Class: RubyStatistics::StatisticalTest::WilcoxonRankSumTest

Inherits:
Object
  • Object
show all
Defined in:
lib/ruby-statistics/statistical_test/wilcoxon_rank_sum_test.rb

Instance Method Summary collapse

Instance Method Details

#perform(alpha, tails, group_one, group_two) ⇒ Object

Steps to perform the calculation are based on www.mit.edu/~6.s085/notes/lecture5.pdf



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# File 'lib/ruby-statistics/statistical_test/wilcoxon_rank_sum_test.rb', line 22

def perform(alpha, tails, group_one, group_two)
  # Size for each group
  n1, n2 = group_one.size, group_two.size

  # Rank all data
  total_ranks = rank(group_one + group_two)

  # sum rankings per group
  r1 = ranked_sum_for(total_ranks, group_one)
  r2 = ranked_sum_for(total_ranks, group_two)

  # calculate U statistic
  u1 = (n1 * (n1 + 1)/2.0) - r1
  u2 = (n2 * (n2 + 1)/2.0 ) - r2

  u_statistic = [u1.abs, u2.abs].min

  median_u = (n1 * n2)/2.0

  ties = total_ranks.values.select { |element| element[:counter] > 1 }

  std_u = if ties.size > 0
            corrected_sigma(ties, n1, n2)
          else
            Math.sqrt((n1 * n2 * (n1 + n2 + 1))/12.0)
          end

  z = (u_statistic - median_u)/std_u

  # Most literature are not very specific about the normal distribution to be used.
  # We ran multiple tests with a Normal(median_u, std_u) and Normal(0, 1) and we found
  # the latter to be more aligned with the results.
  probability = Distribution::StandardNormal.new.cumulative_function(z.abs)
  p_value = 1 - probability
  p_value *= 2 if tails == :two_tail

  { probability: probability,
    u: u_statistic,
    z: z,
    p_value: p_value,
    alpha: alpha,
    null: alpha < p_value,
    alternative: p_value <= alpha,
    confidence_level: 1 - alpha }
end

#rank(elements) ⇒ Object



4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# File 'lib/ruby-statistics/statistical_test/wilcoxon_rank_sum_test.rb', line 4

def rank(elements)
  ranked_elements = {}

  elements.sort.each_with_index do |element, index|
    if ranked_elements.fetch(element, false)
      # This allow us to solve the ties easily when performing the rank summation per group
      ranked_elements[element][:counter] += 1
      ranked_elements[element][:rank] += (index + 1)
    else
      ranked_elements[element] = { counter: 1, rank: (index + 1) }
    end
  end

  # ranked_elements = [{ x => { counter: 1, rank: y } ]
  ranked_elements
end