Decimal.int_radix_power(nd-end_d), exp]) end |
#remainder(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification remainder: x - y*divide_int(x,y)
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 |
# File 'lib/decimal/decimal.rb', line 1750 def remainder(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return ans if ans #sign = self.sign * other.sign if self.infinite? return context.exception(InvalidOperation, 'INF % x') elsif other.zero? if self.zero? return context.exception(DivisionUndefined, '0 % 0') else return context.exception(InvalidOperation, 'x % 0') end end return self._divide_truncate(other, context).last._fix(context) end |
#remainder_near(other, context = nil) ⇒ Object
General Decimal Arithmetic Specification remainder-near:
x - y*round_half_even(x/y)
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 |
# File 'lib/decimal/decimal.rb', line 1774 def remainder_near(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context,other) return ans if ans sign = self.sign * other.sign if self.infinite? return context.exception(InvalidOperation, 'remainder_near(INF,x)') elsif other.zero? if self.zero? return context.exception(DivisionUndefined, 'remainder_near(0,0)') else return context.exception(InvalidOperation, 'remainder_near(x,0)') end end if other.infinite? return Decimal.new(self)._fix(context) end ideal_exp = [self.integral_exponent, other.integral_exponent].min if self.zero? return Decimal([self.sign, 0, ideal_exp])._fix(context) end expdiff = self.adjusted_exponent - other.adjusted_exponent if (expdiff >= context.precision+1) && !context.exact? return context.exception(DivisionImpossible) elsif expdiff <= -2 return self._rescale(ideal_exp, context.rounding)._fix(context) end self_coeff = self.integral_significand other_coeff = other.integral_significand de = self.integral_exponent - other.integral_exponent if de >= 0 self_coeff = Decimal.int_mult_radix_power(self_coeff, de) else other_coeff = Decimal.int_mult_radix_power(other_coeff, -de) end q, r = self_coeff.divmod(other_coeff) if 2*r + (q&1) > other_coeff r -= other_coeff q += 1 end return context.exception(DivisionImpossible) if q >= Decimal.int_radix_power(context.precision) && !context.exact? sign = self.sign if r < 0 sign = -sign r = -r end return Decimal.new([sign, r, ideal_exp])._fix(context) end |
#rescale(exp, context = nil, watch_exp = true) ⇒ Object
Rescale so that the exponent is exp, either by padding with zeros or by truncating digits.
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 |
# File 'lib/decimal/decimal.rb', line 2227 def rescale(exp, context=nil, watch_exp=true) context = Decimal.define_context(context) exp = _convert(exp) if self.special? || exp.special? ans = _check_nans(context, exp) return ans if ans if exp.infinite? || self.infinite? return Decimal.new(self) if exp.infinite? && self.infinite? return context.exception(InvalidOperation, 'rescale with one INF') end end return context.exception(InvalidOperation,"exponent of rescale is not integral") unless exp.integral? exp = exp.to_i _watched_rescale(exp, context, watch_exp) end |
#round(opt = {}) ⇒ Object
General rounding.
With an integer argument this acts like Float#round: the parameter specifies the number of fractional digits (or digits to the left of the decimal point if negative).
Options can be passed as a Hash instead; valid options are:
-
:rounding method for rounding (see Context#new())
The precision can be specified as:
-
:places number of fractional digits as above.
-
:exponent specifies the exponent corresponding to the digit to be rounded (exponent == -places)
-
:precision or :significan_digits is the number of digits
-
:power 10^exponent, value of the digit to be rounded, should be passed as a type convertible to Decimal.
-
:index 0-based index of the digit to be rounded
-
:rindex right 0-based index of the digit to be rounded
The default is :places=>0 (round to integer).
Example: ways of specifiying the rounding position
number: 1 2 3 4 . 5 6 7 8
:places -3 -2 -1 0 1 2 3 4
:exponent 3 2 1 0 -1 -2 -3 -4
:precision 1 2 3 4 5 6 7 8
:power 1E3 1E2 10 1 0.1 1E-2 1E-3 1E-4
:index 0 1 2 3 4 5 6 7
:index 7 6 5 4 3 2 1 0
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 |
# File 'lib/decimal/decimal.rb', line 2328 def round(opt={}) opt = { :places=>opt } if opt.kind_of?(Integer) r = opt[:rounding] || :half_up as_int = false if v=(opt[:precision] || opt[:significant_digits]) prec = v elsif v=(opt[:places]) prec = adjusted_exponent + 1 + v elsif v=(opt[:exponent]) prec = adjusted_exponent + 1 - v elsif v=(opt[:power]) prec = adjusted_exponent + 1 - Decimal(v).adjusted_exponent elsif v=(opt[:index]) prec = i+1 elsif v=(opt[:rindex]) prec = number_of_digits - v else prec = adjusted_exponent + 1 as_int = true end result = plus(:rounding=>r, :precision=>prec) return as_int ? result.to_i : result end |
#same_quantum?(other) ⇒ Boolean
Return true if has the same exponent as other.
