Module: Jamf::Utility

Includes:
Constants
Included in:
Jamf
Defined in:
lib/jamf/utility.rb

Overview

A collection of useful utility methods. Mostly for converting values between formats, parsing data, and user interaction. This module should be extended into the Jamf Module so all methods become module methods

Constant Summary collapse

OS_TEN_MAXS =

Hash of ‘minor’ => ‘maint’ The maximum maint release for macOS 10.minor.maint e.g the highest release of 10.6 was 10.6.8, the highest release of 10.15 was 10.15.7

12 is the default for the current OS and higher (and hoping apple doesn’t release 10.16.13)

{
  2 => 8,
  3 => 9,
  4 => 11,
  5 => 8,
  6 => 8,
  7 => 5,
  8 => 5,
  9 => 5,
  10 => 5,
  11 => 6,
  12 => 6,
  13 => 6,
  14 => 6,
  15 => 7
}
MAC_OS_MAXS =

Hash of ‘major’ => ‘minor’ The maximum minor release for macOS major.minor e.g. the highest release of 11 is 11.12

12 is the default for the current OS and higher (and hoping apple doesn’t release, e.g., 11.13)

{
  11 => 12,
  12 => 12,
  13 => 12,
  14 => 12,
  15 => 12,
  16 => 12,
  17 => 12,
  18 => 12,
  19 => 12,
  20 => 12,
  21 => 12,
  22 => 12,
  23 => 12,
  24 => 12,
  25 => 12,
  26 => 12,
  27 => 12,
  28 => 12,
  29 => 12,
  30 => 12
}

Instance Method Summary collapse

Instance Method Details

#api_object_class(name) ⇒ Class

Given a name, singular or plural, of a Jamf::APIObject subclass as a String or Symbol (e.g. :computer/‘computers’), return the class itself (e.g. Jamf::Computer) The available names are the RSRC_LIST_KEY and RSRC_OBJECT_KEY values for each APIObject subclass.

Parameters:

  • name (String, Symbol)

    The name of a Jamf::APIObject subclass, singluar or plural

Returns:

  • (Class)

    The class

Raises:



412
413
414
415
416
417
# File 'lib/jamf/utility.rb', line 412

def api_object_class(name)
  klass = api_object_names[name.downcase.to_sym]
  raise Jamf::InvalidDataError, "Unknown API Object Class: #{name}" unless klass

  klass
end

#api_object_namesHash

APIObject subclasses have singular names, and are, of course capitalized, e.g. ‘Computer’ But we often want to refer to them in the plural, or lowercase, e.g. ‘computers’ This method returns a Hash of the RSRC_LIST_KEY (a plural symbol) and the RSRC_OBJECT_KEY (a singular symbol) of each APIObject subclass, keyed to the class itself, such that both :computer and :computers are keys for Jamf::Computer and both :policy and :policies are keys for Jamf::Policy, and so on.

Returns:

  • (Hash)

    APIObject subclass names to Classes



431
432
433
434
435
436
437
438
439
440
441
442
443
444
# File 'lib/jamf/utility.rb', line 431

def api_object_names
  return @api_object_names if @api_object_names

  @api_object_names ||= {}
  JSS.constants.each do |const|
    klass = JSS.const_get const
    next unless klass.is_a? Class
    next unless klass.ancestors.include? Jamf::APIObject

    @api_object_names[klass.const_get(:RSRC_LIST_KEY).to_sym] = klass if klass.constants.include? :RSRC_LIST_KEY
    @api_object_names[klass.const_get(:RSRC_OBJECT_KEY).to_sym] = klass if klass.constants.include? :RSRC_OBJECT_KEY
  end
  @api_object_names
end

#array_to_rexml_array(element, list) ⇒ Array<REXML::Element>

Given an element name and an array of content, generate an Array of REXML::Element objects with that name, and matching content. Given element name ‘foo’ and the array [‘bar’,‘morefoo’] The array of REXML elements would render thus:

<foo>bar</foo>
<foo>morefoo</foo>

Parameters:

