Class: DNN::Models::Model
Overview
This class deals with the model of the network.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#last_log ⇒ Object
readonly
Returns the value of attribute last_log.
-
#loss_weights ⇒ Object
Returns the value of attribute loss_weights.
-
#optimizer ⇒ Object
Returns the value of attribute optimizer.
Class Method Summary collapse
-
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
Instance Method Summary collapse
-
#add_callback(callback) ⇒ Object
Add callback function.
-
#add_lambda_callback(event) { ... } ⇒ Object
Add lambda callback.
-
#built? ⇒ Boolean
If model have already been built then return true.
- #call(input_tensors) ⇒ Object
- #call_callbacks(event) ⇒ Object
- #check_early_stop_requested ⇒ Object
-
#clean_layers ⇒ Object
Clean all layers.
-
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
-
#copy ⇒ DNN::Models::Model
Return the copy this model.
-
#evaluate(x, y, batch_size: 100, need_accuracy: true) ⇒ Array
Evaluate model and get accuracy and loss of test data.
-
#evaluate_by_iterator(test_iterator, batch_size: 100, need_accuracy: true) ⇒ Array
Evaluate model by iterator.
-
#get_all_params_data ⇒ Array
Get parameter data of all layers.
- #get_all_trainable_params ⇒ Object
-
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
-
#initialize ⇒ Model
constructor
A new instance of Model.
-
#load_params(file_name) ⇒ Object
Load marshal params.
- #loss_func ⇒ Object
- #loss_func=(lfs) ⇒ Object
-
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
-
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
-
#request_early_stop ⇒ Object
Request training early stop.
-
#save(file_name) ⇒ Object
Save the model in marshal format.
-
#save_params(file_name) ⇒ Object
Save the params in marshal format.
-
#set_all_params_data(params_data) ⇒ Object
Set parameter data of all layers.
-
#setup(optimizer, loss_func, loss_weights: nil) ⇒ Object
Set optimizer and loss_func to model.
-
#test_on_batch(x, y) ⇒ Float | Array
Test once.
-
#test_step(x, y, need_accuracy: false) ⇒ Hash
Testing process to be performed in one step.
-
#to_cpu ⇒ DNN::Models::Model
Convert the parameters of model and optimizer for cpu.
-
#to_gpu ⇒ DNN::Models::Model
Convert the parameters of model and optimizer for gpu.
-
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true, need_accuracy: true, io: $stdout) ⇒ Object
(also: #fit)
Start training.
-
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true, need_accuracy: true, io: $stdout) ⇒ Object
(also: #fit_by_iterator)
Start training by iterator.
-
#train_on_batch(x, y) ⇒ Float | Array
Training once.
-
#train_step(x, y, need_accuracy: false) ⇒ Hash
Implement the training process to be performed in one step.
-
#trainable_layers ⇒ Array
Get the all trainable layers.
Methods inherited from Chain
#forward, #layers, #load_hash, #to_hash
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
125 126 127 128 129 130 131 132 133 134 |
# File 'lib/dnn/core/models.rb', line 125 def initialize super @optimizer = nil @loss_func = nil @built = false @loss_weights = nil @callbacks = [] @last_log = {} @early_stop_requested = false end |
Instance Attribute Details
#last_log ⇒ Object (readonly)
Returns the value of attribute last_log.
113 114 115 |
# File 'lib/dnn/core/models.rb', line 113 def last_log @last_log end |
#loss_weights ⇒ Object
Returns the value of attribute loss_weights.
112 113 114 |
# File 'lib/dnn/core/models.rb', line 112 def loss_weights @loss_weights end |
#optimizer ⇒ Object
Returns the value of attribute optimizer.
111 112 113 |
# File 'lib/dnn/core/models.rb', line 111 def optimizer @optimizer end |
Class Method Details
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
118 119 120 121 122 123 |
# File 'lib/dnn/core/models.rb', line 118 def self.load(file_name) model = self.allocate loader = Loaders::MarshalLoader.new(model) loader.load(file_name) model end |
Instance Method Details
#add_callback(callback) ⇒ Object
Add callback function.
457 458 459 460 |
# File 'lib/dnn/core/models.rb', line 457 def add_callback(callback) callback.model = self @callbacks << callback end |
#add_lambda_callback(event) { ... } ⇒ Object
Add lambda callback.