If either operand is a special value, the following rules are used:
-
return true if both operands are infinities
-
return true if both operands are NaNs
-
otherwise, return false.
2265 2266 2267 2268 2269 2270 2271 |
# File 'lib/decimal/decimal.rb', line 2265 def same_quantum?(other) other = _convert(other) if self.special? || other.special? return (self.nan? && other.nan?) || (self.infinite? && other.infinite?) end return self.integral_exponent == other.integral_exponent end |
#scaleb(other, context = nil) ⇒ Object
Adds a value to the exponent.
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 |
# File 'lib/decimal/decimal.rb', line 1878 def scaleb(other, context=nil) context = Decimal.define_context(context) other = _convert(other) ans = _check_nans(context, other) return ans if ans return context.exception(InvalidOperation) if other.infinite? || other.integral_exponent != 0 unless context.exact? liminf = -2 * (context.emax + context.precision) limsup = 2 * (context.emax + context.precision) i = other.to_i return context.exception(InvalidOperation) if !((liminf <= i) && (i <= limsup)) end return Decimal.new(self) if infinite? return Decimal.new(@sign, @coeff, @exp+i)._fix(context) end |
#scientific_exponent ⇒ Object
Synonym for Decimal#adjusted_exponent()
2103 2104 2105 |
# File 'lib/decimal/decimal.rb', line 2103 def scientific_exponent adjusted_exponent end |
#sign ⇒ Object
Sign of the number: +1 for plus / -1 for minus.
2130 2131 2132 |
# File 'lib/decimal/decimal.rb', line 2130 def sign @sign end |
#snan? ⇒ Boolean
Returns whether the number is a signaling NaN
1146 1147 1148 |
# File 'lib/decimal/decimal.rb', line 1146 def snan? @exp == :snan end |
#special? ⇒ Boolean
Returns whether the number is a special value (NaN or Infinity).
1131 1132 1133 |
# File 'lib/decimal/decimal.rb', line 1131 def special? @exp.instance_of?(Symbol) end |
#split ⇒ Object
Returns the internal representation of the number, composed of:
-
a sign which is +1 for plus and -1 for minus
-
a coefficient (significand) which is an integer
-
an exponent (an integer) or :inf, :nan or :snan for special values
The value of non-special numbers is sign*coefficient*10^exponent
1126 1127 1128 |
# File 'lib/decimal/decimal.rb', line 1126 def split [@sign, @coeff, @exp] end |
#sqrt(context = nil) ⇒ Object
Square root
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 |
# File 'lib/decimal/decimal.rb', line 1553 def sqrt(context=nil) context = Decimal.define_context(context) if special? ans = _check_nans(context) return ans if ans return Decimal.new(self) if infinite? && @sign==+1 end return Decimal.new([@sign, 0, @exp/2])._fix(context) if zero? return context.exception(InvalidOperation, 'sqrt(-x), x>0') if @sign<0 prec = context.precision + 1 e = (@exp >> 1) if (@exp & 1)!=0 c = @coeff*Decimal.radix l = (number_of_digits >> 1) + 1 else c = @coeff l = (number_of_digits+1) >> 1 end shift = prec - l if shift >= 0 c = Decimal.int_mult_radix_power(c, (shift<<1)) exact = true else c, remainder = c.divmod(Decimal.int_radix_power((-shift)<<1)) exact = (remainder==0) end e -= shift n = Decimal.int_radix_power(prec) while true q = c / n break if n <= q n = ((n + q) >> 1) end exact = exact && (n*n == c) if exact if shift >= 0 n = Decimal.int_div_radix_power(n, shift) else n = Decimal.int_mult_radix_power(n, -shift) end e += shift else return context.exception(Inexact) if context.exact? n += 1 if (n%5)==0 end ans = Decimal.new([+1,n,e]) Decimal.local_context(:rounding=>:half_even) do ans = ans._fix(context) end return ans end |
#subnormal?(context = nil) ⇒ Boolean
Returns whether the number is subnormal
1171 1172 1173 1174 1175 |
# File 'lib/decimal/decimal.rb', line 1171 def subnormal?(context=nil) return false if special? || zero? context = Decimal.define_context(context) self.adjusted_exponent < context.emin end |
#subtract(other, context = nil) ⇒ Object
Subtraction
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 |
# File 'lib/decimal/decimal.rb', line 1341 def subtract(other, context=nil) context = Decimal.define_context(context) other = _convert(other) if self.special? || other.special? ans = _check_nans(context,other) return ans if ans end return add(other.copy_negate, context) end |
#to_f ⇒ Object
Conversion to Float
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 |
# File 'lib/decimal/decimal.rb', line 1985 def to_f if special? if @exp==:inf @sign/0.0 else 0.0/0.0 end else # to_rational.to_f # to_s.to_f @sign*@coeff*(10.0**@exp) end end |
#to_i ⇒ Object
Ruby-style to integer conversion.