  • element (#to_s)

    an element_name like :foo

  • list (Array<#to_s>)

    an Array of element content such as [“bar”, :morefoo]

Returns:

  • (Array<REXML::Element>)

Raises:



474
475
476
477
478
479
480
481
482
483
# File 'lib/jamf/utility.rb', line 474

def array_to_rexml_array(element, list)
  raise Jamf::InvalidDataError, 'Arg. must be an Array.' unless list.is_a? Array

  element = element.to_s
  list.map do |v|
    e = REXML::Element.new(element)
    e.text = v
    e
  end
end

#devmode(setting) ⇒ Boolean

un/set devmode mode. Useful when coding - methods can call JSS.devmode? and then e.g. spit out something instead of performing some action.

Parameters:

  • Set (Symbol)

    devmode :on or :off

Returns:

  • (Boolean)

    The new state of devmode



643
644
645
# File 'lib/jamf/utility.rb', line 643

def devmode(setting)
  @devmode = setting == :on
end

#devmode?Boolean

is devmode currently on?

Returns:

  • (Boolean)


651
652
653
# File 'lib/jamf/utility.rb', line 651

def devmode?
  @devmode
end

#epoch_to_time(epoch) ⇒ Time?

Converts JSS epoch (unix epoch + milliseconds) to a Ruby Time object

Parameters:

  • epoch (String, Integer, nil)

Returns:

  • (Time, nil)

    nil is returned if epoch is nil, 0 or an empty String.



393
394
395
396
397
# File 'lib/jamf/utility.rb', line 393

def epoch_to_time(epoch)
  return nil if NIL_DATES.include? epoch

  Time.at(epoch.to_i / 1000.0)
end

#escape_xml(string) ⇒ String

Given a string of xml element text, escape any characters that would make XML unhappy.

* & => &amp;
* " => &quot;
* < => &lt;
* > => &gt;
* ' => &apos;

Parameters:

  • string (String)

    the string to make xml-compliant.

Returns:

  • (String)

    the xml-compliant string



457
458
459
# File 'lib/jamf/utility.rb', line 457

def escape_xml(string)
  string.gsub(/&/, '&amp;').gsub(/"/, '&quot;').gsub(/>/, '&gt;').gsub(/</, '&lt;').gsub(/'/, '&apos;')
end

#expand_min_os(min_os) ⇒ Array

Converts an OS Version into an Array of equal or higher OS versions, up to some non-existant max, hopefully far in the future, currently 20.12.10

This array can then be joined with commas and used as the value of the os_requirements for Packages and Scripts.

It’s unlikely that this method, as written, will still be in use by the release of macOS 20.12.10, but currently thats the upper limit.

Hopefully well before then JAMF will implement a “minimum OS” in Jamf Pro itself, then we could avoid the inherant limitations in using a method like this.

When the highest maint. release of an OS version is not known, because its the currently released OS version or higher, then this method assumes ‘12’ e.g. ‘10.16.12’, ‘11.12’, ‘12.12’, etc.

Apple has never released more than 11 updates to a version of macOS (that being 10.4), so hopefully 12 is enough

Since Big Sur might report itself as either ‘10.16’ or ‘11.x.x’, this method will allow for both possibilities, and the array will contain whatever iterations needed for both version numbers

Examples:

JSS.expand_min_os ">=10.9.4" # => returns this array
 # ["10.9.4",
 #  "10.9.5",
 #  "10.10.x"
 #  ...
 #  "10.16.x",
 #  "11.x",
 #  "12.x",
 #  ...
 #  "20.x"]

Parameters:

  • min_os (String)

    the mimimum OS version to expand, e.g. “>=10.9.4” or “11.1”

Returns:

  • (Array)

    Nearly all potential OS versions from the minimum to 20.12.10



132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# File 'lib/jamf/utility.rb', line 132

def expand_min_os(min_os)
  min_os = min_os.delete '>='

  # split the version into major, minor and maintenance release numbers
  major, minor, maint = min_os.split('.')
  minor = 'x' if minor.nil? || minor == '0'
  maint = 'x' if maint.nil? || maint == '0'

  ok_oses = []

