Module: Rubyvis::SvgScene
- Defined in:
- lib/rubyvis/scene/svg_scene.rb,
lib/rubyvis/scene/svg_bar.rb,
lib/rubyvis/scene/svg_dot.rb,
lib/rubyvis/scene/svg_area.rb,
lib/rubyvis/scene/svg_line.rb,
lib/rubyvis/scene/svg_rule.rb,
lib/rubyvis/scene/svg_curve.rb,
lib/rubyvis/scene/svg_image.rb,
lib/rubyvis/scene/svg_label.rb,
lib/rubyvis/scene/svg_panel.rb,
lib/rubyvis/scene/svg_wedge.rb
Overview
:nodoc:
Defined Under Namespace
Classes: PathBasis
Constant Summary collapse
- IMPLICIT =
{:svg=>{ "shape-rendering"=> "auto", "pointer-events"=> "painted", "x"=> 0, "y"=> 0, "dy"=> 0, "text-anchor"=> "start", "transform"=> "translate(0,0)", #"fill"=> "none", "fill-opacity"=> 1, "stroke"=> "none", "stroke-opacity"=> 1, "stroke-width"=> 1.5, "stroke-linejoin"=> "miter" },:css=>{"font"=>"10px sans-serif"} }
Class Method Summary collapse
- .append(e, scenes, index) ⇒ Object
- .area(scenes) ⇒ Object
- .area_segment(scenes) ⇒ Object
- .bar(scenes) ⇒ Object
-
.cardinal_tangents(points, tension) ⇒ Object
Computes the tangents for the given points needed for cardinal spline interpolation.
- .create(type) ⇒ Object
-
.curve_basis(points) ⇒ Object
Interpolates the given points using the basis spline interpolation.
-
.curve_basis_segments(points) ⇒ Object
Interpolates the given points using the basis spline interpolation.
-
.curve_cardinal(points, tension) ⇒ Object
Interpolates the given points using cardinal spline interpolation.
-
.curve_cardinal_segments(points, tension) ⇒ Object
Interpolates the given points using cardinal spline interpolation.
-
.curve_hermite(points, tangents) ⇒ Object
Interpolates the given points with respective tangents using the cubic Hermite spline interpolation.
-
.curve_hermite_segments(points, tangents) ⇒ Object
Interpolates the given points with respective tangents using the cubic Hermite spline interpolation.
-
.curve_monotone(points) ⇒ Object
Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite interpolation.
-
.curve_monotone_segments(points) ⇒ Object
Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite interpolation.
- .dot(scenes) ⇒ Object
- .expect(e, type, attributes, style = nil) ⇒ Object
- .fill(e, scenes, i) ⇒ Object
- .image(scenes) ⇒ Object
- .label(scenes) ⇒ Object
- .line(scenes) ⇒ Object
-
.line_intersect(o1, d1, o2, d2) ⇒ Object
/** @private Line-line intersection, per Akenine-Moller 16.16.1.
- .line_segment(scenes) ⇒ Object
-
.monotone_tangents(points) ⇒ Object
Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite interpolation.
- .panel(scenes) ⇒ Object
-
.path_basis(p0, p1, p2, p3) ⇒ Object
Converts the specified b-spline curve segment to a bezier curve compatible with SVG āCā.
-
.path_join(s0, s1, s2, s3) ⇒ Object
/** @private Returns the miter join path for the specified points.
-
.path_segment(s1, s2) ⇒ Object
Returns the path segment for the specified points.
- .remove_siblings(e) ⇒ Object
- .rule(scenes) ⇒ Object
- .scale ⇒ Object
- .scale=(v) ⇒ Object
- .stroke(e, scenes, i) ⇒ Object
-
.svg ⇒ Object
include REXML.
-
.title(e, s) ⇒ Object
Applies a title tooltip to the specified element
e
, using thetitle
property of the specified scene nodes
. - .update_all(scenes) ⇒ Object
- .wedge(scenes) ⇒ Object
- .xhtml ⇒ Object
- .xlink ⇒ Object
- .xmlns ⇒ Object
Class Method Details
.append(e, scenes, index) ⇒ Object
132 133 134 135 136 137 138 139 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 132 def self.append(e,scenes,index) e._scene=OpenStruct.new({:scenes=>scenes, :index=>index}) e=self.title(e, scenes[index]) if(!e.parent) scenes._g.add_element(e) end e.next_sibling_node end |
.area(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# File 'lib/rubyvis/scene/svg_area.rb', line 3 def self.area(scenes) #e = scenes._g.elements[1] e=scenes._g.get_element(1) return e if scenes.size==0 s=scenes[0] # segmented return self.area_segment(scenes) if (s.segmented) # visible return e if (!s.visible) fill = s.fill_style stroke = s.stroke_style return e if (fill.opacity==0 and stroke.opacity==0) # Computes the straight path for the range [i, j] path=lambda {|ii,j| p1 = [] p2 = [] k=j (ii..k).each {|i| si = scenes[i] sj = scenes[j] pi = "#{si.left},#{si.top}" pj = "#{(sj.left + sj.width)},#{(sj.top + sj.height)}" puts "#{i}:"+pi+","+pj if $DEBUG #/* interpolate */ if (i < k) sk = scenes[i + 1] sl = scenes[j - 1] case (s.interpolate) when "step-before" pi = pi+"V#{sk.top}" pj = pj+"H#{sl.left + sl.width}" when "step-after" pi = pi+"H#{sk.left}" pj = pj+"V#{sl.top + sl.height}" end end p1.push(pi) p2.push(pj) j=j-1 } (p1+p2).join("L"); } # @private Computes the curved path for the range [i, j]. */ path_curve=lambda {|ii, j| pointsT = [] pointsB = [] pathT=nil pathB=nil k=j (ii..k).each {|i| sj = scenes[j]; pointsT.push(scenes[i]) pointsB.push(OpenStruct.new({:left=> sj.left + sj.width, :top=> sj.top + sj.height})) j=j-1 } if (s.interpolate == "basis") pathT = Rubyvis::SvgScene.curve_basis(pointsT) pathB = Rubyvis::SvgScene.curve_basis(pointsB) elsif (s.interpolate == "cardinal") pathT = Rubyvis::SvgScene.curve_cardinal(pointsT, s.tension); pathB = Rubyvis::SvgScene.curve_cardinal(pointsB, s.tension); elsif # monotone pathT = Rubyvis::SvgScene.curve_monotone(pointsT); pathB = Rubyvis::SvgScene.curve_monotone(pointsB); end "#{pointsT[0].left },#{ pointsT[0].top }#{ pathT }L#{ pointsB[0].left},#{pointsB[0].top}#{pathB}" } #/* points */ d = [] si=nil sj=nil i=0 # puts "Scenes:#{scenes.size}, interpolation:#{scenes[0].interpolate}" while(i < scenes.size) si = scenes[i] if (si.width==0 and si.height==0) i+=1 next end j=i+1 while(j<scenes.size) do sj=scenes[j] break if sj.width==0 and sj.height==0 j+=1 end puts "j:#{j}" if $DEBUG i=i-1 if (i!=0 and (s.interpolate != "step-after")) j=j+1 if ((j < scenes.size) and (s.interpolate != "step-before")) d.push(((j - i > 2 and (s.interpolate == "basis" or s.interpolate == "cardinal" or s.interpolate == "monotone")) ? path_curve : path).call(i, j - 1)) i = j - 1 i+=1 end return e if d.size==0 e = self.expect(e, "path", { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events, "cursor"=> s.cursor, "d"=> "M" + d.join("ZM") + "Z", "fill"=> fill.color, "fill-opacity"=> fill.opacity==0 ? nil : fill.opacity, "stroke"=> stroke.color, "stroke-opacity"=> stroke.opacity==0 ? nil : stroke.opacity, "stroke-width"=> stroke.opacity!=0 ? s.line_width / self.scale : nil }) self.append(e, scenes, 0); end |
.area_segment(scenes) ⇒ Object
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# File 'lib/rubyvis/scene/svg_area.rb', line 130 def self.area_segment(scenes) e=scenes._g.get_element(1) #e = scenes._g.elements[1] s = scenes[0] pathsT=nil pathsB=nil if (s.interpolate == "basis" or s.interpolate == "cardinal" or s.interpolate == "monotone") pointsT = [] pointsB = [] n=scenes.size n.times {|i| sj = scenes[n - i - 1] pointsT.push(scenes[i]) pointsB.push(OpenStruct.new({:left=> sj.left + sj.width, :top=> sj.top + sj.height})); } if (s.interpolate == "basis") pathsT = Rubyvis::SvgScene.curve_basis_segments(pointsT) pathsB = Rubyvis::SvgScene.curve_basis_segments(pointsB) elsif (s.interpolate == "cardinal") pathsT = Rubyvis::SvgScene.curve_cardinal_segments(pointsT, s.tension); pathsB = Rubyvis::SvgScene.curve_cardinal_segments(pointsB, s.tension); elsif # monotone pathsT = Rubyvis::SvgScene.curve_monotone_segments(pointsT) pathsB = Rubyvis::SvgScene.curve_monotone_segments(pointsB) end end n=scenes.size-1 n.times {|i| s1 = scenes[i] s2 = scenes[i + 1] # /* visible */ next if (!s1.visible or !s2.visible) fill = s1.fill_style stroke = s1.stroke_style next if (fill.opacity==0 and stroke.opacity==0) d=nil if (pathsT) pathT = pathsT[i] pb=pathsB[n - i - 1] pathB = "L" + pb[1,pb.size-1] d = pathT + pathB + "Z"; else #/* interpolate */ si = s1 sj = s2 case (s1.interpolate) when "step-before" si = s2 when "step-after" sj = s1 end #/* path */ d = "M#{s1.left},#{si.top}L#{s2.left},#{sj.top }L#{s2.left + s2.width},#{sj.top + sj.height}L#{s1.left + s1.width},#{si.top + si.height}Z" end e = self.expect(e, "path", { "shape-rendering"=> s1.antialias ? nil : "crispEdges", "pointer-events"=> s1.events, "cursor"=> s1.cursor, "d"=> d, "fill"=> fill.color, "fill-opacity"=> fill.opacity==0 ? nil : fill.opacity, "stroke"=> stroke.color, "stroke-opacity"=> stroke.opacity==0 ? nil : stroke.opacity, "stroke-width"=> stroke.opacity!=0 ? s1.line_width / self.scale : nil }); e = self.append(e, scenes, i); } return e end |
.bar(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
# File 'lib/rubyvis/scene/svg_bar.rb', line 3 def self.(scenes) #e=scenes._g.elements[1] e=scenes._g.get_element(1) scenes.each_with_index do |s,i| next unless s.visible fill=s.fill_style stroke=s.stroke_style next if(fill.opacity==0 and stroke.opacity==0) e=SvgScene.expect(e, 'rect', { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events, "cursor"=> s.cursor, "x"=> s.left, "y"=> s.top, "width"=> [1E-10, s.width].max, "height"=> [1E-10, s.height].max, "fill"=> fill.color, "fill-opacity"=> (fill.opacity==0) ? nil : fill.opacity, "stroke"=> stroke.color, "stroke-opacity"=> (stroke.opacity==0) ? nil : stroke.opacity, "stroke-width"=> stroke.opacity ? s.line_width / SvgScene.scale.to_f : nil }) e=SvgScene.append(e,scenes,i) end e end |
.cardinal_tangents(points, tension) ⇒ Object
Computes the tangents for the given points needed for cardinal spline interpolation. Returns an array of tangent vectors. Note: that for n points only the n-2 well defined tangents are returned.
