Class: DNN::Layers::Conv2DTranspose
- Inherits:
-
Connection
- Object
- Layer
- TrainableLayer
- Connection
- DNN::Layers::Conv2DTranspose
- Includes:
- Conv2DUtils, LayerNode
- Defined in:
- lib/dnn/core/layers/cnn_layers.rb
Instance Attribute Summary collapse
-
#filter_size ⇒ Object
readonly
Returns the value of attribute filter_size.
-
#num_filters ⇒ Object
readonly
Returns the value of attribute num_filters.
-
#padding ⇒ Object
readonly
Returns the value of attribute padding.
-
#strides ⇒ Object
readonly
Returns the value of attribute strides.
Attributes inherited from Connection
#bias, #bias_initializer, #bias_regularizer, #weight, #weight_initializer, #weight_regularizer
Attributes inherited from TrainableLayer
Attributes inherited from Layer
Instance Method Summary collapse
- #backward_node(dy) ⇒ Object
- #build(input_shape) ⇒ Object
- #compute_output_shape ⇒ Object
-
#filters ⇒ Numo::SFloat
Convert weight to filter and return.
- #filters=(filters) ⇒ Object
- #forward_node(x) ⇒ Object
-
#initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) ⇒ Conv2DTranspose
constructor
A new instance of Conv2DTranspose.
- #load_hash(hash) ⇒ Object
- #to_hash ⇒ Object
Methods included from Conv2DUtils
calc_conv2d_out_size, calc_conv2d_padding_size, calc_conv2d_transpose_out_size, calc_conv2d_transpose_padding_size, col2im, col2im_cpu, col2im_gpu, im2col, im2col_cpu, im2col_gpu, zero_padding, zero_padding_bwd
Methods included from LayerNode
Methods inherited from Connection
#get_params, #regularizers, #use_bias
Methods inherited from TrainableLayer
Methods inherited from Layer
#<<, #built?, #call, call, #clean, #forward, from_hash
Constructor Details
#initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) ⇒ Conv2DTranspose
Returns a new instance of Conv2DTranspose.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 230 def initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) super(weight_initializer: weight_initializer, bias_initializer: bias_initializer, weight_regularizer: weight_regularizer, bias_regularizer: bias_regularizer, use_bias: use_bias) @num_filters = num_filters @filter_size = filter_size.is_a?(Integer) ? [filter_size, filter_size] : filter_size @strides = strides.is_a?(Integer) ? [strides, strides] : strides @padding = padding.is_a?(Integer) ? [padding, padding] : padding end |
Instance Attribute Details
#filter_size ⇒ Object (readonly)
Returns the value of attribute filter_size.
222 223 224 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 222 def filter_size @filter_size end |
#num_filters ⇒ Object (readonly)
Returns the value of attribute num_filters.
221 222 223 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 221 def num_filters @num_filters end |
#padding ⇒ Object (readonly)
Returns the value of attribute padding.
224 225 226 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 224 def padding @padding end |
#strides ⇒ Object (readonly)
Returns the value of attribute strides.
223 224 225 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 223 def strides @strides end |
Instance Method Details
#backward_node(dy) ⇒ Object
276 277 278 279 280 281 282 283 284 285 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 276 def backward_node(dy) dy = zero_padding(dy, @pad_size) if @padding col = im2col(dy, *@input_shape[0..1], *@filter_size, @strides) if @trainable @weight.grad += col.transpose.dot(@x) @bias.grad += col.reshape(col.shape[0] * @filter_size.reduce(:*), @num_filters).sum(0) if @bias end dx = col.dot(@weight.data) dx.reshape(dy.shape[0], *@input_shape) end |
#build(input_shape) ⇒ Object
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 246 def build(input_shape) unless input_shape.length == 3 raise DNNShapeError, "Input shape is #{input_shape}. But input shape must be 3 dimensional." end prev_h, prev_w, num_prev_filters = *input_shape @pad_size = if @padding == true calc_conv2d_transpose_padding_size(prev_h, prev_w, *@filter_size, @strides) elsif @padding.is_a?(Array) @padding else [0, 0] end @out_size = calc_conv2d_transpose_out_size(prev_h, prev_w, *@filter_size, *@pad_size, @strides) super @weight.data = Xumo::SFloat.new(@filter_size.reduce(:*) * @num_filters, num_prev_filters) @bias.data = Xumo::SFloat.new(@num_filters) if @bias init_weight_and_bias end |
#compute_output_shape ⇒ Object
287 288 289 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 287 def compute_output_shape [*@out_size, @num_filters] end |
#filters ⇒ Numo::SFloat
Returns Convert weight to filter and return.
292 293 294 295 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 292 def filters num_prev_filters = @input_shape[2] @weight.data.reshape(*@filter_size, @num_filters, num_prev_filters) end |
#filters=(filters) ⇒ Object
298 299 300 301 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 298 def filters=(filters) num_prev_filters = @input_shape[2] @weight.data = filters.reshape(@filter_size.reduce(:*) * @num_filters, num_prev_filters) end |
#forward_node(x) ⇒ Object
265 266 267 268 269 270 271 272 273 274 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 265 def forward_node(x) bsize = x.shape[0] x = x.reshape(x.shape[0..2].reduce(:*), x.shape[3]) @x = x col = x.dot(@weight.data.transpose) img_shape = [bsize, @out_size[0] + @pad_size[0], @out_size[1] + @pad_size[1], @num_filters] y = col2im(col, img_shape, *@input_shape[0..1], *@filter_size, @strides) y += @bias.data if @bias @padding ? zero_padding_bwd(y, @pad_size) : y end |
#load_hash(hash) ⇒ Object
310 311 312 313 314 315 316 317 318 319 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 310 def load_hash(hash) initialize(hash[:num_filters], hash[:filter_size], weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]), bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]), weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]), bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]), use_bias: hash[:use_bias], strides: hash[:strides], padding: hash[:padding]) end |
#to_hash ⇒ Object
303 304 305 306 307 308 |
# File 'lib/dnn/core/layers/cnn_layers.rb', line 303 def to_hash super(num_filters: @num_filters, filter_size: @filter_size, strides: @strides, padding: @padding) end |