  # Deal with 10.x.x up to 10.16
  if major == '10'

    # In big sur with SYSTEM_VERSION_COMPAT
    # set, it will only ever report as `10.16`
    # So if major is 10 and minor is 16, ignore maint
    # and start explicitly at '10.16'
    if minor == '16'
      ok_oses << '10.16'

    # But for Catalina and below, we need to
    # expand things out
    else
      # e.g. 10.14.x
      # doesn't expand to anything
      if maint == 'x'
        ok_oses << "10.#{minor}.x"

      # e.g. 10.15.5
      # expand to 10.15.5, 10.15.6, 10.15.7
      else
        max_maint_for_minor = OS_TEN_MAXS[minor.to_i]

        (maint.to_i..max_maint_for_minor).each do |m|
          ok_oses << "#{major}.#{minor}.#{m}"
        end # each m
      end # if maint == x

      # now if we started below catalina, account for everything
      # up to 10.15.x
      ((minor.to_i + 1)..15).each { |v| ok_oses << "10.#{v}.x" } if minor.to_i < 15

      # and add big sur with SYSTEM_VERSION_COMPAT
      ok_oses << '10.16'
    end # if minor == 16

    # now reset these so we can go higher
    major = '11'
    minor = 'x'
    maint = 'x'
  end # if major == 10

  # if the min os is 11.0.0 or equiv, and we aven't added 10.16
  # for SYSTEM_VERSION_COMPAT, add it now
  ok_oses << '10.16' if ['11', '11.x', '11.x.x', '11.0', '11.0.0'].include?(min_os) && !ok_oses.include?('10.16')

  # e.g. 11.x, or 11.x.x
  # expand to 11.x, 12.x, 13.x, ... 30.x
  if minor == 'x'
    ((major.to_i)..MAC_OS_MAXS.keys.max).each { |v| ok_oses << "#{v}.x" }

  # e.g. 11.2.x
  # expand to 11.2.x, 11.3.x, ... 11.12.x,
  #   12.x, 13.x,  ... 20.x
  elsif maint == 'x'
    # first expand the minors out to their max
    # e.g. 11.2.x, 11.3.x, ... 11.12.x
    max_minor_for_major = MAC_OS_MAXS[major.to_i]
    ((minor.to_i)..max_minor_for_major).each do |m|
      ok_oses << "#{major}.#{m}.x"
    end # each m

    # then add the majors out to 20
    ((major.to_i + 1)...MAC_OS_MAXS.keys.max).each { |v| ok_oses << "#{v}.x" }

  # e.g. 11.2.3
  # expand to 11.2.3, 11.2.4, ... 11.2.10,
  #   11.3.x, 11.4.x, ... 11.12.x,
  #   12.x, 13.x, ... 20.x
  else
    # first expand the maints out to 10
    # e.g. 11.2.3, 11.2.4, ... 11.2.10
    ((maint.to_i)..10).each { |mnt| ok_oses << "#{major}.#{minor}.#{mnt}" }

    # then expand the minors out to their max
    # e.g. 11.3.x, ... 11.12.x
    max_minor_for_major = MAC_OS_MAXS[major.to_i]
    ((minor.to_i + 1)..max_minor_for_major).each { |min| ok_oses << "#{major}.#{min}.x" }

    # then add the majors out to 20
    ((major.to_i + 1)..MAC_OS_MAXS.keys.max).each { |v| ok_oses << "#{v}.x" }
  end

  ok_oses
end

#hash_to_rexml_array(hash) ⇒ Array<REXML::Element>

Given a simple Hash, convert it to an array of REXML Elements such that each key becomes an element, and its value becomes the text content of that element

Examples:

my_hash = {:foo => "bar", :baz => :morefoo}
xml = JSS.hash_to_rexml_array(my_hash)
xml.each{|x| puts x }

<foo>bar</foo>
<baz>morefoo</baz>

Parameters:

  • hash (Hash{#to_s => #to_s})

    the Hash to convert

Returns:

  • (Array<REXML::Element>)

    the Array of REXML elements.