-
@param points the array of points.
-
@param tension the tension of hte cardinal spline.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 214 def self.cardinal_tangents(points, tension) tangents = [] a = (1 - tension) / 2.0 p0 = points[0] p1 = points[1] p2 = points[2] 3.upto(points.size-1) {|i| tangents.push(OpenStruct.new({:x=> a * (p2.left - p0.left), :y=> a * (p2.top - p0.top)})) p0 = p1; p1 = p2; p2 = points[i]; } tangents.push(OpenStruct.new({:x=> a * (p2.left - p0.left), :y=> a * (p2.top - p0.top)})) return tangents; end |
.create(type) ⇒ Object
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 114 def self.create(type) if Rubyvis.xml_engine==:nokogiri el=Rubyvis.nokogiri_document.create_element("#{type}") if type=='svg' el.add_namespace(nil, self.svg) el.add_namespace('xlink', self.xlink) end else el=REXML::Element.new "#{type}" if type=='svg' el.add_namespace(self.svg) #el.add_namespace("xmlns:xmlns", self.xmlns) el.add_namespace("xmlns:xlink", self.xlink) end end el end |
.curve_basis(points) ⇒ Object
Interpolates the given points using the basis spline interpolation. Returns an SVG path without the leading M instruction to allow path appending.
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 65 def self.curve_basis(points) return "" if (points.size <= 2) path = "" p0 = points[0] p1 = p0 p2 = p0 p3 = points[1] path += self.path_basis(p0, p1, p2, p3).to_s 2.upto(points.size-1) {|i| p0 = p1 p1 = p2 p2 = p3 p3 = points[i] path += self.path_basis(p0, p1, p2, p3).to_s } # Cycle through to get the last point. path += self.path_basis(p1, p2, p3, p3).to_s path += self.path_basis(p2, p3, p3, p3).to_s path; end |
.curve_basis_segments(points) ⇒ Object
Interpolates the given points using the basis spline interpolation. If points.length == tangents.length then a regular Hermite interpolation is performed, if points.length == tangents.length + 2 then the first and last segments are filled in with cubic bazier segments. Returns an array of path strings.
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 93 def self.curve_basis_segments(points) return "" if (points.size <= 2) paths = [] p0 = points[0] p1 = p0 p2 = p0 p3 = points[1] firstPath = self.path_basis(p0, p1, p2, p3).segment p0 = p1; p1 = p2; p2 = p3; p3 = points[2]; paths.push(firstPath + self.path_basis(p0, p1, p2, p3).to_s) # merge first & second path 3.upto(points.size-1) {|i| p0 = p1; p1 = p2; p2 = p3; p3 = points[i]; paths.push(path_basis(p0, p1, p2, p3).segment); } # merge last & second-to-last path paths.push(path_basis(p1, p2, p3, p3).segment + path_basis(p2, p3, p3, p3).to_s) paths end |
.curve_cardinal(points, tension) ⇒ Object
Interpolates the given points using cardinal spline interpolation. Returns an SVG path without the leading M instruction to allow path appending.
-
@param points the array of points.
-
@param tension the tension of hte cardinal spline.
238 239 240 241 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 238 def self.curve_cardinal(points, tension) return "" if (points.size <= 2) self.curve_hermite(points, self.cardinal_tangents(points, tension)) end |
.curve_cardinal_segments(points, tension) ⇒ Object
Interpolates the given points using cardinal spline interpolation. Returns an array of path strings.
247 248 249 250 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 247 def self.curve_cardinal_segments(points, tension) return "" if (points.size <= 2) self.curve_hermite_segments(points, self.cardinal_tangents(points, tension)) end |
.curve_hermite(points, tangents) ⇒ Object
Interpolates the given points with respective tangents using the cubic Hermite spline interpolation. If points.length == tangents.length then a regular Hermite interpolation is performed, if points.length == tangents.length + 2 then the first and last segments are filled in with cubic bazier segments. Returns an SVG path without the leading M instruction to allow path appending.
-
@param points the array of points.
-
@param tangents the array of tangent vectors.