465 466 467 468 469 |
# File 'lib/dnn/core/models.rb', line 465 def add_lambda_callback(event, &block) callback = Callbacks::LambdaCallback.new(event, &block) callback.model = self @callbacks << callback end |
#built? ⇒ Boolean
Returns If model have already been built then return true.
518 519 520 |
# File 'lib/dnn/core/models.rb', line 518 def built? @built end |
#call(input_tensors) ⇒ Object
136 137 138 139 140 |
# File 'lib/dnn/core/models.rb', line 136 def call(input_tensors) output_tensors = forward(input_tensors) @built = true unless @built output_tensors end |
#call_callbacks(event) ⇒ Object
624 625 626 627 628 |
# File 'lib/dnn/core/models.rb', line 624 def call_callbacks(event) @callbacks.each do |callback| callback.send(event) if callback.respond_to?(event) end end |
#check_early_stop_requested ⇒ Object
610 611 612 613 614 615 616 |
# File 'lib/dnn/core/models.rb', line 610 def check_early_stop_requested if @early_stop_requested @early_stop_requested = false return true end false end |
#clean_layers ⇒ Object
Clean all layers.
523 524 525 526 527 528 529 530 531 532 533 |
# File 'lib/dnn/core/models.rb', line 523 def clean_layers layers.each(&:clean) if @loss_func.is_a?(Array) @loss_func.each do |lf| lf.clean end elsif @loss_func.is_a?(Losses::Loss) @loss_func.clean end @layers_cache = nil end |
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
472 473 474 |
# File 'lib/dnn/core/models.rb', line 472 def clear_callbacks @callbacks = [] end |
#copy ⇒ DNN::Models::Model
Return the copy this model.
498 499 500 |
# File 'lib/dnn/core/models.rb', line 498 def copy Marshal.load(Marshal.dump(self)) end |
#evaluate(x, y, batch_size: 100, need_accuracy: true) ⇒ Array
Evaluate model and get accuracy and loss of test data.
315 316 317 318 319 320 321 322 |
# File 'lib/dnn/core/models.rb', line 315 def evaluate(x, y, batch_size: 100, need_accuracy: true) Utils.check_input_data_type("x", x, Xumo::SFloat) Utils.check_input_data_type("y", y, Xumo::SFloat) evaluator = ModelEvaluator.new(self) evaluator.start_evaluate(x, y, batch_size: batch_size, need_accuracy: need_accuracy) evaluator.update while evaluator.evaluating? [@last_log[:test_accuracy], @last_log[:test_loss]] end |
#evaluate_by_iterator(test_iterator, batch_size: 100, need_accuracy: true) ⇒ Array
Evaluate model by iterator.
330 331 332 333 334 335 |
# File 'lib/dnn/core/models.rb', line 330 def evaluate_by_iterator(test_iterator, batch_size: 100, need_accuracy: true) evaluator = ModelEvaluator.new(self) evaluator.start_evaluate_by_iterator(test_iterator, batch_size: batch_size, need_accuracy: need_accuracy) evaluator.update while evaluator.evaluating? [@last_log[:test_accuracy], @last_log[:test_loss]] end |
#get_all_params_data ⇒ Array
Get parameter data of all layers.
537 538 539 540 541 542 543 |
# File 'lib/dnn/core/models.rb', line 537 def get_all_params_data trainable_layers.map do |layer| layer.get_params.to_h do |key, param| [key, param.data] end end end |
#get_all_trainable_params ⇒ Object
618 619 620 621 622 |
# File 'lib/dnn/core/models.rb', line 618 def get_all_trainable_params layers.select { |layer| layer.is_a?(Layers::TrainableLayer) && layer.trainable } .map { |layer| layer.get_params.values }.flatten.compact .select(&:grad) end |
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
511 512 513 514 515 |
# File 'lib/dnn/core/models.rb', line 511 def get_layer(name) layer = instance_variable_get("@#{name}") return layer if layer.is_a?(Layers::Layer) || layer.is_a?(Chain) || layer.is_a?(LayersList) nil end |
#load_params(file_name) ⇒ Object
Load marshal params.