Raises:



501
502
503
504
505
506
507
508
509
510
511
# File 'lib/jamf/utility.rb', line 501

def hash_to_rexml_array(hash)
  raise InvalidDataError, 'Arg. must be a Hash.' unless hash.is_a? Hash

  ary = []
  hash.each_pair do |k, v|
    el = REXML::Element.new k.to_s
    el.text = v
    ary << el
  end
  ary
end

#humanize_secs(secs) ⇒ String

Very handy! lifted from stackoverflow.com/questions/4136248/how-to-generate-a-human-readable-time-range-using-ruby-on-rails

Turns the integer 834756398 into the string “26 years 23 weeks 1 day 12 hours 46 minutes 38 seconds”

Parameters:

  • secs (Integer)

    a number of seconds

Returns:

  • (String)

    a human-readable (English) version of that number of seconds.



665
666
667
668
669
670
671
672
673
# File 'lib/jamf/utility.rb', line 665

def humanize_secs(secs)
  [[60, :second], [60, :minute], [24, :hour], [7, :day], [52.179, :week], [1_000_000_000, :year]].map do |count, name|
    next unless secs > 0

    secs, n = secs.divmod(count)
    n = n.to_i
    "#{n} #{n == 1 ? name : (name.to_s + 's')}"
  end.compact.reverse.join(' ')
end

#item_list_to_rexml_list(list_element, item_element, item_list, content = :name) ⇒ REXML::Element

Given an Array of Hashes with :id and/or :name keys, return a single REXML element with a sub-element for each item, each of which contains a :name or :id element.

e.g. :computers

e.g. :computer

Examples:

comps = [{:id=>2,:name=>'kimchi'},{:id=>5,:name=>'mantis'}]
xml = JSS.item_list_to_rexml_list(:computers, :computer , comps, :name)
puts xml
# output manually formatted for clarity. No newlines in the real xml string
<computers>
  <computer>
    <name>kimchi</name>
  </computer>
  <computer>
    <name>mantis</name>
  </computer>
</computers>

# if content is :id, then, eg. <name>kimchi</name> would be <id>2</id>

Parameters:

  • list_element (#to_s)

    the name of the XML element that contains the list.

  • item_element (#to_s)

    the name of each XML element in the list,

  • item_list (Array<Hash>)

    an Array of Hashes each with a :name or :id key.

  • content (Symbol) (defaults to: :name)

    which hash key should be used as the content of if list item? Defaults to :name

Returns:

  • (REXML::Element)

    the item list as REXML



545
546
547
548
549
550
551
# File 'lib/jamf/utility.rb', line 545

def item_list_to_rexml_list(list_element, item_element, item_list, content = :name)
  xml_list = REXML::Element.new list_element.to_s
  item_list.each do |i|
    xml_list.add_element(item_element.to_s).add_element(content.to_s).text = i[content]
  end
  xml_list
end

#os_ok?(requirement, os_to_check = nil) ⇒ Boolean

Scripts and packages can have OS limitations. This method tests a given OS, against a requirement list to see if the requirement is met.

Parameters:

  • requirement (String, Array)

    The os requirement list, a comma-seprated string or array of strings of allows OSes. e.g. 10.7, 10.8.5 or 10.9.x

  • processor (String)

    the os to check, defaults to the os of the current machine.

Returns:

  • (Boolean)

    can this pkg be installed with the processor given?



262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# File 'lib/jamf/utility.rb', line 262

def os_ok?(requirement, os_to_check = nil)
  return true if requirement.to_s =~ /none/i
  return true if requirement.to_s == 'n'

  requirement = JSS.to_s_and_a(requirement)[:arrayform]
  return true if requirement.empty?

  os_to_check ||= `/usr/bin/sw_vers -productVersion`.chomp

  # convert the requirement array into an array of regexps.
  # examples:
  #   "10.8.5" becomes  /^10\.8\.5$/
  #   "10.8" becomes /^10.8(.0)?$/
  #   "10.8.x" /^10\.8\.?\d*$/
  req_regexps = requirement.map do |r|
    if r.end_with?('.x')
      /^#{r.chomp('.x').gsub('.', '\.')}(\.?\d*)*$/

    elsif r =~ /^\d+\.\d+$/
      /^#{r.gsub('.', '\.')}(.0)?$/

    else
      /^#{r.gsub('.', '\.')}$/
    end
  end

  req_regexps.each { |re| return true if os_to_check =~ re }
  false
end

#parse_jss_version(version) ⇒ Hash{Symbol => String, Gem::Version}

Parse a JSS Version number into something comparable.