/
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 129 def self.curve_hermite(points, tangents) return "" if (tangents.size < 1 or (points.size != tangents.size and points.size != tangents.size + 2)) quad = points.size != tangents.size path = "" p0 = points[0] p = points[1] t0 = tangents[0] t = t0 pi = 1 if (quad) path += "Q#{(p.left - t0.x * 2 / 3)},#{(p.top - t0.y * 2 / 3)},#{p.left},#{p.top}" p0 = points[1]; pi = 2; end if (tangents.length > 1) t = tangents[1] p = points[pi] pi+=1 path += "C#{(p0.left + t0.x)},#{(p0.top + t0.y) },#{(p.left - t.x) },#{(p.top - t.y)},#{p.left},#{p.top}" 2.upto(tangents.size-1) {|i| p = points[pi]; t = tangents[i]; path += "S#{(p.left - t.x)},#{(p.top - t.y)},#{p.left},#{p.top}" pi+=1 } end if (quad) lp = points[pi]; path += "Q#{(p.left + t.x * 2 / 3)},#{(p.top + t.y * 2 / 3)},#{lp.left},#{lp.top}" end path; end |
.curve_hermite_segments(points, tangents) ⇒ Object
Interpolates the given points with respective tangents using the cubic Hermite spline interpolation. Returns an array of path strings.
-
@param points the array of points.
-
@param tangents the array of tangent vectors.
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 171 def self.curve_hermite_segments(points, tangents) return [] if (tangents.size < 1 or (points.size != tangents.size and points.size != tangents.size + 2)) quad = points.size != tangents.size paths = [] p0 = points[0] p = p0 t0 = tangents[0] t = t0 pi = 1 if (quad) p = points[1] paths.push("M#{p0.left},#{p0.top }Q#{(p.left - t.x * 2 / 3.0 )},#{(p.top - t.y * 2 / 3)},#{p.left},#{p.top}") pi = 2 end 1.upto(tangents.size-1) {|i| p0 = p; t0 = t; p = points[pi] t = tangents[i] paths.push("M#{p0.left },#{p0.top }C#{(p0.left + t0.x) },#{(p0.top + t0.y) },#{(p.left - t.x) },#{(p.top - t.y) },#{p.left },#{p.top}") pi+=1 } if (quad) lp = points[pi]; paths.push("M#{p.left },#{p.top }Q#{(p.left + t.x * 2 / 3) },#{(p.top + t.y * 2 / 3) },#{lp.left },#{lp.top}") end paths end |
.curve_monotone(points) ⇒ Object
Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite interpolation. Returns an SVG path without the leading M instruction to allow path appending.
-
@param points the array of points.
324 325 326 327 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 324 def self.curve_monotone(points) return "" if (points.length <= 2) return self.curve_hermite(points, self.monotone_tangents(points)) end |
.curve_monotone_segments(points) ⇒ Object
Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite interpolation. Returns an array of path strings.
-
@param points the array of points.
/
335 336 337 338 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 335 def self.curve_monotone_segments(points) return "" if (points.size <= 2) self.curve_hermite_segments(points, self.monotone_tangents(points)) end |
.dot(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/rubyvis/scene/svg_dot.rb', line 3 def self.dot(scenes) #e = scenes._g.elements[1] e=scenes._g.get_element(1) scenes.each_with_index {|s,i| s = scenes[i]; # visible */ next if !s.visible fill = s.fill_style stroke = s.stroke_style next if (fill.opacity==0 and stroke.opacity==0) #/* points */ radius = s.shape_radius path = nil case s.shape when 'cross' path = "M#{-radius},#{-radius}L#{radius},#{radius}M#{radius},#{ -radius}L#{ -radius},#{radius}" when "triangle" h = radius w = radius * 1.1547; # // 2 / Math.sqrt(3) path = "M0,#{h}L#{w},#{-h} #{-w},#{-h}Z" when "diamond" radius=radius* Math::sqrt(2) path = "M0,#{-radius}L#{radius},0 0,#{radius} #{-radius},0Z"; when "square" path = "M#{-radius},#{-radius}L#{radius},#{-radius} #{radius},#{radius} #{-radius},#{radius}Z" when "tick" path = "M0,0L0,#{-s.shapeSize}" when "bar" path = "M0,#{s.shape_size / 2.0}L0,#{-(s.shapeSize / 2.0)}" end #/* Use <circle> for circles, <path> for everything else. */ svg = { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events, "cursor"=> s.cursor, "fill"=> fill.color, "fill-opacity"=> (fill.opacity==0) ? nil : fill.opacity, "stroke"=> stroke.color, "stroke-opacity"=> (stroke.opacity==0) ? nil : stroke.opacity, "stroke-width"=> (stroke.opacity!=0) ? s.line_width / self.scale : nil } if (path) svg["transform"] = "translate(#{s.left},#{s.top})" if (s.shape_angle) svg["transform"] += " rotate(#{180 * s.shape_angle / Math.PI})"; end svg["d"] = path e = self.expect(e, "path", svg); else svg["cx"] = s.left; svg["cy"] = s.top; svg["r"] = radius; e = self.expect(e, "circle", svg); end e = self.append(e, scenes, i); } return e end |
.expect(e, type, attributes, style = nil) ⇒ Object