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 |
# File 'lib/decimal/decimal.rb', line 1903 def to_i if special? if nan? #return Decimal.context.exception(InvalidContext) Decimal.context.exception InvalidContext return nil end raise Error, "Cannot convert infinity to Integer" end if @exp >= 0 return @sign*Decimal.int_mult_radix_power(@coeff,@exp) else return @sign*Decimal.int_div_radix_power(@coeff,-@exp) end end |
#to_int_scale ⇒ Object
Return the value of the number as an integer and a scale.
2135 2136 2137 2138 2139 2140 2141 |
# File 'lib/decimal/decimal.rb', line 2135 def to_int_scale if special? nil else [@sign*integral_significand, integral_exponent] end end |
#to_integral_exact(context = nil) ⇒ Object
Rounds to a nearby integer. May raise Inexact or Rounded.
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 |
# File 'lib/decimal/decimal.rb', line 2274 def to_integral_exact(context=nil) context = Decimal.define_context(context) if special? ans = _check_nans(context) return ans if ans return Decimal.new(self) end return Decimal.new(self) if @exp >= 0 return Decimal.new([@sign, 0, 0]) if zero? context.exception Rounded ans = _rescale(0, context.rounding) context.exception Inexact if ans != self return ans end |
#to_integral_value(context = nil) ⇒ Object
Rounds to a nearby integer. Doesn’t raise Inexact or Rounded.
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 |
# File 'lib/decimal/decimal.rb', line 2290 def to_integral_value(context=nil) context = Decimal.define_context(context) if special? ans = _check_nans(context) return ans if ans return Decimal.new(self) end return Decimal.new(self) if @exp >= 0 return _rescale(0, context.rounding) end |
#to_r ⇒ Object
Conversion to Rational. Conversion of special values will raise an exception under Ruby 1.9
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 |
# File 'lib/decimal/decimal.rb', line 1971 def to_r if special? num = (@exp == :inf) ? @sign : 0 Rational.respond_to?(:new!) ? Rational.new!(num,0) : Rational(num,0) else if @exp < 0 Rational(@sign*@coeff, Decimal.int_radix_power(-@exp)) else Rational(Decimal.int_mult_radix_power(@sign*@coeff,@exp), 1) end end end |
#to_s(eng = false, context = nil) ⇒ Object
Ruby-style to string conversion.
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 |
# File 'lib/decimal/decimal.rb', line 1920 def to_s(eng=false,context=nil) # (context || Decimal.context).to_string(self) context = Decimal.define_context(context) sgn = sign<0 ? '-' : '' if special? if @exp==:inf "#{sgn}Infinity" elsif @exp==:nan "#{sgn}NaN#{@coeff}" else # exp==:snan "#{sgn}sNaN#{@coeff}" end else ds = @coeff.to_s n_ds = ds.size exp = integral_exponent leftdigits = exp + n_ds if exp<=0 && leftdigits>-6 dotplace = leftdigits elsif !eng dotplace = 1 elsif @coeff==0 dotplace = (leftdigits+1)%3 - 1 else dotplace = (leftdigits-1)%3 + 1 end if dotplace <=0 intpart = '0' fracpart = '.' + '0'*(-dotplace) + ds elsif dotplace >= n_ds intpart = ds + '0'*(dotplace - n_ds) fracpart = '' else intpart = ds[0...dotplace] fracpart = '.' + ds[dotplace..-1] end if leftdigits == dotplace e = '' else e = (context.capitals ? 'E' : 'e') + "%+d"%(leftdigits-dotplace) end sgn + intpart + fracpart + e end end |
#truncate(opt = {}) ⇒ Object
General truncate operation (as for Float) with same options for precision as Decimal#round()
2368 2369 2370 2371 |
# File 'lib/decimal/decimal.rb', line 2368 def truncate(opt={}) opt[:rounding] = :down round opt end |
#zero? ⇒ Boolean
Returns whether the number is zero
1161 1162 1163 |
# File 'lib/decimal/decimal.rb', line 1161 def zero? @coeff==0 && !special? end |