This method returns a Hash with these keys:

  • :major => the major version, Integer

  • :minor => the minor version, Integor

  • :maint => the revision, Integer (also available as :patch and :revision)

  • :build => the revision, String

  • :version => a Gem::Version object built from :major, :minor, :revision which can be easily compared with other Gem::Version objects.

NOTE: the :version value ignores build numbers, so comparisons only compare major.minor.maint

Parameters:

  • version (String)

    a JSS version number from the API

Returns:

  • (Hash{Symbol => String, Gem::Version})

    the parsed version data.

Raises:



570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# File 'lib/jamf/utility.rb', line 570

def parse_jss_version(version)
  major, second_part, *_rest = version.split('.')
  raise Jamf::InvalidDataError, 'JSS Versions must start with "x.x" where x is one or more digits' unless major =~ /\d$/ && second_part =~ /^\d/

  release, build = version.split(/-/)

  major, minor, revision = release.split '.'
  minor ||= 0
  revision ||= 0

  {
    major: major.to_i,
    minor: minor.to_i,
    revision: revision.to_i,
    maint: revision.to_i,
    patch: revision.to_i,
    build: build,
    version: Gem::Version.new("#{major}.#{minor}.#{revision}")
  }
end

#parse_plist(plist, symbol_keys: false) ⇒ Object

Parse a plist into a Ruby data structure. The plist parameter may be a String containing an XML plist, or a path to a plist file, or it may be a Pathname object pointing to a plist file. The plist files may be XML or binary.

Parameters:

  • plist (Pathname, String)

    the plist XML, or the path to a plist file

  • symbol_keys (Boolean) (defaults to: false)

    should any Hash keys in the result be converted into Symbols rather than remain as Strings?

Returns:

  • (Object)

    the parsed plist as a ruby hash,array, etc.



345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# File 'lib/jamf/utility.rb', line 345

def parse_plist(plist, symbol_keys: false)
  require 'cfpropertylist'

  # did we get a string of xml, or a string pathname?
  case plist
  when String
    return CFPropertyList.native_types(CFPropertyList::List.new(data: plist).value, symbol_keys) if plist.include? '</plist>'

    plist = Pathname.new plist
  when Pathname
    true
  else
    raise ArgumentError, 'Argument must be a path (as a Pathname or String) or a String of XML'
  end # case plist

  # if we're here, its a Pathname
  raise Jamf::MissingDataError, "No such file: #{plist}" unless plist.file?

  CFPropertyList.native_types(CFPropertyList::List.new(file: plist).value, symbol_keys)
end

#parse_time(a_datetime) ⇒ Object

a wrapper around Time.parse that returns nil for nil, zero, and empty values.



327
328
329
330
331
# File 'lib/jamf/utility.rb', line 327

def parse_time(a_datetime)
  return nil if NIL_DATES.include? a_datetime

  Time.parse a_datetime.to_s
end

#processor_ok?(requirement, processor = nil) ⇒ Boolean

Scripts and packages can have processor limitations. This method tests a given processor, against a requirement to see if the requirement is met.

Parameters:

  • requirement (String)

    The processor requirement. either ‘ppc’, ‘x86’, or some variation on “none”, nil, or empty

  • processor (String) (defaults to: nil)

    the processor to check, defaults to the processor of the current machine. Any flavor of intel

    is (i486, i386, x86-64, etc) is treated as "x86"
    

Returns:

  • (Boolean)

    can this pkg be installed with the processor given?