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 169 def self.expect(e, type, attributes, style=nil) if (e) #e = e.elements[1] if (e.name == "a") e=e.get_element(1) if (e.name == 'a') if (e.name != type) n = self.create(type); e.parent.replace_child(e, n); e = n end else e = self.create(type) end attributes.each {|name,value| value = nil if (value == IMPLICIT[:svg][name]) if (value.nil?) e.delete_attribute(name) else e.set_attributes(name=>value) #e.attributes[name]=value end } if(style) base_style=e.attributes['style'] base_style||="" array_styles={} base_style.split(";").each {|v| v=~/\s*(.+)\s*:\s*(.+)/ array_styles[$1]=$2 } style.each {|name,value| value=nil if value==IMPLICIT[:css][name] if (value.nil?) array_styles.delete(name) else array_styles[name]=value end } if array_styles.size>0 #e.attributes["style"]=array_styles.map {|k,v| "#{k}:#{v}"}.join(";") e.set_attributes('style'=> array_styles.map {|k,v| "#{k}:#{v}"}.join(";")) end end e end |
.fill(e, scenes, i) ⇒ Object
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# File 'lib/rubyvis/scene/svg_panel.rb', line 107 def self.fill(e,scenes,i) s=scenes[i] fill=s.fill_style if(fill.opacity>0 or s.events=='all') e=SvgScene.expect(e,'rect', { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events, "cursor"=> s.cursor, "x"=> s.left, "y"=> s.top, "width"=> s.width, "height"=> s.height, "fill"=> fill.color, "fill-opacity"=> fill.opacity, "stroke"=> nil }) e=SvgScene.append(e,scenes, i) end e end |
.image(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
# File 'lib/rubyvis/scene/svg_image.rb', line 3 def self.image(scenes) #e=scenes._g.elements[1] e=scenes._g.get_element(1) scenes.each_with_index do |s,i| next unless s.visible e=self.fill(e,scenes,i) if s.image raise "Not implemented yet" else e = self.expect(e, "image", { "preserveAspectRatio"=> "none", "cursor"=> s.cursor, "x"=> s.left, "y"=> s.top, "width"=> s.width, "height"=> s.height, }) e.set_attributes("xlink:href"=>s.url); end e = self.append(e, scenes, i); #/* stroke */ e = self.stroke(e, scenes, i); end e end |
.label(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# File 'lib/rubyvis/scene/svg_label.rb', line 3 def self.label(scenes) #e=scenes._g.elements[1] e=scenes._g.get_element(1) scenes.each_with_index do |s,i| next unless s.visible fill=s.text_style next if(fill.opacity==0 or s.text.nil?) x=0 y=0 dy=0 anchor='start' case s.text_baseline when 'middle' dy=".35em" when "top" dy = ".71em" y = s.text_margin when "bottom" y = "-" + s.text_margin.to_s end case s.text_align when 'right' anchor = "end" x = "-" + s.text_margin.to_s when "center" anchor = "middle" when "left" x = s.text_margin end e=SvgScene.expect(e,'text', { "pointer-events"=> s.events, "cursor"=> s.cursor, "x"=> x, "y"=> y, "dy"=> dy, "transform"=> "translate(#{s.left},#{s.top})" + (s.text_angle!=0 ? " rotate(" + (180 * s.text_angle / Math::PI).to_s + ")" : "") + (self.scale != 1 ? " scale(" + 1 / self.scale + ")" : ""), "fill"=> fill.color, "fill-opacity"=> fill.opacity==0 ? nil : fill.opacity, "text-anchor"=> anchor }, { "font"=> s.font, "text-shadow"=> s.text_shadow, "text-decoration"=> s.text_decoration}) e.text=s.text.frozen? ? s.text.dup : s.text e=SvgScene.append(e,scenes,i) end e end |
.line(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# File 'lib/rubyvis/scene/svg_line.rb', line 3 def self.line(scenes) #e=scenes._g.elements[1] e=scenes._g.get_element(1) return e if (scenes.size < 2) s = scenes[0] # segmented */ return self.line_segment(scenes) if (s.segmented) #/* visible */ return e if (!s.visible) fill = s.fill_style stroke = s.stroke_style return e if (fill.opacity==0.0 and stroke.opacity==0.0) #/* points */ d = "M#{s.left},#{s.top}" if (scenes.size > 2 and (['basis', 'cardinal', 'monotone'].include? s.interpolate)) case (s.interpolate) when "basis" d = d+ curve_basis(scenes) when "cardinal" d = d+curve_cardinal(scenes, s.tension) when "monotone" d = d+curve_monotone(scenes) end else (1...scenes.size).each {|i| d+= path_segment(scenes[i-1],scenes[i]) } end e = SvgScene.expect(e, "path", { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events, "cursor"=> s.cursor, "d"=> d, "fill"=> fill.color, "fill-opacity"=> (fill.opacity==0.0) ? nil : fill.opacity, "stroke"=> stroke.color, "stroke-opacity"=> (stroke.opacity==0.0) ? nil : stroke.opacity, "stroke-width"=> (stroke.opacity>0) ? s.line_width / self.scale : nil, "stroke-linejoin"=> s.line_join }); return SvgScene.append(e, scenes, 0); end |
.line_intersect(o1, d1, o2, d2) ⇒ Object
/** @private Line-line intersection, per Akenine-Moller 16.16.1. */
138 139 140 |
# File 'lib/rubyvis/scene/svg_line.rb', line 138 def self.line_intersect(o1, d1, o2, d2) return o1.plus(d1.times(o2.minus(o1).dot(d2.perp()) / d1.dot(d2.perp()))); end |
.line_segment(scenes) ⇒ Object