478 479 480 481 |
# File 'lib/dnn/core/models.rb', line 478 def load_params(file_name) loader = Loaders::MarshalLoader.new(self) loader.load(file_name) end |
#loss_func ⇒ Object
158 159 160 |
# File 'lib/dnn/core/models.rb', line 158 def loss_func @loss_func end |
#loss_func=(lfs) ⇒ Object
162 163 164 165 166 167 168 169 170 171 172 173 174 |
# File 'lib/dnn/core/models.rb', line 162 def loss_func=(lfs) if lfs.is_a?(Array) @loss_func = [] lfs.each.with_index do |lf, i| unless lf.is_a?(Losses::Loss) raise TypeError, "loss_func[#{i}]:#{lf.class} is not an instance of DNN::Losses::Loss class." end @loss_func << lf end else @loss_func = lfs end end |
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# File 'lib/dnn/core/models.rb', line 415 def predict(x, use_loss_activation: true) Utils.check_input_data_type("x", x, Xumo::SFloat) DNN.learning_phase = false output_tensors = call(Tensor.convert(x)) if output_tensors.is_a?(Array) lfs = @loss_func ary_output_tensors = output_tensors else lfs = [@loss_func] ary_output_tensors = [output_tensors] end ys = [] ary_output_tensors.each.with_index do |out, i| y = out.data lf = lfs[i] if use_loss_activation && lf && lf.class.respond_to?(:activation) y = lf.class.activation(y) end ys << y end output_tensors.is_a?(Array) ? ys : ys.first end |
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# File 'lib/dnn/core/models.rb', line 440 def predict1(x, use_loss_activation: true) Utils.check_input_data_type("x", x, Xumo::SFloat) input = if x.is_a?(Array) x.map { |v| v.reshape(1, *v.shape) } else x.reshape(1, *x.shape) end y = predict(input, use_loss_activation: use_loss_activation) if y.is_a?(Array) y.map { |v| v[0, false] } else y[0, false] end end |
#request_early_stop ⇒ Object
Request training early stop.
606 607 608 |
# File 'lib/dnn/core/models.rb', line 606 def request_early_stop @early_stop_requested = true end |
#save(file_name) ⇒ Object
Save the model in marshal format.
485 486 487 488 |
# File 'lib/dnn/core/models.rb', line 485 def save(file_name) saver = Savers::MarshalSaver.new(self, include_model: true) saver.save(file_name) end |
#save_params(file_name) ⇒ Object
Save the params in marshal format.
492 493 494 495 |
# File 'lib/dnn/core/models.rb', line 492 def save_params(file_name) saver = Savers::MarshalSaver.new(self, include_model: false) saver.save(file_name) end |
#set_all_params_data(params_data) ⇒ Object
Set parameter data of all layers.
547 548 549 550 551 552 553 |
# File 'lib/dnn/core/models.rb', line 547 def set_all_params_data(params_data) trainable_layers.each.with_index do |layer, i| params_data[i].each do |(key, data)| layer.get_params[key].data = data end end end |
#setup(optimizer, loss_func, loss_weights: nil) ⇒ Object
Set optimizer and loss_func to model.
146 147 148 149 150 151 152 153 154 155 156 |
# File 'lib/dnn/core/models.rb', line 146 def setup(optimizer, loss_func, loss_weights: nil) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError, "optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class." end unless loss_func.is_a?(Losses::Loss) || loss_func.is_a?(Array) raise TypeError, "loss_func:#{loss_func.class} is not an instance of DNN::Losses::Loss or Array class." end @optimizer = optimizer self.loss_func = loss_func @loss_weights = loss_weights end |
#test_on_batch(x, y) ⇒ Float | Array
Test once.
360 361 362 363 364 365 366 367 368 369 370 |
# File 'lib/dnn/core/models.rb', line 360 def test_on_batch(x, y) raise DNNError, "The model is not loss_func setup complete." unless @loss_func Utils.check_input_data_type("x", x, Xumo::SFloat) Utils.check_input_data_type("y", y, Xumo::SFloat) *, loss_data = test_on_batch_internal(x, y) if loss_data.is_a?(Array) loss_data.map { |v| Utils.to_f(v) } else Utils.to_f(loss_data) end end |
#test_step(x, y, need_accuracy: false) ⇒ Hash
Testing process to be performed in one step.
