Class: RubyStatistics::StatisticalTest::TTest
- Inherits:
-
Object
- Object
- RubyStatistics::StatisticalTest::TTest
- Defined in:
- lib/ruby-statistics/statistical_test/t_test.rb
Defined Under Namespace
Classes: ZeroStdError
Class Method Summary collapse
- .paired_test(alpha, tails, left_group, right_group) ⇒ Object
-
.perform(alpha, tails, *args) ⇒ Object
Perform a T-Test for one or two samples.
Class Method Details
.paired_test(alpha, tails, left_group, right_group) ⇒ Object
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# File 'lib/ruby-statistics/statistical_test/t_test.rb', line 62 def self.paired_test(alpha, tails, left_group, right_group) raise StandardError, 'both samples are the same' if left_group == right_group # Handy snippet grabbed from https://stackoverflow.com/questions/2682411/ruby-sum-corresponding-members-of-two-or-more-arrays differences = [left_group, right_group].transpose.map { |value| value.reduce(:-) } degrees_of_freedom = differences.size - 1 difference_std = differences.standard_deviation raise ZeroStdError, ZeroStdError::STD_ERROR_MSG if difference_std == 0 down = difference_std/Math.sqrt(differences.size) t_score = (differences.mean - 0)/down.to_r t_distribution = Distribution::TStudent.new(degrees_of_freedom) probability = t_distribution.cumulative_function(t_score) p_value = if tails == :two_tail 2 * (1 - t_distribution.cumulative_function(t_score.abs)) else 1 - probability end { t_score: t_score, probability: probability, p_value: p_value, alpha: alpha, null: alpha < p_value, alternative: p_value <= alpha, confidence_level: 1 - alpha } end |
.perform(alpha, tails, *args) ⇒ Object
Perform a T-Test for one or two samples. For the tails param, we need a symbol: :one_tail or :two_tail
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/ruby-statistics/statistical_test/t_test.rb', line 11 def self.perform(alpha, tails, *args) return if args.size < 2 degrees_of_freedom = 0 # If the comparison mean has been specified t_score = if args[0].is_a? Numeric data_mean = args[1].mean data_std = args[1].standard_deviation raise ZeroStdError, ZeroStdError::STD_ERROR_MSG if data_std == 0 comparison_mean = args[0] degrees_of_freedom = args[1].size - 1 (data_mean - comparison_mean)/(data_std / Math.sqrt(args[1].size).to_r).to_r else sample_left_mean = args[0].mean sample_left_variance = args[0].variance sample_right_variance = args[1].variance sample_right_mean = args[1].mean degrees_of_freedom = args.flatten.size - 2 left_root = sample_left_variance/args[0].size.to_r right_root = sample_right_variance/args[1].size.to_r standard_error = Math.sqrt(left_root + right_root) (sample_left_mean - sample_right_mean).abs/standard_error.to_r end t_distribution = Distribution::TStudent.new(degrees_of_freedom) probability = t_distribution.cumulative_function(t_score) # Steps grabbed from https://support.minitab.com/en-us/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/basics/manually-calculate-a-p-value/ # See https://github.com/estebanz01/ruby-statistics/issues/23 p_value = if tails == :two_tail 2 * (1 - t_distribution.cumulative_function(t_score.abs)) else 1 - probability end { t_score: t_score, probability: probability, p_value: p_value, alpha: alpha, null: alpha < p_value, alternative: p_value <= alpha, confidence_level: 1 - alpha } end |