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# File 'lib/rubyvis/scene/svg_line.rb', line 52 def self.line_segment(scenes) #e=scenes._g.elements[1] e=scenes._g.get_element(1) s = scenes[0]; paths=nil case s.interpolate when "basis" paths = curve_basis_segments(scenes) when "cardinal" paths=curve_cardinal_segments(scenes, s.tension) when "monotone" paths = curve_monotone_segments(scenes) end (0...(scenes.size-1)).each {|i| s1 = scenes[i] s2 = scenes[i + 1]; #p "#{s1.top} #{s1.left} #{s1.line_width} #{s1.interpolate} #{s1.line_join}" # visible next if (!s1.visible or !s2.visible) stroke = s1.stroke_style fill = Rubyvis::Color.transparent next if stroke.opacity==0.0 # interpolate d=nil if ((s1.interpolate == "linear") and (s1.line_join == "miter")) fill = stroke stroke = Rubyvis::Color.transparent s0=((i-1) < 0) ? nil : scenes[i-1] s3=((i+2) >= scenes.size) ? nil : scenes[i+2] d = path_join(s0, s1, s2, s3) elsif(paths) d = paths[i] else d = "M#{s1.left},#{s1.top}#{path_segment(s1, s2)}" end e = SvgScene.expect(e, "path", { "shape-rendering"=> s1.antialias ? nil : "crispEdges", "pointer-events"=> s1.events, "cursor"=> s1.cursor, "d"=> d, "fill"=> fill.color, "fill-opacity"=> (fill.opacity==0.0) ? nil : fill.opacity, "stroke"=> stroke.color, "stroke-opacity"=> (stroke.opacity==0.0) ? nil : stroke.opacity, "stroke-width"=> stroke.opacity>0 ? s1.line_width / self.scale : nil, "stroke-linejoin"=> s1.line_join }); e = SvgScene.append(e, scenes, i); } e end |
.monotone_tangents(points) ⇒ Object
Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite interpolation. Returns an array of tangent vectors.
*@param points the array of points.
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 256 def self.monotone_tangents(points) tangents = [] d = [] m = [] dx = [] #k=0 #/* Compute the slopes of the secant lines between successive points. */ 0.upto(points.size-2) do |k| # while(k < points.size-1) do d[k] = (points[k+1].top - points[k].top) / (points[k+1].left - points[k].left).to_f k+=1 end #/* Initialize the tangents at every point as the average of the secants. */ m[0] = d[0] dx[0] = points[1].left - points[0].left 1.upto(points.size-2) {|k| m[k] = (d[k-1]+d[k]) / 2.0 dx[k] = (points[k+1].left - points[k-1].left) / 2.0 } k=points.size-1 m[k] = d[k-1]; dx[k] = (points[k].left - points[k-1].left); # /* Step 3. Very important, step 3. Yep. Wouldn't miss it. */ (points.size-1).times {|kk| if d[kk] == 0 m[ kk ] = 0; m[kk + 1] = 0; end } # /* Step 4 + 5. Out of 5 or more steps. */ (points.size-1).times {|kk| next if ((m[kk].abs < 1e-5) or (m[kk+1].abs < 1e-5)) akk = m[kk] / d[kk].to_f bkk = m[kk + 1] / d[kk].to_f s = akk * akk + bkk * bkk; # monotone constant (?) if (s > 9) tkk = 3.0 / Math.sqrt(s) m[kk] = tkk * akk * d[kk] m[kk + 1] = tkk * bkk * d[kk] end } len=nil; points.size.times {|i| len = 1 + m[i] * m[i]; #// pv.vector(1, m[i]).norm().times(dx[i]/3) tangents.push(OpenStruct.new({:x=> dx[i] / 3.0 / len, :y=> m[i] * dx[i] / 3.0 / len})) } tangents; end |
.panel(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# File 'lib/rubyvis/scene/svg_panel.rb', line 3 def self.panel(scenes) puts " -> panel: #{scenes.inspect}" if $DEBUG g=scenes._g #e=(g.nil?) ? nil : g.elements[1] e=(g.nil?) ? nil : g.get_element(1) if g #e=g.elements[1] e=g.get_element(1) end scenes.each_with_index do |s,i| next unless s.visible if(!scenes.parent) if g and g.parent!=s.canvas #g=s.canvas.elements[1] g=s.canvas.get_element(1) #e=(@g.nil?) ? nil : @g.elements[1] e=(@g.nil?) ? nil : @g.get_element(1) end if(!g) g=s.canvas.add_element(self.create('svg')) g.set_attributes( { 'font-size'=>"10px", 'font-family'=>'sans-serif', 'fill'=>'none', 'stroke'=>'none', 'stroke-width'=>1.5 } ) e=g.get_element(1) # g.attributes["font-size"]="10px" # g.attributes["font-family"]="sans-serif" # g.attributes["fill"]="none" # g.attributes["stroke"]="none" # g.attributes["stroke-width"]=1.5 # e=g.elements[1] end scenes._g=g #p s g.set_attributes({ 'width'=>s.width+s.left+s.right, 'height'=>s.height+s.top+s.bottom }) #g.attributes['width']=s.width+s.left+s.right #g.attributes['height']=s.height+s.top+s.bottom end if s.overflow=='hidden' id=Rubyvis.id.to_s(36) c=self.expect(e,'g',{'clip-path'=>'url(#'+id+')'}); g.add_element(c) if(!c.parent) scenes._g=g=c #e=c.elements[1] e=c.get_element(1) e=self.expect(e,'clipPath',{'id'=>id}) #r=(e.elements[1]) ? e.elements[1] : e.add_element(self.create('rect')) r=(e.get_element(1)) ? e.get_element(1) : e.add_element(self.create('rect')) r.set_attributes({ 'x'=>s.left, 'y'=>s.top, 'width'=>s.width, 'height'=>s.height }) #r.attributes['x']=s.left #r.attributes['y']=s.top #r.attributes['width']=s.width #r.attributes['height']=s.height g.add_element(e) if !e.parent e=e.next_sibling_node end # fill e=self.fill(e,scenes, i) # transform k=self.scale t=s.transform x=s.left+t.x y=s.top+t.y SvgScene.scale=SvgScene.scale*t.k # children s.children.each_with_index {|child, i2| child._g=e=SvgScene.expect(e, "g", { "transform"=> "translate(" + x.to_s + "," + y.to_s + ")" + (t.k != 1 ? " scale(" + t.k.to_s + ")" : "") }) SvgScene.update_all(child) g.add_element(e) if(!e.parent) e=e.next_sibling_node } # transform (pop) SvgScene.scale=k # stroke e=SvgScene.stroke(e,scenes,i) # clip if (s.overflow=='hidden') scenes._g=g=c.parent e=c.next_sibling_node end end return e end |