341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# File 'lib/dnn/core/models.rb', line 341 def test_step(x, y, need_accuracy: false) output_data, loss_data = test_on_batch_internal(x, y) if loss_data.is_a?(Array) loss_value = [] accuracy = [] loss_data.each_index do |i| loss_value << Utils.to_f(loss_data) accuracy << accuracy(output_data[i], y[i]).to_f / y[i].shape[0] end else loss_value = Utils.to_f(loss_data) end { test_loss: loss_value, test_accuracy: accuracy(output_data, y) } end |
#to_cpu ⇒ DNN::Models::Model
Convert the parameters of model and optimizer for cpu.
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
# File 'lib/dnn/core/models.rb', line 557 def to_cpu params_data = get_all_params_data clean_layers set_all_params_data(params_data) trainable_layers.each do |layer| layer.get_params.each do |key, param| data = param.data if DNN.use_cumo? && data.is_a?(Cumo::NArray) param.data = Utils.cumo2numo(data) end end end @optimizer.status.each do |key, state| next unless state state.each do |param, data| if DNN.use_cumo? && data.is_a?(Cumo::NArray) state[param] = Utils.cumo2numo(data) end end end self end |
#to_gpu ⇒ DNN::Models::Model
Convert the parameters of model and optimizer for gpu.
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
# File 'lib/dnn/core/models.rb', line 582 def to_gpu params_data = get_all_params_data clean_layers set_all_params_data(params_data) trainable_layers.each do |layer| layer.get_params.each do |(key, param)| data = param.data if DNN.use_cumo? && data.is_a?(Numo::NArray) param.data = Utils.numo2cumo(data) end end end @optimizer.status.each do |(key, state)| next unless state state.each do |(param, data)| if DNN.use_cumo? && data.is_a?(Numo::NArray) state[param] = Utils.numo2cumo(data) end end end self end |
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true, need_accuracy: true, io: $stdout) ⇒ Object Also known as: fit
Start training. Setup the model before use this method.
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# File 'lib/dnn/core/models.rb', line 188 def train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true, need_accuracy: true, io: $stdout) trainer = ModelTrainer.new(self) trainer.start_train(x, y, epochs, batch_size: batch_size, initial_epoch: initial_epoch, test: test, verbose: verbose, need_accuracy: need_accuracy, io: io) trainer.update while trainer.training? end |
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true, need_accuracy: true, io: $stdout) ⇒ Object Also known as: fit_by_iterator
Start training by iterator. Setup the model before use this method.
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# File 'lib/dnn/core/models.rb', line 219 def train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true, need_accuracy: true, io: $stdout) trainer = ModelTrainer.new(self) trainer.start_train_by_iterator(train_iterator, epochs, batch_size: batch_size, initial_epoch: initial_epoch, test: test, verbose: verbose, need_accuracy: need_accuracy, io: io) trainer.update while trainer.training? end |
#train_on_batch(x, y) ⇒ Float | Array
Training once. Setup the model before use this method.
269 270 271 272 273 274 275 276 277 278 279 280 |
# File 'lib/dnn/core/models.rb', line 269 def train_on_batch(x, y) raise DNNError, "The model is not optimizer setup complete." unless @optimizer raise DNNError, "The model is not loss_func setup complete." unless @loss_func Utils.check_input_data_type("x", x, Xumo::SFloat) Utils.check_input_data_type("y", y, Xumo::SFloat) *, loss_data = train_on_batch_internal(x, y) if loss_data.is_a?(Array) loss_data.map { |v| Utils.to_f(v) } else Utils.to_f(loss_data) end end |
#train_step(x, y, need_accuracy: false) ⇒ Hash
Implement the training process to be performed in one step.
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# File 'lib/dnn/core/models.rb', line 244 def train_step(x, y, need_accuracy: false) output_data, loss_data = train_on_batch_internal(x, y) if loss_data.is_a?(Array) loss_value = [] acc = [] if need_accuracy loss_data.each_index do |i| loss_value << Utils.to_f(loss_data) acc << accuracy(output_data[i], y[i]).to_f / y[i].shape[0] if need_accuracy end else loss_value = Utils.to_f(loss_data) acc = accuracy(output_data, y).to_f / y.shape[0] if need_accuracy end if need_accuracy { loss: loss_value, accuracy: acc } else { loss: loss_value } end end |
#trainable_layers ⇒ Array
Get the all trainable layers.
504 505 506 |
# File 'lib/dnn/core/models.rb', line 504 def trainable_layers layers.select { |layer| layer.is_a?(Layers::TrainableLayer) } end |