Class: RubyStatistics::Distribution::LogSeries
- Inherits:
-
Object
- Object
- RubyStatistics::Distribution::LogSeries
- Defined in:
- lib/ruby-statistics/distribution/logseries.rb
Class Method Summary collapse
- .cumulative_function(k, p) ⇒ Object
- .density_function(k, p) ⇒ Object
- .mean(p) ⇒ Object
- .mode ⇒ Object
- .variance(p) ⇒ Object
Class Method Details
.cumulative_function(k, p) ⇒ Object
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# File 'lib/ruby-statistics/distribution/logseries.rb', line 14 def self.cumulative_function(k, p) return if k <= 0 # Sadly, the incomplete beta function is converging # too fast to zero and breaking the calculation on logs. # So, we default to the basic definition of the CDF which is # the integral (-Inf, K) of the PDF, with P(X <= x) which can # be solved as a summation of all PDFs from 1 to K. Note that the summation approach # only applies to discrete distributions. # # right = Math.incomplete_beta_function(p, (k + 1).floor, 0) / Math.log(1.0 - p) # 1.0 + right result = 0.0 1.upto(k) do |number| result += self.density_function(number, p) end result end |
.density_function(k, p) ⇒ Object
4 5 6 7 8 9 10 11 12 |
# File 'lib/ruby-statistics/distribution/logseries.rb', line 4 def self.density_function(k, p) return if k <= 0 k = k.to_i left = (-1.0 / Math.log(1.0 - p)) right = (p ** k).to_r left * right / k end |
.mean(p) ⇒ Object
39 40 41 |
# File 'lib/ruby-statistics/distribution/logseries.rb', line 39 def self.mean(p) (-1.0 / Math.log(1.0 - p)) * (p / (1.0 - p)) end |
.mode ⇒ Object
35 36 37 |
# File 'lib/ruby-statistics/distribution/logseries.rb', line 35 def self.mode 1.0 end |