.path_basis(p0, p1, p2, p3) ⇒ Object
Converts the specified b-spline curve segment to a bezier curve compatible with SVG āCā.
-
@param p0 the first control point.
-
@param p1 the second control point.
-
@param p2 the third control point.
-
@param p3 the fourth control point.
56 57 58 |
# File 'lib/rubyvis/scene/svg_curve.rb', line 56 def self.path_basis(p0,p1,p2,p3) PathBasis.new(p0,p1,p2,p3) end |
.path_join(s0, s1, s2, s3) ⇒ Object
/** @private Returns the miter join path for the specified points. */
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# File 'lib/rubyvis/scene/svg_line.rb', line 143 def self.path_join(s0, s1, s2, s3) # # P1-P2 is the current line segment. V is a vector that is perpendicular to # the line segment, and has length lineWidth / 2. ABCD forms the initial # bounding box of the line segment (i.e., the line segment if we were to do # no joins). # p1 = Rubyvis.vector(s1.left, s1.top) p2 = Rubyvis.vector(s2.left, s2.top) _p = p2.minus(p1) v = _p.perp().norm() w = v.times(s1.line_width / (2.0 * self.scale)) a = p1.plus(w) b = p2.plus(w) c = p2.minus(w) d = p1.minus(w) #/* # * Start join. P0 is the previous line segment's start point. We define the # * cutting plane as the average of the vector perpendicular to P0-P1, and # * the vector perpendicular to P1-P2. This insures that the cross-section of # * the line on the cutting plane is equal if the line-width is unchanged. # * Note that we don't implement miter limits, so these can get wild. # */ if (s0 and s0.visible) v1 = p1.minus(s0.left, s0.top).perp().norm().plus(v) d = line_intersect(p1, v1, d, _p) a = line_intersect(p1, v1, a, _p) end #/* Similarly, for end join. */ if (s3 and s3.visible) v2 = Rubyvis.vector(s3.left, s3.top).minus(p2).perp().norm().plus(v); c = line_intersect(p2, v2, c, _p); b = line_intersect(p2, v2, b, _p); end d="M#{a.x},#{a.y}L#{b.x},#{b.y} #{c.x},#{c.y} #{d.x},#{d.y}" d end |
.path_segment(s1, s2) ⇒ Object
Returns the path segment for the specified points. */
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# File 'lib/rubyvis/scene/svg_line.rb', line 114 def self.path_segment(s1, s2) l = 1; # sweep-flag l = 0 if s1.interpolate=='polar-reverse' if s1.interpolate=='polar' or s1.interpolate=='polar-reverse' dx = s2.left - s1.left dy = s2.top - s1.top e = 1 - s1.eccentricity r = Math.sqrt(dx * dx + dy * dy) / (2 * e) if !((e<=0) or (e>1)) return "A#{r},#{r} 0 0,#{l} #{s2.left},#{s2.top}" end end if s1.interpolate=="step-before" return "V#{s2.top}H#{s2.left}" elsif s1.interpolate=="step-after" return "H#{s2.left}V#{s2.top}" end return "L#{s2.left},#{s2.top}" end |
.remove_siblings(e) ⇒ Object
107 108 109 110 111 112 113 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 107 def self.remove_siblings(e) while(e) n=e.next_sibling_node e.remove e=n end end |
.rule(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
# File 'lib/rubyvis/scene/svg_rule.rb', line 3 def self.rule(scenes) #e=scenes._g.elements[1] e=scenes._g.get_element(1) scenes.each_with_index do |s,i| next unless s.visible stroke=s.stroke_style next if(stroke.opacity==0.0) e=SvgScene.expect(e,'line', { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events, "cursor"=> s.cursor, "x1"=> s.left, "y1"=> s.top, 'x2'=> s.left+s.width, 'y2'=>s.top+s.height, "stroke"=> stroke.color, "stroke-opacity"=> stroke.opacity, "stroke-width"=> s.line_width / self.scale }) e=SvgScene.append(e,scenes,i) end e end |
.scale ⇒ Object
77 78 79 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 77 def self.scale @scale end |
.scale=(v) ⇒ Object
80 81 82 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 80 def self.scale=(v) @scale=v end |
.stroke(e, scenes, i) ⇒ Object
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# File 'lib/rubyvis/scene/svg_panel.rb', line 129 def self.stroke(e, scenes, i) s = scenes[i] stroke = s.stroke_style if (stroke.opacity>0 or s.events == "all") e = self.expect(e, "rect", { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events == "all" ? "stroke" : s.events, "cursor"=> s.cursor, "x"=> s.left, "y"=> s.top, "width"=> [1E-10, s.width].max, "height"=>[1E-10, s.height].max, "fill"=>"none", "stroke"=> stroke.color, "stroke-opacity"=> stroke.opacity, "stroke-width"=> s.line_width / self.scale.to_f }); e = self.append(e, scenes, i); end return e end |
.svg ⇒ Object
include REXML
64 65 66 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 64 def self.svg "http://www.w3.org/2000/svg" end |
.title(e, s) ⇒ Object
Applies a title tooltip to the specified element e
, using the title
property of the specified scene node s
. Note that this implementation does not create an SVG title
element as a child of e
; although this is the recommended standard, it is only supported in Opera. Instead, an anchor element is created around the element e
, and the xlink:title
attribute is set accordingly.