242
243
244
245
246
247
# File 'lib/jamf/utility.rb', line 242

def processor_ok?(requirement, processor = nil)
  return true if requirement.to_s.empty? || requirement =~ /none/i

  processor ||= `/usr/bin/uname -p`
  requirement == (processor.to_s.include?('86') ? 'x86' : 'ppc')
end

#prompt_for_password(message) ⇒ String

Prompt for a password in a terminal.

Parameters:

  • message (String)

    the prompt message to display

Returns:

  • (String)

    the text typed by the user



622
623
624
625
626
627
628
629
630
631
632
633
# File 'lib/jamf/utility.rb', line 622

def prompt_for_password(message)
  begin
    $stdin.reopen '/dev/tty' unless $stdin.tty?
    $stderr.print "#{message} "
    system '/bin/stty -echo'
    pw = $stdin.gets.chomp("\n")
    puts
  ensure
    system '/bin/stty echo'
  end # begin
  pw
end

#stdin(line = 0) ⇒ String?

Retrive one or all lines from whatever was piped to standard input.

Standard input is read completely the first time this method is called and the lines are stored as an Array in the module var @stdin_lines

Parameters:

  • line (Integer) (defaults to: 0)

    which line of stdin is being retrieved. The default is zero (0) which returns all of stdin as a single string.

Returns:

  • (String, nil)

    the requested ling of stdin, or nil if it doesn’t exist.



607
608
609
610
611
612
613
614
# File 'lib/jamf/utility.rb', line 607

def stdin(line = 0)
  @stdin_lines ||= ($stdin.tty? ? [] : $stdin.read.lines.map { |l| l.chomp("\n") })

  return @stdin_lines.join("\n") if line <= 0

  idx = line - 1
  @stdin_lines[idx]
end

#superuser?Boolean

Returns is this code running as root?.

Returns:

  • (Boolean)

    is this code running as root?



593
594
595
# File 'lib/jamf/utility.rb', line 593

def superuser?
  Process.euid.zero?
end

#to_s_and_a(somedata) ⇒ Hash{:stringform => String, :arrayform => Array}

Given a list of data as a comma-separated string, or an Array of strings, return a Hash with both versions.

Some parts of the JSS require lists as comma-separated strings, while often those data are easier work with as arrays. This method is a handy way to get either form when given either form.

Examples:

JSS.to_s_and_a "foo, bar, baz" # Hash => {:stringform => "foo, bar, baz", :arrayform => ["foo", "bar", "baz"]}

JSS.to_s_and_a ["foo", "bar", "baz"] # Hash => {:stringform => "foo, bar, baz", :arrayform => ["foo", "bar", "baz"]}

Parameters:

  • somedata (String, Array)

    the data to parse, of either class,

Returns:

  • (Hash{:stringform => String, :arrayform => Array})

    the data as both comma-separated String and Array



308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# File 'lib/jamf/utility.rb', line 308

def to_s_and_a(somedata)
  case somedata
  when nil
    valstr = ''
    valarr = []
  when String
    valstr = somedata
    valarr = somedata.split(/,\s*/)
  when Array
    valstr = somedata.join ', '
    valarr = somedata
  else
    raise Jamf::InvalidDataError, 'Input must be a comma-separated String or an Array of Strings'
  end # case
  { stringform: valstr, arrayform: valarr }
end

#xml_plist_from(data) ⇒ String

Convert any ruby data to an XML plist.

NOTE: Binary data is tricky. Easiest way is to pass in a Pathname or IO object (anything that responds to ‘read` and returns a bytestring) and then the CFPropertyList.guess method will read it and convert it to a Plist <data> element with base64 encoded data. For more info, see CFPropertyList.guess

Parameters:

  • data (Object)

    the data to be converted, usually a Hash

Returns:

  • (String)

    the object converted into an XML plist



380
381
382
383
384
385
# File 'lib/jamf/utility.rb', line 380

def xml_plist_from(data)
  require 'cfpropertylist'
  plist = CFPropertyList::List.new
  plist.value = CFPropertyList.guess(data, convert_unknown_to_string: true)
  plist.to_str(CFPropertyList::List::FORMAT_XML)
end