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 151 def self.title(e,s) a = e.parent a=nil if (a and (a.name != "a")) if (s.title) if (!a) a = self.create("a") e.parent.replace_child(a, e) if (e.parent) a.add_element(e) end #a.add_attribute('xlink:title',s.title) a.set_attributes('xlink:title' => s.title) return a; end a.parent_node.replace_child(e, a) if (a) e end |
.update_all(scenes) ⇒ Object
100 101 102 103 104 105 106 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 100 def self.update_all(scenes) puts "update_all: #{scenes.inspect}" if $DEBUG if (scenes.size>0 and scenes[0].reverse and scenes.type!='line' and scenes.type!='area') scenes=scenes.reverse end self.remove_siblings(self.send(scenes.type, scenes)) end |
.wedge(scenes) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# File 'lib/rubyvis/scene/svg_wedge.rb', line 3 def self.wedge(scenes) #e=scenes._g.elements[1] e=scenes._g.get_element(1) scenes.each_with_index do |s,i| next unless s.visible fill=s.fill_style stroke=s.stroke_style next if(fill.opacity==0.0 and stroke.opacity==0.0) # /* points */ r1 = s.inner_radius r2 = s.outer_radius a = (s.angle).abs _p=nil if (a >= 2 * Math::PI) if (r1!=0) _p = "M0,#{r2 }A#{r2},#{r2} 0 1,1 0,#{-r2}A#{r2 },#{r2 } 0 1,1 0,#{r2}M0,#{r1}A#{r1},#{r1} 0 1,1 0,#{-r1}A#{r1},#{r1} 0 1,1 0,#{r1 }Z" else _p = "M0,#{r2}A#{r2},#{r2} 0 1,1 0,#{-r2}A#{r2},#{r2} 0 1,1 0,#{r2 }Z" end else sa = [s.start_angle, s.end_angle].min ea = [s.start_angle, s.end_angle].max c1 = Math.cos(sa) c2 = Math.cos(ea) s1 = Math.sin(sa) s2 = Math.sin(ea) if (r1!=0) _p = "M#{r2 * c1},#{r2 * s1}A#{r2},#{r2} 0 #{((a < Math::PI) ? "0" : "1")},1 #{r2 * c2},#{r2 * s2}L#{r1 * c2},#{r1 * s2}A#{r1},#{r1} 0 #{((a < Math::PI) ? "0" : "1")},0 #{r1 * c1},#{r1 * s1}Z" else _p = "M#{r2 * c1},#{r2 * s1}A#{r2},#{r2} 0 #{((a < Math::PI) ? "0" : "1")},1 #{r2 * c2},#{r2 * s2}L0,0Z" end end e = self.expect(e, "path", { "shape-rendering"=> s.antialias ? nil : "crispEdges", "pointer-events"=> s.events, "cursor"=> s.cursor, "transform"=> "translate(#{s.left},#{s.top})", "d"=> _p, "fill"=> fill.color, "fill-rule"=> "evenodd", "fill-opacity"=> (fill.opacity==0) ? nil : fill.opacity, "stroke"=> stroke.color, "stroke-opacity"=> (stroke.opacity==0) ? nil : stroke.opacity, "stroke-width"=> stroke.opacity>0 ? s.line_width / self.scale.to_f : nil }); e=SvgScene.append(e,scenes,i) end e end |
.xhtml ⇒ Object
73 74 75 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 73 def self.xhtml "http://www.w3.org/1999/xhtml" end |
.xlink ⇒ Object
70 71 72 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 70 def self.xlink "http://www.w3.org/1999/xlink" end |
.xmlns ⇒ Object
67 68 69 |
# File 'lib/rubyvis/scene/svg_scene.rb', line 67 def self.xmlns "http://www.w3.org/2000/xmlns" end |